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Abstract—An analysis of the exact bit error rate (BER) per-
formance of orthogonal space-time block codes (OSTBCs) with
maximum-likelihood detection in the presence of channel esti-
mation errors is presented. The possibly correlated coefficients
of the multiple-input multiple-output (MIMO) propagation
channel are assumed to be affected by flat block fading and the
transmitted symbols belong to a pulse amplitude modulation or
quadrature amplitude modulation signal constellation. For both
square and nonsquare OSTBCs, we derive approximate and exact
BER expressions, irrespective of the distribution of the fading.
It is also shown how the exact expressions can be efficiently and
accurately evaluated using numerical integration techniques.
Their application to the arbitrarily correlated Nakagami-
fading channel is presented and an efficient importance sampling
technique is derived. As the high diversity order resulting from
the application of OSTBCs gives rise to small BER values, the
numerical evaluation of the presented BER expressions is much
faster than straightforward Monte Carlo simulations. BER results
have shown the impact of both imperfect channel estimation
and antenna correlation on the performance of MIMO OSTBC
systems. It is also shown that under highly correlated conditions,
antenna correlation is the major source of BER degradation.

Index Terms—Channel estimation, correlated MIMO channels,
error analysis, Nakagami fading, OSTBC.

I. INTRODUCTION

I N wireless communications, the detrimental effect of
channel fading on the system performance can be tackled

by using a proper diversity scheme, which provides the receiver
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with multiple copies of the same signal through different paths
or branches which are independent in time, frequency or space.
Spatial diversity can be achieved by combining multiple-input
mutiple-output (MIMO) systems with space-time coding. In
this paper, we focus on the appealing transmit diversity tech-
nique of orthogonal space-time block coding, which achieves
full diversity gain and results in a very simple maximum-likeli-
hood (ML) detection algorithm, based only on linear processing
at the receiver [1]–[3]. Owing to these beneficial properties, the
error performance of orthogonal space-time block codes (OS-
TBCs) has been examined to great extent in various fading
environments under the assumption that perfect channel state
information (PCSI) is available at the receiver [4]–[11].

In practical wireless scenarios, however, the assumption
of PCSI is not valid since the receiver has to estimate the
channel. Typically, the channel is estimated with the aid of
known pilot symbols sent among the data [12], although blind
or semi-blind joint channel estimation and detection techniques
can also be applied [13], [14]. In the past, the performance
of OSTBC systems in the presence of imperfect channel state
information (ICSI) has been studied considering Rayleigh
fading [15]–[20]. For example, under the assumption of in-
dependent and identically distributed (i.i.d.) fading, an exact
closed-form BER expression for square OSTBCs was derived
in [15] for pilot-based minimum mean-square error (MMSE)
channel estimation and pulse amplitude modulation (PAM)
or quadrature amplitude modulation (QAM) constellations. In
[16], this analysis was extended to correlated fading channels.
In the case of -ary phase-shift keying ( -PSK) constella-
tions, exact closed-form BER expressions as well as tight upper
bounds were given in [17] for both decision feedback (DF) and
pilot-based MMSE channel estimation. Asymptotically tight
pairwise error probability (PEP) expressions were obtained in
[18] for quite general STBCs with coherent and noncoherent
receivers using an eigenvalue approach. Using the character-
istic function of the decision variable, an exact closed-form
expression for the PEP of both orthogonal and nonorthogonal
space-time codes with least-squares (LS) channel estimation
was derived in [19]. In [20], this result was extended to the
case of correlated Rayleigh fading with receive correlation
only. For arbitrarily distributed fading channels and -PSK
constellations, the symbol error probability (SEP) as well as
the decoding error probability (DEP) of square OSTBCs have
been examined in [21]. However, in [22], we have shown that
the method in [21] to compute the error performance includes
an approximation and cannot easily be generalized to QAM
and PAM constellations.
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The contribution of this paper is twofold. First, we provide
an exact analytical BER analysis for square and nonsquare
OSTBCs with -ary PAM or QAM constellations and ICSI,
under flat-fading channels with an arbitrary joint probability
density function (PDF); in spite of the numerous published
papers dealing with the impact of ICSI on the performance of
OSTBCs, e.g., [15], [17]–[21], and [23], such exact analysis
is still lacking in the open literature. Second, we provide a
simple approximate BER expression based on treating the
symbol interference due to imperfect channel estimation as
white Gaussian noise. Although this expression is in general
not asymptotically exact, it yields quite accurate BER results
in many practical applications.

The remainder of this paper is organized as follows. In
Section II, a mathematical model for an OSTBC MIMO system
is introduced. Section III presents the well-known pilot-based
LS channel estimation algorithm and considers a mismatched
ML receiver that uses the estimated channel as if it was the
true channel. In Section IV, we present the exact BER ex-
pressions for OSTBCs under generalized fading conditions
with ICSI, whereas Section V provides a simple approximate
BER expression. Section VI deals with the efficient and accu-
rate evaluation of the exact BER expressions, and outlines a
method for Monte Carlo integration with importance sampling.
Section VII concentrates on the evaluation of the BER in the
particular case of arbitrarily correlated Nakagami- fading
channels. In Section VIII, Monte Carlo simulations of the
receiver operations confirm our efficient numerical evaluation
methods and the impact of several system and channel param-
eters on the BER performance is investigated. Moreover, the
accuracy of the approximate BER expressions is discussed.
Finally, conclusions are drawn in Section IX.

