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Turbo Estimation and Equalization for
Asynchronous Uplink MC-CDMA
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Abstract— In this contribution, we propose a new code-aided
synchronization and channel estimation algorithm for uplink
MC-CDMA. The space alternating generalized expectation-
maximization (SAGE) algorithm is used to estimate the channel
impulse responses, propagation delays and carrier frequency
offsets of the different users. The estimator, multi-user detector,
equalizer, demapper and channel decoder exchange soft infor-
mation in an iterative way. The performance of the proposed
algorithm is evaluated through Monte Carlo simulations. Impres-
sive performance gains are visible as compared to a conventional
data-aided estimation scheme.

Index Terms— Synchronization, estimation, code-aided, turbo
equalization, asynchronous MC-CDMA, uplink.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is one of the most promising modulation

schemes for current and next-generation wireless and wireline
communications [1], [2]. Its capability to accommodate high
data rate transmissions over frequency selective channels
while allowing for a simple equalization makes it a very
attractive technology. However, OFDM-based transmission
systems are very sensitive to synchronization errors [3], [4].
Accurate timing and frequency synchronization is required
to maintain orthogonality among subcarriers and to avoid
inter-symbol-interference (ISI). Additionally, the channel
impulse response (CIR) must be known to coherently detect
the data. When we consider the massive amount of research
devoted to these problems (see e.g. [4]–[13] and references
therein), it becomes clear that synchronization and channel
estimation are critical issues. The conventional estimation
techniques are either data-aided (DA) (i.e., exploiting training
symbols in the time- or frequency domain) [5]–[10] or blind
(e.g., exploiting the presence of the cyclic prefix) [11]–[13].
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With the advent of powerful error-correcting codes, these
conventional techniques cannot always be applied success-
fully. Powerful codes lead to a combination of low BER at low
SNR, a challenging operating point to perform estimation. At
these low SNRs, blind techniques are completely unreliable.
On the other hand, data-aided algorithms require an unreason-
able amount of power and bandwidth to be reserved for train-
ing. This has spurred several research groups to consider code-
aided or code-aware estimation algorithms. These algorithms
iterate between data detection and estimation, thus improving
both the estimates of synchronization parameters and im-
pulse responses, while simultaneously performing increasingly
reliable data detection. Such techniques are often inspired
by the turbo-principle [14] or the Expectation-Maximization
(EM) algorithm [15], [16]. In [17], an EM-based semi-blind
technique is described which performs code-aided estimation
of the CIR per Multi-Carrier (MC) symbol. The same idea was
applied in the frequency domain in [18] for a multi-antenna,
multi-user system. The EM algorithm was again considered
in [19] for estimation of the CIR for a time-varying MIMO-
OFDM scenario. Finally, [20] proposes an ad-hoc code-aided
channel estimator for time-varying OFDM systems.

The current contribution is focused on timing, carrier fre-
quency offset (CFO) and CIR estimation for uplink MC-
CDMA. Existing uplink multiuser MC synchronization meth-
ods can be categorized into two classes. The first class con-
siders a scenario where it is assumed that only one new user’s
frequency and time offsets need to be estimated while other
users have already been perfectly synchronized to the base
station [5], [21]. Hence, this approach estimates frequency
and timing offsets for only one user and does not fully
represent a practical situation. The second category addresses
multiple unsynchronized users scenarios such as [22]–[24].
In [22], a low complexity maximum likelihood (ML) DA
synchronization and channel estimation scheme is investigated
in the uplink of quasi-synchronous OFDMA system by means
of alternating-projection, while [23] applies the SAGE to
perform joint frequency synchronization, channel estimation
and data detection. Finally [24] considers channel tracking by
means of least mean squares approach, and reports negligible
performance loss for mobile speeds up to 90km/h.

All these papers on MC-CDMA have in common that
they do not exploit any properties of the underlying error-
correcting code. It is therefore necessary to investigate code-
aided algorithms for MC-CDMA. In our companion paper [25]
we derived a code-aided algorithm for downlink MC-CDMA
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TABLE I

