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Abstract—In this paper, we present a novel code-aided joint syn-
chronization and channel estimation algorithm for downlink mul-
ticarrier code-division multiple access. The expectation-maximiza-
tion algorithm is used to locate the maximum-likelihood estimate
of the channel impulse response, propagation delay, and carrier
frequency offset. The estimator accepts soft information from the
decoder in the form of a posteriori probabilities of the coded sym-
bols, and can be interpreted as performing joint estimation and
data detection. The performance of the proposed algorithm is ver-
ified through computer simulations. Impressive performance gains
are visible as compared with a conventional data-aided estimation
scheme.

Index Terms—Code-aided estimation, estimation, synchroniza-
tion.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) has received intense interest from the re-

search community during the past few decades. Its robustness
to frequency-selective channels has made it one of the main
candidates for high data rate transmission for current and
next-generation wireless and wireline applications [1], [2].

Supporting multiple users can be achieved in a variety of
ways. Popular multiple-access (MA) methods include OFDMA
(where active users are assigned different subcarriers) and
code-division multiple-access (CDMA)-based schemes. In
CDMA, different users are distinguished based on unique
spreading codes. Spreading can take place either in the fre-
quency-domain or in the time-domain. This leads to concepts
known as multicarrier-CDMA (MC-CDMA) and multicarrier
direct-sequence CDMA (MC-DS-CDMA), respectively. These
techniques each have different benefits and drawbacks, de-
pending on the intended application [3], [4]. In this paper, we
focus on MC-CDMA.

All OFDM-based transmission systems suffer from several
sources of impairment. The first problem is related to the in-
herent high peak-to-average power ratio (PAPR). Saturation of
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amplifiers leads to out-of-band radiation and destruction of or-
thogonality between carriers [5]. A second problem is synchro-
nization [6]: accurate timing and frequency synchronization is
required to maintain orthogonality among subcarriers and to
avoid intersymbol interference (ISI). Additionally, the channel
impulse response (CIR) must be known to coherently detect
the data per subcarrier. When we consider the massive amount
of research devoted to these problems (see, e.g., [6]–[15] and
references therein), it becomes clear that synchronization and
channel estimation are critical issues. Conventional techniques
are either data-aided (i.e., exploiting training symbols in the
time- or frequency-domain) [7]–[12] or blind (e.g., exploiting
the presence of the cyclic prefix) [13]–[15].

With the advent of powerful error-correcting codes [in-
cluding turbo- and low-density parity-check (LDPC) codes],
these conventional techniques cannot always be applied suc-
cessfully. Powerful codes lead to a combination of low bit-error
rate (BER) at low signal-to-noise ratio (SNR), thus rendering
blind techniques unreliable. Similarly, data-aided algorithms
require an unreasonable amount of power and bandwidth to be
devoted to training. This has spurred several research groups to
consider “code-aided” or “code-aware” estimation algorithms.
These algorithms iterate between data detection and estimation,
thus improving both the estimates of synchronization param-
eters and CIR, while simultaneously performing increasingly
reliable data detection. Such techniques are often inspired by
the turbo-principle [16] or the expectation-maximization (EM)
algorithm [17], [18]. In [19], an EM-based semi-blind technique
is described that performs code-aided estimation of the CIR per
multicarrier (MC) symbol. The same idea was applied in the
frequency-domain in [20] for a multiantenna, multiuser system.
The EM algorithm was again considered in [21] for estimation
of the CIR for a time-varying multiple-input–multiple-output
(MIMO)-OFDM scenario. Finally, [22] proposes an ad hoc
code-aided channel estimator for time-varying OFDM systems.
The reader will note that code-aided estimation of synchroniza-
tion parameters has received little interest.

In the current paper, we extend our work from [23] and [24]
to the problem of joint estimation of the propagation delay, car-
rier frequency offset (CFO), and CIR for downlink MC-CDMA.
Starting from the maximum-likelihood (ML) principle, we de-
rive an estimation algorithm based on the EM algorithm, ex-
ploiting information from the pilot symbols and coded data sym-
bols in a systematic fashion.