Throughout this paper, denotes the Kronecker product,
and the superscripts , , and represent complex

conjugate, transpose, and conjugate transpose, respectively.
and denote the expected value and the absolute value

of , respectively, whereas stands for
an diagonal matrix whose diagonal elements starting
from the upper left corner are . Vectors and
matrices are denoted by boldface lowercase letters and boldface
capital letters, respectively. The norm of is denoted by ,
whereas , , and refer to the Frobenius norm,
the trace, and the element-wise square root of , respectively.
The column vector that is obtained by stacking the columns of
the matrix is denoted by .

II. SYSTEM MODEL

Let us consider a MIMO wireless communication system
with transmit and receive antennas. The transmitted data
symbols at each transmit antenna are assumed to be coded
according to a complex OSTBC [2], [3], which is defined by an

coded symbol matrix , where denotes the block
length. The entries of are linear combinations of infor-
mation symbols , , with and

denoting the real and imaginary parts of , respectively,
and their complex conjugate , such that can be written as

(1)

where the matrices and comprise the constant
complex coefficients of the information symbols and , re-
spectively, in the matrix . Since scaling of the code matrix
does not affect its orthogonality, we scale in such way that it
satisfies the following orthogonality condition

(2)

where , is the data symbol
vector, and denotes the identity matrix. We con-
sider a normalized information symbol constellation , such
that , and (2) yields

(3)

Also, from (1) and (2), it follows that

(4a)

(4b)

where , and and denote the Kronecker
delta and an all-zero matrix, respectively. For square
OSTBCs, i.e., , it is readily verified that

(5)

Examples of square OSTBCs are the 2 2 Alamouti code [1]
and the 4 4 codes given in [2, eq. (40)], [3, eq. (62)], and [24,
eq. (41)]. Uncoded single-input multiple-output (SIMO) sys-
tems can be treated as a special case of square OSTBCs, with

, and coefficient matrices and .
Data transmission is organized in frames consisting of

known pilot symbols used for channel estimation and coded
data symbols per transmit antenna, with being a multiple of

. In this way, coded symbol matrices , with
denoting the block index, are sent within one frame. Also, we
assume that the pilot matrix satisfies

(6)

The propagation channels between each transmit and receive
antenna pair are affected by flat fading with an arbitrary distri-
bution and additive white Gaussian noise (AWGN) with power
spectral density ; in addition, we allow correlation between
the propagation channels, which are represented by the
complex random matrix . With denoting the diver-
sity order, the complex channel coefficients are distributed
according to an arbitrary joint PDF that characterizes the
fading. Since the channel is assumed to remain constant during
the length of one frame of symbols (block fading), the
receiver separately observes the matrices

(7)

with and the matrix

(8)

where the noise matrices and affecting the transmis-
sion of data and pilot symbols, respectively, consist of i.i.d. zero-
mean (ZM) circularly symmetric complex Gaussian (CSCG)
random variables (RVs) with variance . Because of (3) and
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(6), and in (7) and (8) can be considered as the av-
erage data and pilot energy, respectively. In the remainder of
this paper, we will omit the block index for notational conve-
nience.

III. MISMATCHED ML RECEIVER

Using the known pilot matrix and the corresponding re-
ceived signal matrix , the receiver can estimate the channel
matrix . Assuming orthogonal pilot sequences, i.e.,

, and LS channel estimation, it is shown in [25] that the
channel estimate is given by

(9)

such that can be decomposed into the following sum of two
statistically independent contributions

(10)

The entries of the estimation noise matrix
are ZM CSCG RVs, the real and

imaginary parts of which have variance
[25]. Due to this fact, when conditioned on , the estimated
channel coefficients are CSCG
RVs with mean and variance . Increasing the total
energy allocated to pilot symbols improves the channel
estimate, but also reduces the symbol energy available for
data transmission. With denoting the average energy per
information bit, so that the total energy per frame is constrained
to , we have [25]

(11)

where , , and denote the ratio of
to , the constellation size, and the code rate, respectively.

Note that is a decreasing function of .
When the receiver knows the channel matrix , ML detection

is known to be the optimal detection algorithm for the coded
data [26, Ch. 7]. In this paper, we consider a mismatched ML
receiver that uses the estimated channel in the same way as an
ML receiver would apply . In this way, the detection algorithm
for the code matrix is given by

(12)

where the minimization is over the valid code matrices sat-
isfying (1). Using (1) and (2), the detection algorithm given
by (12) for the information symbols , reduces to symbol-by-
symbol detection

(13)

where the minimization is now over the symbols belonging to
the considered constellation and the decision variables

, with and denoting the real and imaginary
parts of , respectively, are given by

(14)

IV. EXACT BER ANALYSIS

In this section, we derive exact BER expressions for PAM and
square QAM constellations with Gray mapping. Since square

-QAM with Gray mapping reduces to -PAM for both the
in-phase and quadrature-phase information bits, the BER com-
putation for PAM follows the same lines as the BER computa-
tion for the in-phase bits in case of QAM. Therefore, the BER
expressions for PAM are not given explicitly.