NOTATIONS

notation meaning

i MC symbol index: 0 ≤ i < M
k user index: 1 ≤ k ≤ Ku

s chip index: 0 ≤ s < Ns

m time-domain index: −ν ≤ m < N = NsP
p data symbol index: 0 ≤ p < P

ξ SAGE iteration index:0 ≤ ξ

channel estimation and synchronization. The uplink scenario,
which is the topic of this paper, is much more challenging than
the downlink scenario. Since the base station must recover the
signal from all users, we are now dealing with a multiuser
detection problem, as opposed to single-user detection in the
downlink. From an estimation/synchronization point of view,
this implies that more sophisticated algorithms must be applied
(as we will see, SAGE instead of EM). A major challenge,
as compared to [25], is coping with the different delays and
CFOs of the different users. As relative delays may exceed the
duration of the cyclic prefix, a combination of time-domain
and frequency-domain techniques are required to successfully
recover the data of all the users. Starting from the maximum a
posteriori (MAP) principle, we derive an estimation algorithm
based on the SAGE algorithm, exploiting information from the
pilot symbols and coded data symbols in a systematic fashion.
It is noteworthy that the designed estimation scheme can work
with any detector as long as the latter is able to compute the
a posteriori probabilities (APPs) of the data symbols.

This paper is organized as follows: the system model is
provided in section II, including a brief description of the
turbo detector. In section III we tackle the channel estimation
and synchronization problem through the SAGE algorithm,
paying special attention to issues related to computational
complexity. Numerical results are provided in section IV,
before concluding in section V.

II. MC-CDMA UPLINK SYSTEM MODEL

A. Transmitter

We consider the uplink of MC-CDMA system with Ku

active users. Each active user transmits frames consisting
of M MC symbols to the base station. A frame from the
k-th user is generated as follows (see Fig. 1): a block

b(k) =
[
b
(k)
0 , . . . , b

(k)
Nb−1

]T

of Nb information-bits is encoded,
resulting in Nc coded bits. After interleaving, these Nc coded
bits are mapped to a sequence of Nd symbols, belonging to
a unit-energy 2q-point constellation Ω (with Nd = Nc/q).
After insertion of Np pilot symbols, we obtain a vector

d(k) =
[
d
(k)
0 , . . . , d

(k)
Nd+Np−1

]T

. Now, d(k) is broken down

into M blocks of length P (with P = (Nd + Np) /M ). The
M blocks are buffered and converted, one at a time, to MC
symbols. Let us denote the symbols in the i-th MC symbol

of the k-th user as d(k)
i =

[
d
(k)
i,0 , . . . , d

(k)
i,P−1

]T

. The different
notations are explained in Table I.

The conversion of d(k)
i into a MC-symbol is performed as

follows. The p-th data symbol in d(k)
i , d

(k)
i,p , 0 ≤ p < P is

spread by a unit-energy spreading sequence a(k)
p of length Ns,

yielding a sequence of Ns chips d
(k)
i,p ×

[
a
(k)
p,0, . . . , a

(k)
p,Ns−1

]T

.
Performing spreading for all P symbols in the i-th MC symbol
results in a total of NsP chips. This chip sequence is mapped
to N

.= NsP subcarriers (known as frequency interleaving).
Hence, each of the NsP chips (say, d

(k)
i,p a

(k)
p,s) is assigned to a

unique subcarrier (say the n
(k)
p,s-th subcarrier)1. We end up with

a block of N interleaved chips which is provided to an N -
point inverse discrete Fourier transform (IDFT), implemented
through the fast Fourier transform (FFT) algorithm. A ν-point
cyclic prefix (CP) is pre-appended, resulting in N + ν time-

domain samples
[
s
(k)
i,−ν , . . . , s

(k)
i,−1, s

(k)
i,0 , . . . , s

(k)
i,N−1

]T

where

s
(k)
i,l = s

(k)
i,l+N , for l = −ν, . . . ,−1. Hence, the length of the

MC symbol is equal to NT = N + ν. We can write the m-th
time-domain sample (m = −ν, . . . , N − 1) of the i-th MC
symbol of the k-th user as

s
(k)
i,m =

√
Es

NT

P−1∑
p=0

Ns−1∑
s=0

d
(k)
i,p a(k)

p,se
j2πn(k)

p,sm/N (1)

where Es denotes the energy per symbol d
(k)
i,p . We further

define the MC symbol period T and the sampling period Ts =
T/NT . Finally, the signal from the k-th user is shaped with a
normalized transmit filter and transmitted over the channel to
the base station.

B. Receiver

The base station has to process M MC symbols for each
of the Ku users. The signal from the k-th mobile station (the
k-th user) to the base station propagates through a channel
with overall CIR h

(k)
ch

(
t − τ (k)

)
, where τ (k) is the propagation

delay of the k-th user’s signal to the base station. This CIR
incorporates the transmit filter, physical propagation channel
and receive filter. We assume bursty communication, so that
the channel can be modeled as a quasi-static block-fading
channel that remains constant during each frame but can vary
independently from frame to frame. The code-aided estimation
algorithms we will derive can be extended to tracking time-
varying channels and synchronization parameters by applying
the techniques from [26]. The CIR is assumed to have a
delay spread no greater than LTs for some2 L ∈ N, so that
h

(k)
ch (t) = 0 for t < 0 and for t ≥ LTs. Additionally, the k-th

user’s signal is affected by a CFO f
(k)
o . The propagation delay

τ (k) is in some interval3 [0, τmax], while the CFO depends on
the speed of the mobile station and any possible mismatch
between the transmit and receive oscillators. We assume the
CFO to be small, compared to the bandwidth of the receiver’s
matched filter. Hence, the received signal is given by

1For notational convenience, we will later assume this mapping to be the
same for all users. Extension to more general schemes is straightforward.