This paper is organized as follows: the system model is
provided in Section II, including a brief description of the
detector. We continue with ML and EM estimation algorithms
in Section III, paying special attention to issues related to
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Fig. 1. Frame construction for the kth user.

computational complexity. Numerical results are provided in
Section IV, before we end with conclusions in Section V.

II. MC-CDMA DOWNLINK SYSTEM MODEL

A. Transmitter

We consider the downlink of a MC-CDMA system with
active users. The base station transmits frames consisting of
MC symbols to each of the users. A frame intended for the

th user is generated as follows (see Fig. 1): a block

of information-bits is encoded, resulting
in coded bits. After interleaving, these coded bits are
mapped to a sequence of symbols, belonging to a unit-en-
ergy -point constellation (with ). We will de-

note this sequence . Now, is

broken down into blocks of length (with ).
The blocks are buffered and converted, one at a time, to MC
symbols. Let us denote the symbols in the th MC symbol of the

th user as .

The conversion of into a MC symbol is performed as
follows. The th data symbol (i.e., ) is first spread by a

unit-energy spreading sequence of length , yielding a

sequence of chips . Performing
spreading for all symbols in the th MC symbol results in a
total of chips. This chip-sequence is mapped to
subcarriers (known as frequency interleaving). Hence, each of
the chips (say, ) is assigned to a unique subcarrier

(say the th subcarrier).1 We end up with the block

of interleaved chips which is provided
to an -point inverse discrete Fourier transform (IDFT).2 A

-point cyclic prefix (CP) is preappended, resulting in

time-domain samples ,

where , for . Hence, the length
of the MC symbol is equal to . We can write the

th time-domain sample ( ) of the th MC
symbol of the th user as

(1)

1For notational convenience, we will later assume this mapping to be the same
for all users. Extension to more general schemes is straightforward.

2Obviously, the DFT and IDFT operations are implemented through a fast
Fourier transform.

where denotes the energy per symbol . We further de-
fine the MC symbol period and the sampling period

. Finally, the signals of the different users are added,
shaped with a normalized transmit filter and transmitted over the
channel to the mobile stations.

B. Multiplexing

A common control physical channel (CCPCH) is assumed
whereby a sequence of MC symbols is time-multiplexed
at the header of the composite dedicated physical channels
(DPCH). These symbols do not undergo spreading (i.e.,

in the CCPCH). A fraction (say, ) of the sub-
carriers of the MC symbols in the CCPCH is devoted to training
symbols, which serve to synchronize the mobile receivers.
The remainder of the carriers (i.e., the fraction ) is taken
up with administrative data. For convenience, we will refer
to these MC symbols as “pilot MC symbols.” The pilot
symbols may have a repetitive structure in the time-domain,
to accommodate specific synchronization algorithms [8]. The
frame structure is shown in Fig. 2.

C. Receiver

Each user has to process a total of MC sym-
bols. From this point on, we focus on a specific mobile station,
say the th. The signal from the base station propagates to the

th mobile station through a channel with overall CIR .
This CIR incorporates the transmit filter, physical propagation
channel, and receive filter (e.g., matched filter). We assume a
quasi-static block-fading channel that remains constant during
each frame but can vary independently from frame to frame.
The CIR is assumed to have a delay spread no greater than :

for and for . Additionally, the signal
arrives at the mobile station with a certain delay and is affected
by a CFO and is corrupted by thermal noise. The propaga-
tion delay belongs to some interval3 , while the CFO
depends on the speed of the mobile stations and any possible
mismatch between the transmit and receive oscillators. We as-
sume the CFO to be small, compared with the bandwidth of the
receiver’s matched filter. Hence, the received signal is given by

(2)

where is the baseband representation of the additive white
Gaussian noise (AWGN) with power spectral density per

3As discussed in [7], the maximum propagation delay � can be directly
related to the cell radius R: � = R=c, where c is the speed of light.
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Fig. 2. Frame structure: the cyclic prefix is marked in black.