For -QAM, the BER of the OSTBC is given by the fol-
lowing expectation:

(15)
where and denote the
conditional BERs related to the in-phase and quadrature-phase
information bits of , respectively, conditioned on the channel

, the channel estimate and the symbol vector . Denoting
by the -QAM constellation, we assume that is uni-
formly distributed over . In general, and

are not identical and their value may depend
on the index of the considered symbol .

Let us consider a QAM symbol , with and
denoting the real and imaginary parts of , respectively. and

are the sets consisting of the real and imaginary parts of the
constellation points, respectively. Referring to the projections
of the decision area of on the real and imaginary axis as the
decision regions of and , respectively, in
(15), with or , can be expressed as

(16)
where represents the Hamming distance between
the bits allocated to and the bits allocated to , and

is the probability that is located inside
the decision area of , when , , and are known. This
probability is given by

(17)

Taking (7) and (1) into account, expanding the decision variable
(14) as a summation of a signal , with and

denoting the real and imaginary parts of , respectively, and
a noise contribution, yields

(18)

where

(19)

It follows from (1) that, in general, contains a useful term
proportional to and interference terms containing the data
symbols , with . The second term in (18) represents
ZM CSCG noise, the real and imaginary parts of which have
variance , which is irrespective of . If PCSI
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is available, i.e., , (19) reduces to because of
(4), indicating that only a useful signal term is present. Due to
the rotational symmetry of the -QAM constellation and the
uniform distribution of the symbol vector , it follows that the
BERs related to the in-phase and quadrature-phase bits of are
identical and irrespective of in case of PCSI.

To further detail (17), we introduce and , which
denote the boundaries of the decision area of , with

; for outer constellation points, we set or
. In this way, we have

(20)

where the quantities , with and 2, are given by

(21)

and denotes the Gaussian -function [26, eq. (4.1)]. Note
from (15)–(21) that the evaluation of the BER requires aver-
aging over real-valued continuous RVs, i.e., the real and
imaginary parts of the elements of and , and over dis-
crete RVs, i.e., the symbols contained in .

In order to reduce the computational complexity related to the
numerical evaluation of the BER, we will decrease the number
of RVs involved in the expectation (15) by using an appropriate
coordinate transformation. To this end, we introduce the
real-valued column vectors and , which contain all elements
of and , respectively, as

(22a)

(22b)

with and denoting the th column of
and , respectively. It can be easily seen that

and . Using (22), the coordinate transformation
derived in Appendix A shows that the real and imaginary parts
of (19) can be reduced to

(23)

where the matrix , given by (71), incorporates
the interference from the signal components different from .
When conditioned on , the RVs , , and are independent
and distributed as follows:

• is a Gaussian RV with mean and variance ;
• is a ZM Gaussian RV with variance ;
• is distributed according to the chi-distribution with

degrees of freedom [27].
Hence, by substituting and in (21) by (23) and
(74), respectively, the conditional BER given by (16) can be
rewritten as a function that depends on the actual channel
through the random vector and on the estimated channel
through only three RVs: , , and ; we denote this function
by . Note that the dependence on is only

through and , with depending on . Due to
this substitution, the BER expression given by (15) reduces to

(24)

which is an expectation over real-valued continuous RVs,
i.e., the components of , , , and , and discrete RVs,
i.e., the components of .

In the case of square OSTBCs, i.e., , the BER ex-
pression can be considerably simplified. For these OSTBCs, it
is shown in Appendix B that the magnitude of used in
(23) is given by

(25)

Hence, by substituting in by
(25), can be rewritten as a function that
depends on through only the norm of the channel vector;
we denote this function by . It follows
from (25) that, for square OSTBCs, the dependence of (23) on
and q is through only. Since the statistical properties of
depend neither on nor on q, the BERs related to the in-phase
and quadrature-phase bits of are identical and irrespective of
, such that (24) reduces to

(26)

which involves the expectation over only 4 real-valued contin-
uous RVs, i.e., the norm of the channel vector , , ,
and , and discrete RVs, i.e., the components of .

V. APPROXIMATE BER ANALYSIS

In this section, we present a simple approximation of the BER
for high signal-to-noise ratio (SNR). To this end, we treat the
interference caused by the symbols in the OSTBC matrix as
additional white Gaussian noise. With ,

, and , it follows from (10) that the esti-
mated channel vector is given by , where the
elements of are i.i.d. ZM CSCG RVs with variance . Let
us expand as

(27)

where the matrix is chosen in such way that both terms
in the sum are uncorrelated. Taking (10) into account, it can be
shown that is given by

(28)

where is the covariance matrix of the channel
vector . In general, the elements of are not Gaussian (except
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for Rayleigh fading); they are correlated with covariance matrix
, given by

(29)

Note that the entries of are uncorrelated in case of uncorrelated
channels.

For high SNR, i.e., when for
and , it follows from (28) that .