2L will turn out to be the number of taps of the equivalent discrete-time
channel.

3As discussed in [5], the maximum propagation delay τmax can be directly
related to the cell radius R: τmax = R/c, where c is the speed of light. Note
that τmax does not depend on the user index k.
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Fig. 1. Frame construction for the k-th user.

r (t) =
Ku−1∑
k=0

s(k) (t) + w (t) (2)

where w(t) is the baseband representation of a white Gaussian
noise process (with power spectral density N0/2 per real
dimension) after suitable filtering. In (2), the signal corre-
sponding to the k-th user contribution can be written as

s(k) (t) =

M−1�
i=0

N−1�
m=−ν

s
(k)
i,mh

(k)

ch

�
t − mTs − iT − τ (k)

�
ej2πf

(k)
o t.

(3)
The receiver is fully digital and samples the received signal

r (t) at a rate 1/Ts resulting in a sequence of samples
r (lTs) =

∑Ku−1
k=0 s(k) (lTs)+w (lTs), l ∈ Z. Let us define the

normalized CFO F (k) = f
(k)
o TsN . Following [5], we break

up τ (k) as
τ (k) = Δ(k)Ts − δ(k)Ts (4)

with Δ(k) ∈ {0, 1, . . . ,Δmax
.= �τmax/Ts�} and δ(k) ∈ [0, 1[.

Defining h(k) (t) = h
(k)

ch
(
t + δ(k)Ts

)
, we can express the

samples r (lTs) as a function of h(k) (t). For instance, the
contribution to r (lTs) of the k-th user is given by

s(k) (lTs) =
M−1∑
i=0

N−1∑
m=−ν

s
(k)
i,mej2πF (k)l/N

×h(k)
(
lTs − mTs − iNT Ts − Δ(k)Ts

)
. (5)

Since T = NT Ts is a multiple of Ts, the channel is fully
characterized by the vector

h(k) =
[
h(k) (0) , h(k) (Ts) , . . . , h(k) ((L − 1) Ts)

]T

. (6)

When ν ≥ L − 1, no interference between successive MC
symbols occurs: for every MC symbol, at least one sequence of
N successive time-domain samples exists that does not suffer
from interference of the preceding and the following MC
symbol4. As Δ(k) ∈ {0, 1, . . . ,Δmax}, samples taken prior to
t = −νTs and later than t = (MT + (Δmax + L − ν − 2) Ts)
do not depend on the current frame. Hence, the following
sequence of time-domain samples is sufficient for synchro-
nization, channel estimation and data detection:

r = [r (−νTs) , . . . , r (MT + (Δmax + L − ν − 2) Ts)]
T

.
(7)

The final goal of the base station is to recover the transmit-

4When multiple such sequences exist, after conversion to the frequency
domain, they lead to equivalent DFT-outputs, up to a known complex rotation
(which in no way affects the performance).

ted information bits of the different users b. As we will see,
this requires knowledge of the delay shifts Δ(k), the (normal-
ized) CFOs F (k) and the CIRs h(k). Note that information
regarding the temporal and frequency misalignment between
the users could be sent back to the users so that they can
adjust their timing and frequency clocks thereby ensuring that
all incoming signals arrive at the base station with the same
timing and frequency offsets. Such a synchronous scenario is
well understood and leads to very simple receiver design.

C. Turbo detection

Although data detection is not the key contribution of this
paper, and the estimation algorithm operates with any detector
that is able to compute a posteriori probabilities of the coded
symbols, let us, for the sake of clarity, assume we have the
following iterative detector. As the users are asynchronous,
when detecting the data of any user (say user k) we must
remove the multiple access interference (MAI) from other
users (k′ �= k) in the time domain (TD) . This process is known
as time-domain multiple access interference cancellation (TD-
MAIC). After interference cancellation, we switch to the
frequency domain (FD), and perform single user detection.
After decoding, the soft information from the decoder is used
to reconstruct the TD-signals of the different users and we can
again perform TD-MAIC, and so forth. At the first iteration,
no TD-MAIC is performed, so we must rely on the spreading
to obtain reasonable performance.