real dimension. In (2), the signal corresponding to the CCPCH
is given by

(3)
while the DPCH signal corresponding to the th user is

(4)
The receiver is fully digital and samples the received signal
at a rate resulting in a sequence of samples ,

. Let us define the normalized CFO .
Following [7], we break up as

(5)

with and .
Defining , we can express the samples

as a function of . For instance, the contribution to
by the th DPCH is given by (6) shown at the bottom

of the page. Since is a multiple of , the channel
is fully characterized by the vector

(7)

When , no interference between successive MC symbols
occurs: for each MC symbol, at least one sequence of suc-
cessive time-domain samples exists that does not suffer from
interference of the preceding and the following MC symbol.4

As , samples taken prior to
and later than

4When multiple such sequences exist, after conversion to the frequency-do-
main, they lead to equivalent DFT-outputs, up to a known complex rotation
(which in no way affects the performance).

Fig. 3. Detector and estimator for the k th user.

do not depend on the current frame. Hence, the following se-
quence of time-domain sam-
ples is sufficient for data detection and synchronization

(8)
The final goal of the th user is to recover the transmitted in-
formation bits . It is clear that this requires knowledge of
both the delay shift , the (normalized) CFO and the channel
taps .

The conceptual block diagram of the receiver is shown in
Fig. 3. The receiver of user employs an estimation algorithm
(e.g., by exploiting the pilot MC symbols) to obtain esti-

mates for the timing offset , the CFO , and the
channel taps . These estimates are then used to recover the

symbols contained in the data MC symbols. To do this,
the receiver of user synchronizes the sequence by shifting
the sequence over samples, and correcting the phase rota-
tion due to the CFO using the estimate . Then, the remaining
vector is cut into blocks of length : for each of the data
MC symbols of samples, the receiver disregards the
samples corresponding to the CP, and selects the remaining
samples for further processing. The blocks are converted to
the frequency-domain through a -point DFT operation. The
output of the DFT at subcarrier for the th MC symbol is
given by (9) shown at the bottom of the page. By equalization
and despreading of the samples , we create

a decision variable for

(10)

(11)

where is the coefficient of the one-tap equalizer at subcar-
rier ; the equalizer coefficients are obtained using

(6)

(9)



1108 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 6, JUNE 2006

the estimates of the channel taps and are selected, e.g., ac-
cording to the minimum mean-square error (MMSE) criterion.

The decision variable can be decomposed into a useful

contribution , and a contribution that embeds

the noise and interference. Both the multiplicative factor

and the contribution depend on the estimates of the timing
offset , the CFO and the channel taps . From (11), the

distribution of , conditioned on

can be obtained.5 Taking into account that

, the receiver is able to

compute the probabilities .

Finally, the probabilities ,

, , are fed to a block that performs soft
demodulation and decoding, operating according to the turbo
principle [27], [28]. For our purposes, this block is considered
as a black box that computes a posteriori probabilities (APPs),
possibly in an iterative fashion. Upon completion, the APPs of

(i.e., ) are used

to make final decisions on the information bits. At the same
time, this block also computes the APPs of the coded symbols

. For additional details, the reader is re-

ferred to [23] and [24].

III. CHANNEL ESTIMATION AND SYNCHRONIZATION

It is clear that the detector described in the previous section
requires the estimates of the delay shift6 , the CFO , and the
channel taps . In this section, we describe how these quantities
may be estimated by the th user. We start from the ML crite-
rion and derive a data-aided (DA) estimator. Then, capitalizing
on the EM algorithm, a code-aided estimator is constructed that
exploits information from both the pilot MC symbols and the
data MC symbols.

A. ML Estimation

We first write our observation into a more conve-
nient form. We start again from our observation-vector

from (8). Note that the length of this vector is independent of
.
We now introduce row-vectors of length :

consists of the time-domain
samples of the th pilot MC symbol ( ).