Using this high-SNR approximation, the channel matrix can
be written as

(30)

where the matrix is determined by the relation
and the terms in the sum are uncorrelated. Moreover,

according to (29), the elements of can be considered to be
uncorrelated since . By replacing in
(19) by (30), the signal can be shown to reduce to

(31)

where denotes the transmitted symbol and the second
term in the sum represents symbol interference due to
ICSI. When conditioned on , the variance of the latter
term can be easily shown to be for
square OSTBCs. For nonsquare OSTBCs, the same result
can be obtained by making the additional assumption that

, i.e.,
is approximated by a diagonal matrix with identical diagonal
elements given by the average of the diagonal elements of

. Taking (18) and (31) into account, it follows
that, for high SNR, the decision variable of the mismatched
receiver can be written as , where the dis-
turbance term is assumed to be CSCG and has variance

. Hence, the BER reduces to
an expectation over the Frobenius norm of the estimated
channel. Note that, in case of PCSI, the variance of is
given by . Assuming that the PDF of
approaches the PDF of for high SNR, it is now easily
seen that, for given , the BER for OSTBCs with ICSI
can be approximated as the BER in case of PCSI, shifted over
an amount of dB.

VI. EVALUATION OF THE BER

In Section IV, we have provided an exact analysis of the BER
for OSTBCs on fading channels with ICSI, regardless of the
fading distribution. In particular, it has been shown that for any
OSTBC, the BER can be written as an expectation over
real-valued continuous RVs and discrete RVs, as can be seen
from (24). Moreover, for square OSTBCs, the BER can be fur-
ther reduced to an expectation over only 4 real-valued contin-
uous RVs and discrete RVs, as can be seen from (26).

In this section, we deal with the efficient and accurate nu-
merical evaluation of the exact BER expressions (24) and (26).
To this end, two numerical integration techniques will be en-
visaged: the quadrature rule [28, Sec. 4.1] and Monte-Carlo

integration [28, Sec. 7.7] with importance sampling [28, Sec.
7.9.1]. Firstly, however, we give a brief description of how the
BER can also be obtained by straightforward Monte Carlo sim-
ulations and why this method is not to be preferred in the case
of OSTBCs.

A. Monte Carlo Simulations

In order to obtain the BER by Monte Carlo simulations, the
input RVs of the system, i.e., the complex-valued entries of the
channel matrix , the data symbols in the code matrix , and
the noise matrices in (7) and (8), need to be generated repeat-
edly according to their corresponding distributions. For each
set of input RVs, the receiver estimates the channel according
to (9) and detects the information symbols from the received
signal matrix according to (13). Finally, the BER is obtained
by averaging the ratio of the number of bit errors to the total
number of bits within one frame over the different simulation
runs. The accuracy of the resulting BER can be improved by in-
creasing the number of simulations. Clearly, the smaller the av-
erage number of bit errors occurring per simulation, the larger
the number of required simulations will be to obtain a certain ac-
curacy. However, as OSTBCs may achieve very low BERs, even
at moderate SNR, extremely long simulation times are usually
necessary and, moreover, the required simulation time will in-
crease dramatically with the SNR. Therefore, Monte Carlo sim-
ulations are, in general, inappropriate for accurate and efficient
BER computations of OSTBCs.

B. Efficient Evaluation of (24) and (26)

By numerically evaluating (24) and (26), the BER for OS-
TBCs can be efficiently obtained with a computation time that
increases only very slowly with the SNR. In this section, we
briefly describe the quadrature rule and Monte Carlo integra-
tion with importance sampling, point out their benefits and lim-
itations, and apply them to evaluate (24) and (26).

Let us represent (24) and (26) by the following generic ex-
pectation:

(32)

where is a function of a random vector
consisting of the symbol vector and a random column vector

. Depending on whether (24) or (26) is considered, we define
and

, or and ,
respectively, with or . In (32), the subscript refers
to the joint PDF of , with being uniformly
distributed over . In this way, the expectations (24) and (26)
are defined by the following sum of a -fold integral, with
denoting the dimension of ,

(33)

Note that the computational complexity associated with the
summation in (33) is proportional to , which increases
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prohibitively for large constellation size and/or large number
of information symbols .

1) The Quadrature Rule: In principle, the -fold integral in
(33) can be evaluated by repeatedly applying the quadrature rule
to each of the integrals, in which case the -fold integral is re-
placed by a -fold sum. Assuming that each element of takes

values in this sum, the computational complexity for com-
puting the -fold integral in (33) is proportional to , which
is prohibitively large for large . Therefore, numerical inte-
gration is only of practical interest for square OSTBCs, where

and . In this case, the joint PDF
of is easily obtained as the product of the PDFs ,

, and , which have been specified in Section IV, and
the PDF of , which can be available as an analytical expres-
sion or in the form of a histogram (e.g., as the result of a mea-
surement), since is to be discretized.

2) Monte-Carlo Integration With Importance Sampling: The
exponential dependency of the computational complexity re-
lated to (33) on and can be avoided by using Monte Carlo
integration combined with importance sampling. In this way, the
left-hand side of (33) is approximated by

(34)

where are independent samples gen-
erated according to a biased PDF . Note that we use the
term Monte Carlo integration for both discrete and continuous
variables, i.e., the symbol vector and the vector , respec-
tively. In case , (34) reduces to conventional
Monte Carlo integration without importance sampling. Defining

, it can be shown that
and

(35)

where refers to the expectation over the biased PDF .
It follows from (35) that can be made arbitrarily small
by taking sufficiently large. However, the smaller the second
factor in (35), the smaller is the value of required to achieve
a certain value of . By making a judicious choice of ,
we try to minimize this factor, so that reasonably large values
of yield very good accuracy. It can be easily verified that

is the optimum biased PDF, as it
yields . However, this choice is not practical, since
the optimum depends on the unknown . Never-
theless, the optimum inspires us to take

(36)

where is a suitable approximation of , i.e., it is
chosen in such way that the resulting allows us to easily
generate i.i.d. vectors .