Mathematically, this translates to the following. Based on
(2) and (II-B) we can re-write the received samples as

r (n) =

Ku−1�
k=0

L+Δ(k)−1�

l=Δ(k)

s
(k)
D (n − l)h(k)(l − Δ(k))ej2πF (k)n/N

+ w (n) (8)

where w (n) is the AWGN contribution, and s
(k)
D (mi) = s

(k)
i,m

with mi = iNT + m and −ν ≤ m ≤ N − 1. Assuming we
have available soft estimates of the data symbols s̃

(k)
D (mi)

from the FD data detection, these can be used to clean the
received signal for detection of user k:

r(k)(n) = r(n) −
Ku−1∑

k′ �=k,=0

L+Δ(k′)−1∑
l=Δ(k′)

s̃
(k′)
D (n − l)

×h(k′)(l − Δ(k))ej2πF (k′)n/N . (9)

We then move to the FD by applying the FFT to the cleaned
vector at the correct timing and after compensation of the
CFO. For user k, MC symbol i, we have the following FFT
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output at subcarrier np,s:

z
(k)
i,p,s =

1√
N

N−1∑
l=0

r(k)
(
Δ(k) + l + iNT

)
×ej2πlnp,s/Ne−j2πF (k)(Δ(k)+l+iNT )/N

= d
(k)
i,p a(k)

p,sH
(k)
p,s

√
N

NT
Es + wi,p,s (10)

where wi,p,s contains a thermal noise component as well
as the MAI (at the first iteration) or residual uncanceled
MAI (at every subsequent iteration). We then apply the
multiuser MMSE equalizer from [27] to the vector z(k)

i,p =[
z
(k)
i,p,0, . . . , z

(k)
i,p,Ns−1

]T

, resulting in the following equalized
samples:

y
(k)
ip =

1

σ2
w + NEs

NT Ns
σ2

d

Ns−1∑
s=0

∣∣∣H(k)
p,s

∣∣∣2(√
NEs

NT

Ns−1∑
s=0

(
a(k)

p,sH
(k)
p,s

)∗
z
(k)
i,p,s

)
(11)

Here, for the first iteration we model σ2
w as containing thermal

noise and the known variance of the MAI. At every subsequent
iteration, σ2

w consist only of the thermal noise contribution
(in other words, residual MAI is ignored). In any case, using
a Gaussian approximation, we can determine the so-called
extrinsic probabilities p(e)

(
d
(k)
i,p

)
∝ p

(
y
(k)
i,p

∣∣∣d(k)
i,p

)
which are

sent to the demapper and then to the decoder. The decoder
computes so-called a priori probabilities p(a)

(
d
(k)
i,p

)
regarding

the coded symbols (and coded bits), which are combined
to obtain soft estimates of the data symbols s̃

(k)
D (mi), used

in the next iteration to perform improved TD-MAIC. The
detector can also output (approximate) a posteriori proba-
bilities p

(
d
(k)
i,p |r

)
at every iteration, where p

(
d
(k)
i,p |r

)
∝

p(e)
(
d
(k)
i,p

)
×p(a)

(
d
(k)
i,p

)
. The entire receiver operates accord-

ing to the turbo principle [28], [29].

III. SYNCHRONIZATION AND CHANNEL ESTIMATION

It is clear that the detector described in the previous section
requires knowledge regarding the delay shifts5 Δ(k), the CFOs
F (k) and the channel taps h(k). In this section we describe
how these parameters can be estimated iteratively. We will first
re-write our observation model in a more convenient form in
section III-A. In section III-B we will give a brief outline
of the SAGE algorithm, and then apply it to our problem in
section III-C. Finally, in section III-D we will consider some
implementation aspects, and show how the algorithm can be
simplified in order to reduce its complexity.

A. Observation Model

We start again from our observation-vector r from (7). Note
that the length of this vector (say, Nobs) is independent of Δ(k).

5In correspondence with technical literature, we will name the process of
determining Δ frame synchronization.

Expanding the observation model in [25], we can express the
observation r as follows

r =
Ku−1∑
k=0

F(k) S(k)

Δ(k)h
(k) + w (12)

where F(k) is a Nobs × Nobs diagonal matrix with F(k)
n,n =

ej2πF (k)n/N , n = −ν, . . . , Nobs − ν − 1 and the vector w is
a zero-mean complex Gaussian random vector with variance
N0/2 per real dimension on each of its entries. The Nobs ×L

matrix S(k)

Δ(k) is structured as follows:

S(k)

Δ(k) =

⎡⎣ 0Δ(k)×L

S(k)

0(Δmax−Δ(k)+L−1)×L

⎤⎦ (13)

where S(k) is a Toeplitz matrix of the pilot and data symbols
of the k-th user, and 0L1×L2 is an L1 ×L2 matrix consisting
of all zeros.