Similarly, consists of the
time-domain samples of the th data MC

symbol ( ) of the th user. Then, a vector

5In [25] and [26], it is shown that under certain conditions, p y
( )

d
( )

can be modeled as a Gaussian distribution.
6In correspondence with technical literature, we will name the process of de-

termining � frame synchronization.

Fig. 4. Toeplitz symbol matrix S for M = 1.

of length is constructed by con-
catenating all these time-domain samples, padded with
zeros at the beginning and end of the vector, leading to

(12)

where is an matrix consisting of all zeros.
Now, we define an Toeplitz

matrix as follows: the th row of is obtained by time-re-
versing the th until the ( )th sample of . For instance,
the first row is given by , the second row by

, and so forth. The structure of this
matrix is shown in Fig. 4. Note that we can write as the sum of
two Toeplitz matrices of size :

, where contains only the pilot MC symbols
and contains only the data MC symbols.

Finally, we define an
matrix as

(13)

These transformations enable us to write the following simple
relationship between , , and :

(14)

where is a diagonal matrix with ,
, and the vector

embeds the thermal noise and the multiple-access interfer-
ence (MAI) and is modeled as a zero-mean complex Gaussian
random variable with variance per real dimension. Note that
by substituting into (13), we can break up

.
The ML estimate of the delay shift and channel taps is ob-

tained by maximizing the log-likelihood function

(15)

where

(16)
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and

(17)

Unfortunately, the summation in (16) is intractable in practice,
as it requires the evaluation of (17) over all possible
codewords.

B. Data-Aided (DA) Estimation

The summation in (16) can be avoided by ignoring the un-
known coded symbols. In this case

(18)

(19)

where is obtained by replacing all unknown symbols in
with zeros and we have used the fact that . Now,

(19) is solved as follows. We first note that for a given and ,
the estimate of can be found in closed form as

(20)

(21)

where was defined in the previous section. On the other
hand, an estimate of and requires a two-dimensional (2-D)
search

(22)

Back-substitution of (21) into (22) gives us

(23)
and

(24)

In the situation where the CFO is small as compared with
the carrier spacing, the 2-D maximization in (23) can be
reduced to two one-dimensional (1-D) maximizations as fol-
lows [7]: we first obtain a coarse timing-independent estimate
of the CFO , leading to a matrix (e.g., setting ,
effectively ignoring any CFO). We then find the delay as

.
Based on this timing estimate, the CFO is finally es-
timated by maximizing the following cost function:

.
Note that, contrary to the DA estimator from [7], the ma-

trix to be inverted in (23) and (24) is independent of , so that
can be precomputed and stored at the receiver.

One of the main drawbacks of many frame synchronization
algorithms for MC systems is the presence of ambiguities: an
ambiguity occurs when a cost-function such as (23): a) exhibits
a plateau (with multiple consecutive values of the parameter

Fig. 5. DA frame synchronization: trial value of� versus cost function.� =

17.

giving rise to the same cost) or b) has multiple maxima,
each with the same cost. For instance, the ML DA estimator
from [7] is not able to estimate values of beyond : when

ambiguities in the cost-function (23) occur. For the
estimator we propose, which is based on a slightly different ob-
servation model, no ambiguity is present. To illustrate this point,
we plot (with ) a typical realization of the cost-function
(23) for a single-user system in Fig. 5: there is a unique well-de-
fined maximum of the cost-function.

While DA estimation algorithms perform well for uncoded
systems, this is no longer true when error-correcting codes are
concerned. Since such codes operate in low SNR regimes, many
pilot symbols may be required to acquire reliable estimates. As
this results in a significant loss in terms of power and bandwidth,
there is great interest in developing algorithms that are also able
to exploit the data MC symbols. In the following section, we
describe a possible approach: the EM algorithm. It turns out
that there are some very nice connections between the resulting
code-aided algorithm and the conventional DA algorithm.

C. EM Estimation

1) Principle: The EM algorithm is a method that iteratively
solves the ML problem (15) [17]. It requires us to define the
so-called complete data . The complete data is related to the
observation through some mapping . Let us denote
the parameter to be estimated (e.g., in our case, is a notational
shorthand for the vector ).