Let us apply Monte Carlo integration with importance sam-
pling for evaluating the BER in the case of nonsquare OSTBCs,
where . For many fading distributions,

the vector can easily be generated as a transformation
of a vector of auxiliary RVs, distributed according to a

joint PDF which is such that the PDF of is the de-
sired distribution of the real and imaginary parts of the channel
coefficients contained in . Therefore, we redefine in terms
of the vector of auxiliary RVs instead of the channel vector, i.e.,

, such that

(37)

and

(38)

In order to identify an approximate in (36),
we will consider assuming PCSI, in which case
from (23) is the sum of and a noise term with variance

. Denoting by the distance between adja-
cent QAM constellation points, we approximate the conditional
BER assuming PCSI by the following simple expression

(39)

Considering the bound , we select

(40)

Since depends only on , the corresponding biased
PDF (36) is given by

(41)

with

(42)

where is a normalization constant. From (41), it follows that
only the joint PDF of the vector of auxiliary RVs is bi-
ased. Hence, , , , and need to be generated according to
their respective distributions, whereas the auxiliary RVs are gen-
erated according to the biased joint PDF given by (42), which
depends on the considered transformation .

Note that also a combination of the quadrature rule and Monte
Carlo integration can be used. For example, for square OS-
TBCs, the integral over can be eval-
uated using the quadrature rule, whereas the summation over
the symbol vector can be evaluated through Monte Carlo in-
tegration. In order to further reduce the computational com-
plexity related to the evaluation of (24), can be approx-
imated by retaining only one term in the summation in (37),
i.e., , with or , instead of
taking the average over all terms. In Section VIII, compar-
isons between BER results obtained using this approximation
and computer simulations show that this approximation is very
accurate.
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VII. CORRELATED NAKAGAMI- FADING CHANNELS

In this section, we apply the theory shown in Section VI-B for
the evaluation of the BER of OSTBCs with ICSI to the particular
case of arbitrarily correlated Nakagami- fading channels.

The Nakagami- distribution [29] is considered as a versa-
tile statistical distribution that accurately models a variety of
fading environments by selecting a proper value for the fading
parameter . It includes the Rayleigh and
the one-sided Gaussian distributions as special
cases. Moreover, for , the fading channel converges
to an AWGN channel. Denoting by the magnitude of a com-
plex-valued channel coefficient, its PDF in the case of Nak-
agami- fading is given by [26, eq. (2.20)]

(43)

with being the Gamma function [30, eq. (8.310/1)],
being the unit step function, and being the av-
erage fading power. Equivalently, the fading power follows
a Gamma distribution with shape parameter and mean [26,
eq. (2.21)]. Assuming PCSI, it follows from [31] that the BER
of an OSTBC operating over i.i.d. Nakagami- fading chan-
nels is proportional to for large , which
indicates that the BER performance improves with increasing

and/or diversity order .
In case of a correlated Nakagami fading MIMO channel, the

marginal PDF of the magnitude of the channel coefficient
follows (43), with parameters and possibly de-

pending on the indexes and . Stacking the fading
magnitudes into an -dimensional column vector , such
that , the elements of the power cor-
relation matrix of are defined as [26, eq. (9.195)]

(44)

with . Using the MIMO channel model pro-
posed in [32], (44) is decomposed as

(45)

where and are the transmit and receive
power correlation matrices, respectively, the elements of which
are defined as

(46a)

with , and

(46b)

with . According to (46), and are
independent of the index of the considered receive antenna
and transmit antenna, respectively. Also, from the Kronecker

model (45), it follows that the normalized covariance between
the fading powers and equals .

A. Generating Nakagami- RVs

In Section VI-B, we have shown that the expectation over
in (24) can be efficiently evaluated by means of Monte Carlo
integration with importance sampling, provided that the vector

of auxiliary RVs that is used to obtain the channel vector is
generated according to a proper sampling distribution given by
(42). In this section, we give a brief overview of how correlated
Nakagami- RVs can be generated from auxiliary RVs and how
(42) is obtained for integer and identical fading parameters, i.e.,

, for .
Usually, arbitrarily correlated Nakagami- RVs are gen-

erated from either Gamma RVs [33]–[35] or Gaussian RVs
[36]–[40]. An efficient method for generating bivariate Nak-
agami- samples based on the rejection method is given
in [41], for arbitrary values of . For integer and
identical fading parameters, i.e., , , it is shown
in [39] that correlated Nakagami- RVs , can be ob-
tained from i.i.d. real-valued ZM Gaussian random vectors

, with . In
particular, by defining

(47)

it is readily verified that ’s are correlated Nakagami- RVs
with and power correlation matrix , if the covari-
ance matrix of the column vectors is given by

(48)

where the diagonal matrix is given by
and . The correlated

Gaussian entries of the ’s can simply be obtained as
, where the -dimensional column vector con-

sists of i.i.d. Gaussian RVs with ZM and unit variance and the
matrix results from the Cholesky decomposition [42,

p. 559] of the covariance matrix , i.e., .