MAP estimate: Our goal is to find the maximum a posteriori
(MAP) estimate of the delays, CFOs and CIRs of all users.
Introducing a vector de containing all these parameters, the
MAP estimate is given by

d̂e = arg max
de

p (de| r) (14)

= arg max
de

{
p (de)

∫
p (r|de, s) p (s) ds

}
(15)

where s represents the concatenation of all data symbols of
all users. The likelihood-function p (r |de, s ) is given by

p (r |de, s ) ∝ exp

⎛⎝− 1
N0

∥∥∥∥∥r −
Ku−1∑
k=0

F(k) S(k)

Δ(k)h
(k)

∥∥∥∥∥
2
⎞⎠ .

(16)
Finding the MAP estimate is intractable in this case since (a)
we need to average over all possible transmitted sequences,
and (b), the maximization is over a large-dimensional para-
meter.

B. The SAGE algorithm

In this section, we will give a brief review of a simplified
version the SAGE algorithm [30], which is itself a variation of
the expectation-maximization (EM) algorithm [15]. Assume
we wish to estimate a parameter de from an observation r
in the presence of a nuisance parameter dn. In our case, de

corresponds to the CIR, CFO and delays of the Ku users,
while dn corresponds to the pilot and data symbols of the
different users. Finding the MAP estimate of de is usually
intractable due to the presence of the nuisance parameters.
Furthermore, when de contains many components (as is the
case in our problem) finding the MAP estimate requires a
multi-dimensional maximization.

The SAGE algorithm avoids these two problems as follows.
We break up de = [de,1, . . . ,de,M ], where, with a slight abuse
of notation, de,k ⊆ de, and de,k̄

.= de \ de,k. We introduce
the hidden data dh = [r,dn]. Given an initial estimate d̂e (0)
of de, SAGE iterates between an expectation (E) step and a
maximization (M) step, for ξ ≥ 1:

1) Select a parameter subset de,k to update
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2) E-step: we update de,k, while the estimate of de,k̄ is
left unchanged. At iteration ξ, we compute

Q
(
de,k| d̂e (ξ − 1)

)
=

log p
(
de,k, d̂e,k̄ (ξ − 1)

)
+∫

log p
(
r
∣∣∣de,k, d̂e,k̄ (ξ − 1)

)
p
(
dn

∣∣∣r, d̂e (ξ − 1)
)

ddn

(17)
3) M-step: update the estimate of de,k{

d̂e,k (ξ) = arg maxde,k
Q
(
de,k| d̂e (ξ − 1)

)
d̂e,k̄ (ξ) = d̂e,k̄ (ξ − 1)

(18)

Under some mild conditions, the SAGE algorithm guarantees
that at every iteration the a posteriori probability of the
estimates increases.

C. SAGE estimation for uplink MC-CDMA

We perform estimation under the Bayesian framework
and will assume the following a priori distributions of
the parameters: the channel taps have a Gaussian distrib-
ution with known covariance matrix, so that p

(
h(k)

) ∝
exp

(
− (h(k)

)H
Σ−1

k h(k)
)

, while the frequency offsets F (k)

and delay Δ(k) are uniformly distributed over their respec-
tive domains. We make the following associations: de,k ↔[
Δ(k), F (k),h(k)

]
and dn ↔ s. We will denote the estimates

at the ξ-th iteration of the SAGE algorithm as Δ̂(k) (ξ),
F̂ (k) (ξ) (and F̂(k) (ξ)), and ĥ(k) (ξ). We start from an initial
estimate of de,k, for all k = 0, . . . ,Ku − 1, provided through
a conventional DA algorithm. The SAGE algorithm then
becomes, at the ξ-th iteration (see Fig. 2):

1) Select a user for which to update the delay, CFO and
CIR estimate. Say we select user k

2) E-step: now (17) becomes, after some straightforward
manipulations (see [31])

Q
(
de,k| d̂e (ξ − 1)

)
�

2
N0


((

h(k)
)H

(
F(k)S̃(k)

Δ(k)

)H

x̃(k)

)
− 1

N0

(
h(k)

)H
(
C̃(k)

Δ(k) + N0Σ−1
k

)
h(k)

(19)

where

x̃(k) = r−
Ku−1∑

k′=0,k′ �=k

F̂(k′) (ξ − 1) S̃
(k′)
Δ̂(k′)(ξ−1)

ĥ(k′) (ξ − 1)

(20)
while

S̃(k)

Δ(k) =
∫

S(k)

Δ(k)p
(
s
∣∣∣r, d̂e (ξ − 1)

)
ds (21)

and

C̃(k)

Δ(k) =
∫ (

S(k)

Δ(k)

)H

S(k)

Δ(k)p
(
s
∣∣∣r, d̂e (ξ − 1)

)
ds.