The EM algorithm starts from an initial estimate of (say,
) and iteratively computes new estimates. At iteration , the

EM algorithm consists of two steps: given the current estimate
, we first take the expectation of the log-likelihood function

of the complete data, given the observation and the current
estimate of

(25)
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In the second step, we maximize with respect to
to find a new estimate

(26)

Convergence of the EM algorithm is guaranteed in a sense that
the likelihoods of the estimates are nondecreasing

(27)

for . Any value for which is
called a solution of the EM algorithm. One of these solutions
is the ML estimate. In order to achieve convergence to the ML
estimate, a good initial estimate of is required.

2) Code-Aided Estimation: Let us take as complete data
. In that case, since and are independent

(28)

so that (25) becomes

(29)

We know from (19) that

(30)

so that

(31)

where, due to the linearity of the expectation operator,
is obtained by replacing each

entry with the corresponding a posteriori expectation

. Similarly,

is obtained by replacing the entries with

. Equation (1) tells us that

(32)

so that

(33)

From Section II, we know that the detector computes the APPs

of the coded symbols . The a posteriori ex-

pectation is obtained as

(34)

which can be interpreted as a soft symbol decision:
it is a weighted average of all possible constellation

points. As is a function of

, it cannot be computed exactly

based solely on the (marginal) APPs. However, thanks to the
presence of the interleaver, the coded symbols can be assumed
to be essentially uncorrelated so that

(35)

when or . Additionally, if we extend the previous
relation to and , the computation of can
further be simplified as

(36)

Finally, the updated estimates of the delay shift, the CFO, and
the channel taps are given by

(37)

and

(38)

where with defined in Fig. 4.
Making use of the approximation (36), this leads to a very el-
egant interpretation: the EM-based algorithms are formally ob-
tained by replacing in the corresponding DA algorithms, pilot
symbols with a posteriori symbol expectations.

Note that the 2-D maximization in (23) and (37) can be re-
duced to two 1-D maximizations when the CFO is small [7].
Therefore, the low-complexity update rules for the timing and
the CFO are

(39)

and

(40)

D. Implementation Aspects

The proposed EM estimator can be modified in many ways.
1) Replacing with allows for

performing maximum a posteriori (MAP) estimation. In
[9], it has been shown that when the channel taps have
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TABLE I
NOTATIONS

TABLE II
COMPUTATIONAL COMPLEXITY, ASSUMING S S IS A DIAGONAL MATRIX. WE

HAVE OMITTED THE COMPLEXITY RELATED TO UPDATING F̂ AS IT DEPENDS

ON THE SPECIFIC NUMERICAL TECHNIQUE USED TO SOLVE (40)

a Gaussian a priori distribution, MAP estimation has
certain implementation advantages.

2) The inversion of the matrix in (37) and (38) can be
simplified by noticing that for large , this matrix
is roughly diagonal. A more detailed view of the compu-
tational complexity is given in Table II. Observe that the
total computational cost is dominated by the -update.

3) When the estimates of and do not change during an
EM update step, all computations [with the exception of
(38)] can take place in the frequency-domain.

4) In case the delay and the CFO are perfectly known,
the code-aided estimation algorithm of the CIR can take
place completely in the frequency-domain, thus avoiding
FFT operations at each EM iteration. This requires a spe-
cific frequency-domain observation model. This is not
pursued in the current paper.

Even with these complexity-reducing modifications, the com-
plexity of the EM-based estimator may still be unacceptably
high: let us denote by the time (in seconds) to compute
the cost-function (31) and perform a single update to the es-
timates of , and , and by the time to detect the
data, given an estimate7 of , , and . When EM it-
erations are performed, the total computation time is roughly

, so that the overhead re-
lated to estimation is given by

which is (at least) an -fold complexity increase as compared
with a conventional system with (noniterative) estimation fol-
lowed by data detection (corresponding to an overhead of 0).