Let us select as the vector of auxiliary RVs,
where contains the phases of the channel coefficients and

. Taking into account that
and that the channel coefficient magnitudes are obtained
from according to (47), we have

. Hence, with , it follows from (42)
that the biased joint PDF of is given by

(49)

Because is the joint PDF of i.i.d. ZM Gaussian vectors
, each having a covariance matrix given by (48), it fol-

lows from (49) that is a similar PDF, but now the vectors
have a covariance matrix given by

(50)
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Moreover, using (49) and (50), it can be easily shown that the
ratio to be used in (34) depends only on and is
given by

(51)

B. PDF of the Nakagami- Channel Norm

For square OSTBCs, we have shown in Section VI-B that the
expectation over the channel norm in (26) can be evalu-
ated by means of the quadrature rule, provided that the PDF
of is available as an analytical expression or in the form
of a histogram. In this section, we give a brief overview of the
available literature on how the PDF of , which we denote
by , can be analytically obtained for correlated Nak-
agami- channels. From this PDF, the PDF of is easily
obtained using a standard RVs transformation.

In the past, different approaches have been presented for de-
riving analytical expressions for the distribution of in the
case of arbitrarily correlated Nakagami- fading channels, e.g.,
see [33]–[39] and references therein. Analytical expressions for
the moment generating function (MGF) of have been de-
rived for integer , , [36], [37], [39], integer [38]
and arbitrary [35]. Although the obtained expressions in
[36], [37], [39] can be straightforwardly used for the derivation
of , this seems complicated using the MGF expression
presented in [38] and rather difficult with that in [35]. On the
other hand, the PDF-based approach has been used for deriving
the distribution of for arbitrary , , [33] and for
integer with the restriction that if
[34].

For integer and identical , , and , the
PDF of is given by [36], [37]

(52)

where ’s, , are the distinct eigenvalues of
given by (48), with corresponding algebraic multiplicities . In
(52), the parameters are given by

(53)

where

(54)

Alternatively, by applying a tridiagonal decomposition to
for integer and , , can be

obtained from [39] as fast convergent infinite summations. For
arbitrary and identical , , the PDF of can be
easily obtained from [33, eq. (5)] as an infinite summation. For
arbitrary and nonidentical , the PDF of is given in [43]
as an infinite summation and a good truncation of the PDF’s
infinite summation is proposed. For i.i.d. Nakagami- dis-
tributed fading envelopes with arbitrary and identical

and , , the PDF of is shown to be distributed
according to the Nakagami- distribution with parameters
and [44].

VIII. NUMERICAL RESULTS

In this section, BER results are presented for correlated Nak-
agami- fading channels, under the assumption that
and that the Kronecker channel model (45) is valid [32], [45],
although the analysis is also applicable to arbitrary power
correlation matrices. The phases of the channel coefficients
are assumed to be uniformly distributed. The accuracy of the
curves resulting from the numerical evaluation of the exact
BER expressions (24) and (26) using the tools provided in
Sections VI-B and VII, is illustrated by means of straightfor-
ward Monte Carlo simulation results, which are represented by
black dots and are added to some of the figures for relatively
high BER. In Figs. 1 and 2, the BER curves resulting from the
high-SNR approximation given in Section V are also shown,
in order to illustrate their accuracy under different fading
circumstances.

A. Square OSTBCs

Let us consider Alamouti’s code ,
which is given by [1]

(55)

In order to obtain the BER curves for this OSTBC, we evaluate
the expectation over , , , and in (26) by means of the
quadrature rule, with the distribution of being derived from
(52) in the case of correlated fading and from (43) in the case of
i.i.d. fading; the expectation over is exactly obtained by means
of a finite summation.

In Fig. 1(a), we show the BER curves for a 2 1 Alamouti
MIMO scheme with LS channel estimation under i.i.d. Nak-
agami- fading. Also the approximate BER curves, resulting
from treating the symbol interference due to ICSI as white
Gaussian noise, are shown in the figure. The data frames con-
sist of coded data symbols and pilot symbols
per transmit antenna, whereas the symbols belong to a 4-QAM
constellation. The BER approximation turns out to be relatively
accurate, although it is clearly not asymptotically exact when
the fading is not Rayleigh distributed, i.e., for . The
difference between the Gaussian approximation and the exact
result is even larger when BPSK transmission is considered, as
shown in Fig. 1(b).

Fig. 2 shows the BER of Alamouti’s code under correlated
identically distributed (i.d.) Nakagami- channels with
and . We assume that there is no antenna correlation at
the transmitter side, whereas the correlation between the receive
antennas can be described by means of a constant cor-
relation model [39] determined by the following power correla-
tion matrix:

(56)
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Fig. 1. Exact and approximate BER versus � �� for a 2 � 1 Alam-
outi scheme with LS channel estimation under i.i.d. Nakagami-� fading.
(a) 4-QAM; (b) BPSK.