(22)
We will show how the matrices S̃(k)

Δ(k) and C̃(k)

Δ(k) can
be computed in the next section.

3) M-step: now we update the estimates of Δ(k) and F (k):[
Δ̂(k) (ξ) , F̂ (k) (ξ)

]
=

arg max
Δ(k),F (k)

{
Q
(
de,k| d̂e (ξ − 1)

)}
(23)

where the maximization can be solved by any appro-
priate numerical technique. Note that the 2-dimensional
maximization in (23) can be reduced to two 1-
dimensional maximizations when the CFO is small [5]
[25]. For the CIR, a closed-form solution is given by

ĥ(k) (ξ) =
(
C̃(k)

Δ̂(k) + N0Σ−1
k

)−1

S̃H
Δ̂(k)(ξ)

(
F̂(k) (ξ)

)H

x̃(k).

(24)
We see that the SAGE estimator requires the knowledge of the
channel covariance matrix Σk and the noise power N0. These
can reasonably be assumed to be known at the receiver, since
these quantities change only very slowly over time, compared
to the duration of a burst.

D. Practical considerations

Computation of S̃(k)

Δ(k) and C̃(k)

Δ(k): The matrix S̃(k)

Δ(k) =∫
S(k)

Δ(k)p
(
s
∣∣∣r, d̂e (ξ − 1)

)
ds is obtained by replacing each

entry s
(k)
i,m in S(k)

Δ(k) with the corresponding a posteriori expec-
tation

s̃
(k)
i,m =

∫
s
(k)
i,mp

(
s
∣∣∣r, d̂e (ξ − 1)

)
ds (25)

=
√

Es

NT

P−1∑
p=0

Ns−1∑
s=0

E

[
d
(k)
i,p

∣∣∣ r, d̂e (ξ − 1)
]

×a(k)
p,se

j2πnp,sm/N . (26)

We know from section II-C that the detector computes
the a posteriori probabilities (APPs) of the coded symbols
p
(
d
(k)
i,p

∣∣∣r, d̂e (ξ − 1)
)

, so that

E

[
d
(k)
i,p

∣∣∣ r, d̂e (ξ − 1)
]

=
∑
ω∈Ω

ω×p
(
d
(k)
i,p = ω

∣∣∣r, d̂e (ξ − 1)
)

(27)
which can be interpreted as a soft symbol decision: it is a
weighted average of all possible constellation points. Note that
for pilot symbols, E

[
d
(k)
i,p

∣∣∣ r, d̂e (ξ − 1)
]

is simply equal to

the known pilot symbol d
(k)
i,p .

The matrix C̃(k)

Δ(k) cannot be computed exactly based on the
a posteriori probabilities of the coded symbols but, thanks to
the presence of the interleaver, we can approximate C̃(k)

Δ(k) as

C̃(k)

Δ(k) ≈
(
S̃(k)

Δ(k)

)H

S̃(k)

Δ(k) . (28)

When the symbol sequence is sufficiently long, C̃(k)

Δ(k) can be
approximated by a diagonal matrix.

Initialization: The SAGE algorithm can be initialized
with any known data-aided or blind channel estima-
tion/synchronization algorithm. A most elegant way to ini-
tialize is by using the SAGE algorithm in data-aided mode.
This means that we set the entries in S̃(k)

Δ(k) and C̃(k)

Δ(k) that
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Fig. 2. Detector and estimator for the k′-th user. The box in grey is the focus of this paper.

correspond to the coded symbols to zero (since we have
no a priori information from the detector); the entries that
correspond to the pilot symbols are of course set to their
(known) values. We then proceed as follows. Since the CFO is
assumed to be small, we initialize F̂ (k) (0) to 0, ∀k. Since this
implies that F̂(k) (0) = I, we can easily determine Δ̂(k) (0)
and ĥ(k) (0) (see also [25], section III.B).

Complexity: To reduce the complexity of the SAGE esti-
mator, we can introduce the following approximations:

• In principle, every time we update a parameter estimate
d̂e,k, we need to re-compute the APPs p

(
d
(k)
i,p

∣∣∣r, d̂e

)
.