7Hence, T represents the processing time for a perfectly synchronized
detector with perfect channel knowledge.

Currently, many state-of-the-art detectors operate according to
the so-called turbo-principle, which basically means that the de-
tector operates according to some iterative procedure. Hence,
we may write , where is the number of
iterations performed within the detector, and the time to
perform a single iteration. We now perform the following mod-
ifications: for each EM iteration, we perform only a single it-
eration within the detector, but we maintain state information8

from one iteration to the next. This is known as embedded esti-
mation [29]. In this case, the total computation time is roughly

. Suppose we perform roughly
, then the overhead related to EM

estimation is now

which is generally a fairly small number.9 Hence, embedded
EM estimation is especially well-suited to detectors which are
themselves iterative.

IV. NUMERICAL RESULTS

A. Simulation Parameters

To validate the proposed algorithms, we have carried
out Monte Carlo simulations. We consider a system with

, using a convolutional code with constraint
length 5, rate , and polynomial generators
and . A block length of
was chosen, leading to . Coded
bits are gray-mapped onto an 8-PSK constellation, re-
sulting in . This sequence of

8-phase-shift keying (PSK) symbols is broken up into
of . Spreading sequences are

real-valued Walsh–Hadamard sequences, with chips belonging
to and have a length , leading
to . To initialize the
EM algorithm, the are preceded
by . Within the pilot MC symbols,
only a fraction of the subcarriers are devoted to
training. The remaining 75% of the carriers is reserved for
administrative data, and cannot be used during the synchro-
nization/estimation process. The channel has length
and was modeled with independent components, each being a
zero-mean complex Gaussian random variable with an expo-
nential power delay profile [7]

(41)

where we have set to unity. Hence, the energy of the channel
is concentrated mainly in the first few channel taps. To avoid
ISI, a cyclic prefix of length is employed. We have set

and fix .
Note that we have deliberately chosen a detector which is

noniterative. Although this implies an -fold complexity
overhead caused by EM estimation, a noniterative detector
allows us to show the performance gains at each iteration.

8Sometimes known as extrinsic information.
9E.g., for T = T =2, O � 0:5, meaning EM estimation gives rise to

a 50% computational overhead.
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Fig. 6. CIR estimation: MSEE performance. Perfect synchronization is
assumed. DA/SDD stands for data-aided/soft decision directed.

B. Performance Results

First, consider estimation of the CIR , assuming perfect
knowledge of and (denoted PTS+PFS+ICH for perfect
time and frequency synchronization with imperfect channel
knowledge). In Fig. 6, we show the mean squared estimation
error (MSEE) as a function of the SNR, for different values of

(the EM iteration index). The DA estimate (corresponding to
, or equivalently, (24) with and ) results

in fairly large MSEE (up to 0.6 at SNR of 12 dB). Application
of the EM estimation algorithm (38) reduces the MSEE no-
ticeably. For low SNR, the MSEE rises again slightly after the
first EM iteration. This is due to the different approximations
in the detector and the EM estimator, including the Gaussian
approximation of the decision variables, the computation of

, etc. After three or four EM iterations, no improvement
in MSEE is visible for any SNR. To see how this translates
into BER performance, consider Fig. 7: the bottom-most curve
(in dashed) corresponds to the single-user bound, while the
curve with square markers shows the BER performance for a
genie-aided receiver (i.e., a receiver with perfect knowledge of

, and ). When performing DA estimation of the CIR (the
top-most curve), unacceptable BER degradations are visible,
as compared with the genie-aided receiver. The EM code-aided
estimator is able to reduce this degradation to around 0.2 dB
after .