For , the BER results are shown for a
PCSI receiver and a receiver using LS channel estimation with

and . For the receiver with ICSI, both
the exact and approximate BER curves are displayed. It fol-
lows from the figure that the accuracy of the approximate BER
curves depends on different parameters, such as the constella-
tion size and the number of pilot symbols . The larger
is, the smaller the asymptotic difference will be between the ap-
proximate and the exact BER curves. This is due to the fact that
for large , the PDFs of and are very similar such
that the approximation from Section V is quite accurate.

Fig. 3 displays the performance curves resulting from the
exact BER expression (26) for Alamouti’s code along with
4-QAM signaling, operating over correlated i.d. Nakagami-
channels with and . The results are shown for
both a PCSI receiver and a receiver using LS channel estimation
with and , for , and for different
correlation models. Assuming that no antenna correlation
occurs at the transmitter side, the following correlation models
have been considered at the receiver side:

Fig. 2. Exact and approximate BER versus � �� for a 2 � 3 Alamouti
scheme with LS channel estimation under correlated i.d. Nakagami-� fading,
with � � ��, � � ��� �� ���, and � � ������ �������.

i) uncorrelated fading (unc), with ;
ii) a linear antenna array (lin), the configuration of which is

depicted in [37, Fig. 4(b)], with power correlation matrix
given by [37, eq. (38)]

(57)

iii) a triangular antenna array (tri), the configuration of which
is depicted in [37, Fig. 4(a)], with power correlation ma-
trix given by [37, eq. (37)]

(58)

In Fig. 3, it is shown how , ICSI, and antenna correlation
model affect the BER performance of Alamouti’s code. As it
is expected, the BER performance improves when increases.
As compared to the case of PCSI and zero correlation, both ICSI
and antenna correlation degrade the BER through a horizontal
shift of the BER curve for large , indicating that, for the
correlations considered, the relation still
holds at large . Note that antenna correlation has no sig-
nificant impact on the BER degradation caused by ICSI only,
and that for highly correlated channels, e.g., the triangular cor-
relation model, the BER degradation as compared to zero cor-
relation is much larger than the degradation due to ICSI only.

B. Nonsquare OSTBCs

Let us consider the 3 4 OSTBC ( , )
given by [2, eq. (39)]

(59)
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Fig. 3. BER versus � �� for Alamouti’s code with 4-QAM signaling and
LS channel estimation under correlated i.d. Nakagami-� fading channels with
� � ��� �� and � � �, for uncorrelated (unc), linear (lin), and triangular (tri)
correlation matrices at the receiver side �� � ��.

where the scaling factor is applied in order that (59) sat-
isfies (2). The BER curves for this OSTBC are obtained by
evaluating the expectation over , , , , and in (24) by
means of Monte Carlo simulation with importance sampling. In
(34), however, is approximated by retaining only the term

in the summation in (37). Moreover,
the auxiliary Gaussian RVs yielding the channel coefficients are
generated according to (49).

Fig. 4 shows BER performance evaluation curves in case of
a Nakagami- MIMO channel with that is recovered
through LS channel estimation with and .
The power correlation matrix at the transmitter side is given
by (57), whereas the power correlation matrix of the dual-
antenna receiver is given by

(60)

The BER performance evaluation results are shown for
-QAM signaling, with and a 3 2

Nakagami- MIMO channel satisfying

(61)

with , , and . Note that
halving the average energy transfer between the third transmit
antenna and the receiver causes a BER degradation through a
horizontal shift of the BER curve. In order to compare the pro-
posed BER expressions versus direct simulations in terms of ac-
curacy and efficiency, we assume that the ratio of the variance of
the calculated or simulated BER to the square of its expectation
is less or equal than a certain required accuracy

(62)

where denotes the BER estimate, which is given by
. In case the proposed BER expressions

are evaluated through Monte Carlo integration with impor-
tance sampling, and denote the number of generated
sample vectors and the summand in (29), respectively,
whereas for direct simulations, and denote the number
of simulated data frames and the ratio of the number of bit
errors counted in the th frame to the total number of bits
within one frame, respectively. As ’s are independently
generated, , where can be
approximated by

(63)

Taking (63) into account and replacing in (62) by , it
follows that for a given accuracy , needs to satisfy

(64)

In Fig. 5, we have plotted the minimum for both direct sim-
ulations and the evaluation of the proposed BER expressions
through Monte Carlo integration with importance sampling, for

, , and a given accuracy of . Note
that the number of required sample vectors in case of Monte
Carlo integration with importance sampling is much less than
the number of generated frames in case of direct simulations, es-
pecially for moderate to high SNR. Moreover, generating a data
frame and detecting it after it has been affected by fading and
channel noise, is a much more complex task than evaluating the
summand in (29). In Fig. 4, the BER results from Monte Carlo
integration with importance sampling have been obtained with

5000 samples for each RV. Note also that retaining only
one term in the summation in (37) yields very accurate BER re-
sults, i.e., the BERs related to the in-phase and quadrature-phase
bits of are nearly identical and irrespective of . Because the
number of pilot symbols is relatively high , the ap-
proximate BER curves resulting from the high-SNR approxima-
tion in Section V also provide very accurate BER results. Only
for 4-QAM, a clear deviation from the exact BER can be ob-
served for SNRs below 10 dB. In order not to overload Fig. 4,
however, the approximate BER curves are omitted in the figure.