This requires resetting the turbo detector and performing
many turbo detection iterations. To avoid this overhead,
we prefer to perform embedded estimation [32]: when
a parameter d̂e,k is updated, the turbo detector is not
reset, but maintains state information (in the form of
the extrinsic and a priori probabilities) from the previous
turbo detector iteration. In that case, the overhead related
to SAGE estimation becomes reasonable.

• Conversely, for fixed APPs p
(
d
(k)
i,p

∣∣∣r, d̂e

)
, we can up-

date multiple parameters estimates d̂e,k. For instance, we
could update the parameters d̂e,k for all users (rather than
just a single user), while keeping the APPs fixed.

• In case the delay Δ(k) and the CFO F (k) are perfectly
known (or when their estimates have converged), the
SAGE algorithm of the channel impulse response can
take place completely in the frequency domain, thus
avoiding FFT operations at each SAGE update. This
requires a specific frequency-domain observation model
[26]. This is not pursued in the current paper.

The resulting computational complexity can be quantified
as follows. When we denote by TD the time (in seconds)
to perform a single iteration in the turbo detector, and by
Tsage the time to update the parameters of all the users for
given APPs, then the overhead related to embedded SAGE

estimation is given by (see [25]):

Oest =
Isage

Isage + 1
× Tsage

TD
(29)

where Isage is the number of iterations between the detector
and the SAGE estimator. The values of TD and Tsage depend
on the specific implementation of the detector and the SAGE
estimator. As is detailed in [25], the complexity tends to be
dominated by the updating of the delay estimates, and is of
the order O (KuNT (Nd + Np) LΔmax).

IV. NUMERICAL RESULTS

In this section we will compare the performance of the data-
aided (DA) and the code-aided (CA) estimation algorithms.

A. Simulation Parameters

To validate the proposed algorithms, we have carried out
Monte Carlo simulations. We considered a system with Ku =
5 users, using a R = 1/3 rate turbo-code consisting of two
constituent systematic recursive rate one-half convolutional
codes with generators (21, 37)8. A block length of Nb = 368
information bits was chosen, leading to Nc = 1104 coded
bits. Coded bits are Gray-mapped onto an 8-PSK constellation
resulting in Nd = 368 data symbols to which Np = 16 pilots
8-PSK symbols are appended for initial channel parameter
estimation. This sequence of Nd+Np = 384 8-PSK symbols is
broken up into M = 12 blocks of P = 32 8-PSK symbols per
block. Spreading sequences are real-valued Walsh-Hadamard
sequences, with chips belonging to

{
− 1√

Ns
,+ 1√

Ns

}
and

have a length Ns = 16, leading to N = PNs = 512
required subcarriers. The channel has length L = 15 and is
modeled with independent components, each being a zero-
mean complex Gaussian random variable with an exponential
power delay profile:

E

[(
h(k) (l)

)∗
h(k′) (l′)

]
= δk−k′δl−l′σ

2
h(k) exp (−l/5) ,

l = 0, . . . , L − 1 (30)
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Fig. 3. channel estimation: variance of the estimated CIRs for synchronous
users for different iterations (from top to bottom).

where σ2
h(k) is chosen such that the average energy per

subcarrier is normalized to unity. Hence, the energy of the
channel is concentrated mainly in the first few channel taps.
This model leads to a diagonal matrix Σk, so that the matrix
inversion in (24) when updating ĥ(k) (ξ) is trivial, under
the assumption that C̃(k)

Δ(k) can be well-approximated by a
diagonal matrix. To avoid ISI, a cyclic prefix of length ν = 14
is employed. The reference propagation delay and CFO are
Δ = 17 and F = 0 respectively. The timing shifts Δ(k)

are fixed to 7, 11, 25, 37, 17 for k = 1, . . . , 5, respectively.
We will assume a small CFO, so that the 2-dimensional
maximization in (23) can be reduced to two 1-dimensional
line-searches. Performance will be evaluated in terms of mean
squared estimation error (MSEE) and bit-error-rate (BER).
Where applicable, the BER will be compared to a system with
full knowledge of the channel and synchronization parameters,
while the MSEE will be compared to an estimator which has
perfect knowledge of all data symbols (referred to as the full-
DA estimator).

B. Channel estimation for synchronous transmission

We first investigate the estimation of the CIRs h(k), as-
suming synchronous users6, i.e. F (k) = 0 and Δ(k) = 17
for k = 0, . . . , Ku − 1 . In figures 3 and 4 we compare
the performance of the MSEE of the channel taps and the
corresponding BER obtained with the increasing number of
SAGE iterations ξ. We observe a significant improvement re-
sulting from iterating between detector and channel estimator.
Furthermore, for Eb/N0 ≥ 6 dB the CA estimator is able to
achieve the lower bound of the full-DA estimator.