Frequency synchronization [denoted (IFS): imperfect fre-
quency synchronization] deserves some special attention. For
simplicity, let us focus on a single-user environment ( )
with known channel and known delay . It has been shown
in [24] that DA ML CFO synchronization requires a fairly large
amount of pilot symbols. In Fig. 8, we depict the BER as a
function of the CFO. When the receiver simply ignores the CFO
(marked by “IFE, ”), large degradations ensue. The
EM-based estimator on the other hand, with ,
is able to reduce the large degradation due to the CFO as long
as the normalized CFO is smaller than 10 . This
corresponds to . This is further

Fig. 7. CIR estimation: BER performance. Perfect synchronization is
assumed. DA/SDD stands for data-aided/soft decision directed.

Fig. 8. Frequency synchronization: BER performance at 12 dB using F̂ (� =
0) = 0 as a frequency initial estimate. DA/SDD stands for data-aided/soft
decision directed.

illustrated in Fig. 9 where the corresponding MSEE perfor-

mance of the CFO estimate is shown (i.e., ).

Again, with , the EM algorithm is able to reduce
the MSEE with increasing iteration index .

Let us now also take into account frame synchronization (de-
noted ITS+IFS+ICH for Imperfect Time and Frequency Syn-
chronization with Imperfect Channel knowledge) for .
The CFO is randomly selected such that 10 and
the initial CFO estimate is set to 0, i.e., . Note
that we use the low-complexity update rules in (39) and (40) for
joint frame and CFO synchronization. As the MSEE of gives
in general only a partial view of the behavior of , we include,
for a SNR of 12 dB, the simulated probability mass function
(pmf) of the estimation error (see Fig. 10). The
DA estimator has a fairly broad pmf, with a maximum .
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Fig. 9. Frequency synchronization: MSEE performance at 12 dB using F̂ (� =
0) = 0 as a frequency initial estimate. DA/SDD stands for data-aided/soft
decision directed.

Fig. 10. Frame synchronization: pmf of estimation error at 12 dB using F̂ (� =
0) = 0 as a frequency initial estimate and F is selected randomly such that
jF j < 4:8� 10 . DA/SDD stands for data-aided/soft decision directed.

The pmf of for the code-aided EM estimator is much more
narrow, with a distinct maximum at . After iter-
ations, the pmf does not change noticeably. It should be noted
that although 60% of the frames result in a correct estimate of ,
this does not mean that the frame error rate equals 40%: when

(with respect to ), ISI occurs between the cur-
rent and the next (with respect to previous) MC symbol. Since
the first few channel taps carry most of the energy, the situation

is not very critical. On the other hand, should
be avoided, as the estimate of will not capture the dominant
components. From Fig. 10, it is clear that the latter situation oc-
curs only rarely for the EM-based estimator.

Finally, Fig. 11 shows the BER for joint frame-frequency
synchronization and channel estimation. As expected, the
DA estimator gives rise to large degradations. On the other

Fig. 11. Joint frame-frequency synchronization and channel estimation:
BER performance using F̂ (� = 0) = 0 as a frequency initial estimate and
F is selected randomly such that jF j < 4:8 � 10 . DA/SDD stands for
data-aided/soft decision directed.

hand, the EM estimator results in a BER degradation less than
1 dB as compared with the case of perfect frame-frequency
synchronization and perfect channel knowledge after roughly

.

V. CONCLUSION

We have presented a novel code-aided estimation algorithm
for joint synchronization and CIR estimation for downlink
MC-CDMA. Based on the EM algorithm, the receiver iterates
between data detection and estimation, with the exchange of
soft information in the form of a posteriori probabilities. Com-
pared with a conventional data-aided algorithm, the code-aided
algorithm results in impressive gains in terms of MSEE and
BER performance. Although the complexity of this estimator
is large, we have described how the computational load may
be reduced, resulting in a practical algorithm. For iterative
detectors, the proposed algorithm gives rise to a fairly small
overhead.

The proposed algorithm can easily be extended to take into
account other observation models (such as the aforementioned
frequency-domain channel estimator).

As a final comment, we should mention that in some cases a
more conventional technique may be preferred to the proposed
code-aided estimator: as always, the choice of using a partic-
ular synchronization/estimation algorithm should be made on
a case-by-case basis, trading performance against complexity,
power consumption, etc.
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