Fig. 6 illustrates the BER performance versus the number of
pilot symbols for the 3 4 OSTBC given by (59), op-
erating over correlated i.d. Nakagami- fading channels with

and , under the assumption that 10 dB.
The power correlation matrix of the dual-antenna receiver

is assumed to be given by (60), the channel is re-
covered through LS channel estimation, and the transmitted in-
formation symbols belong to a 16-QAM constellation. The re-
sults are shown for information sym-
bols and for the power correlation matrix at the transmitter
side being given by either (57) (lin) or the identity matrix (unc).
From Fig. 6, we observe that the optimal number of pilot sym-
bols grows with the number of information symbols and that
antenna correlation does not affect this optimal number. We also
notice that for large , obtaining the optimal number of pilot
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Fig. 4. BER versus � �� for the 3 � 4 OSTBC given by (59) operating
over a 3 � 2 correlated Nakagami-� MIMO fading channel with � � �,
� � � � �, and � � �. The results are shown for � -QAM, with
� � ��� ��� �������, and for � � �������.

Fig. 5. Minimum � for both direct simulations and the evaluation of the pro-
posed BER expressions through Monte Carlo integration with importance sam-
pling for a given accuracy of 	 � ����.

symbols is not very critical as the BER grows only slowly when
more pilot symbols are added.

IX. CONCLUSIONS AND REMARKS

In this contribution, we have investigated the effect of ICSI
on the BER performance of OSTBCs under flat-fading chan-
nels. For nonsquare OSTBCs, the resulting exact BER expres-
sion can be written as an expectation over discrete RVs and

real-valued continuous RVs, whereas for square OS-
TBCs, the resulting exact BER expression reduces to an expec-
tation over discrete RVs and 4 real-valued continuous RVs,
regardless of the number of antennas. The exact BER expres-
sions can be efficiently and accurately evaluated by means of
numerical integration techniques, i.e., the quadrature rule and
Monte Carlo integration with importance sampling, or a combi-
nation thereof. Additionally, we provided a simple approxima-

Fig. 6. BER versus 
 for the 3 � 4 OSTBC given by (59) with 16-QAM,
operating over i.d. correlated Nakagami-� fading channels, with � � �

and � � �. The results are shown for � �� � �� dB, for uncorrelated
(unc) and linear (lin) correlation matrices at the transmitter side, and for

 � ��������������.

tion of the BER based on treating the symbol interference due to
imperfect channel estimation as white Gaussian noise. Although
the resulting expression is in general not asymptotically exact,
it yields very accurate BER results when the fading distribution
is similar to Rayleigh and when a sufficient number of pilot
symbols is used. For the case of correlated Nakagami- fading
channels, we elaborated further on the numerical evaluation of
the exact BER expressions. Our numerical results illustrate the
effect of channel estimation errors and of fading correlation on
the BER performance of OSTBCs in the case of Nakagami-
fading.

When an outer channel code is concatenated with an OSTBC
scheme, the exact BER performance of the system is hard to
assess. However, an upper bound on the BER performance can
be easily derived from the PEPs, which can be obtained exactly
using the techniques that are proposed in the paper.

APPENDIX A
PROOF OF (23)

In (19), we have defined as

(65)

With and referring to the BER computation for
the in-phase and quadrature-phase bits, respectively, it is readily
verified that the real and imaginary parts of (65) can be rewritten
as

(66)

where the column vectors , with or ,
are given by

(67)
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and the matrices are defined as

...
. . .

... (68)

For all possible combinations of p and q, the 2 2 matrices
in (68), with , are defined as follows:

(69a)

with and being the real and imaginary

parts of , respectively;

(69b)

with and being the real and imaginary

parts of , respectively;

(69c)

with and being the real and imaginary

parts of , respectively;

(69d)

with and being the real and imaginary

parts of , respectively.

Note that and , such that

. Under the assumption that or when
or , respectively, it follows from (4) that, for any

given , the vectors , with , and are orthogonal

to

(70a)

(70b)

In (66), the term in is the useful term, whereas the terms
in , with , and the terms in represent interfer-
ence from the symbol components different from . In case
of PCSI, i.e., , it is readily verified that . Let
us now introduce the matrix as

(71)

which is a function of the transmitted symbol vector and the
coefficient matrices and , with . In this way,
(66) reduces to

(72)

From (67) and (70), it follows that is orthogonal to .
Hence, we can define an orthonormal coordinate system with
unit vectors , where and
are directed along and , respectively. Denoting by

(73)

the projections of on , it follows from (10) that the sta-
tistical properties of the RVs are independent of and q.
Therefore, we may drop the superscript ( , q), resulting in

(74)

with

(75)

Taking the specific choice of and into account, it
follows from (73)–(75) that (72) reduces to (23).

APPENDIX B
PROOF OF (25)

For square OSTBCs, i.e., , it follows from (5) that
the vectors and , given by (67), are mutually orthog-
onal, such that the orthogonality conditions given by (70) reduce
to

(76a)

(76b)

Using the above properties, it can be shown that which
appears in (23), with given by (71), reduces to (25).
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