C. Joint synchronization and channel estimation for asynchro-
nous transmission

We consider frame synchronization, jointly with channel
and CFO estimation. As the MSEEs of the timings Δ(k) do not

6Note in this case the SAGE can be implemented completely in the FD.
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Fig. 4. channel estimation: BER for 5 synchronous users, Psi stands for
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initial estimate. F (k) is selected randomly such that |F (k)| < 0.007,
k = 0, . . . , Knew − 1. The true frame shifts are Δ(0) = 7 and Δ(1) = 11.

give a clear picture, in Figure 5 we take a look at the average
cost function Q

(
de,k| d̂e (ξ − 1)

)
for the timing delays Δ(k)

of two new users accessing the system (denoted by Knew = 2),
at Eb/N0 = 6 dB. For both data-aided estimation and SAGE
estimation, the cost functions are maximized at Δ(0) = 7 and
Δ(1) = 11, which corresponds to the actual values of Δ(0)

and Δ(1) respectively. Fig. 6 depicts the average probability
mass function7 (pmf) of εΔ after estimation. Note that even
at Eb/N0 = 6 dB, the SAGE-based frame synchronizer will
produce timing errors lying in the ISI free region almost
100% of the time. Fortunately, the situation where εΔ < 0
is not very critical. In fact, if L − ν − 1 ≤ εΔ < 0, the

7Note that this pmf is actually defined as the average of two pmfs relative
to the two new users accessing the system.
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frame synchronization error will not destroy the orthogonality
among the subcarriers [5]. On the other hand, when εΔ > 0,
the estimate of h will not capture the dominant components,
which can have a severe impact on the detection performance.
From Fig. 6, we see that the latter situation occurs rarely with
the data-aided and SAGE-based estimators. Moreover, it can
be noticed that the CA estimator yields a pmf close to the full-
DA estimator. The improvement by embedding estimation in
the detection, can be further confirmed when showing the BER
resulting from the joint MAP estimation of all parameters,
in Fig. 7. As expected, the DA estimator gives rise to large
degradations, whereas the SAGE based estimator yields a close
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of timing estimation error at Eb/N0 = 6 dB for 5 new users accessing the
system (Knew = 5) using F̂ (k)(ξ = 0) = 0 as a frequency initial estimate.
F (k) is selected randomly such that |F (k)| < 0.007, k = 0, . . . , Ku − 1.
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Fig. 9. Joint frame-frequency synchronization and channel estimation: MSEE
of CFO estimation error for 5 new users accessing the system (Knew = 5)
using F̂ (k)(ξ = 0) = 0 as a frequency initial estimate. F (k) is selected
randomly such that |F (k)| < 0.007, k = 0, . . . , Ku − 1.

to optimal performance (less than 1 dB performance loss).
Figures 8, 9 and 10 report the pmf of the timing, the MSEE

of the estimated CFO and the BER respectively when all 5
active users are asynchronous. Again, impressive performance
gain results by exploiting the available APPs from the iter-
ative detector in the SAGE-based estimator and only 1 dB
performance loss occurs with respect to optimal BER. For
Eb/N0 ≥ 6 dB, the CA MSEE of the CFO is close to the
MSEE of the full-DA estimator.

V. CONCLUSIONS

We have investigated an asynchronous MC-CDMA uplink
receiver with bit-interleaved coded modulation, performing
joint iterative multi-user data detection, synchronization and
channel estimation. To remove the need for long training
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Fig. 10. Joint frame-frequency synchronization and channel estimation: BER
performance for 5 users accessing the system (Knew = 5) using F̂ (k)(ξ =
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|F (k)| < 0.007, k = 0, . . . , Ku − 1. Psi stands for perfect knowledge of
synchronization and CIR, Isi stands for joint synchronization and channel
estimation.

sequences, we have considered the SAGE algorithm as a tool
to perform iterative estimation. It turns out that the SAGE
estimator is most suited for the particular estimation problems
we have considered. The estimator operates by accepting soft
information from the detector, in the form of a posteriori
probabilities (APPs) of the coded symbols. Furthermore, the
computational overhead related to estimation was minimized
by introducing simple modifications to the SAGE-based esti-
mator.

The performance of the proposed code-aided estimation
algorithm was evaluated in terms of BER and MSEE through
Monte Carlo simulations. We demonstrated that the SAGE-
based algorithm, exploiting information from all data symbols,
significantly outperforms the conventional corresponding data-
aided algorithms.
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