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Wavelet Thresholding for Multiple Noisy Image Copies

S. Grace Chang, Bin Yu, and Martin Vetterli

Abstract—This correspondence addresses the recovery of an image from
its multiple noisy copies. The standard method is to compute the weighted
average of these copies. Since the wavelet thresholding technique has been
shown to effectively denoise a single noisy copy, we consider in this paper
combining the two operations of averaging and thresholding. Because
thresholding is a nonlinear technique, averaging then thresholding or
thresholding then averaging produce different estimators. By modeling
the signal wavelet coefficients as Laplacian distributed and the noise
as Gaussian, our investigation finds the optimal ordering to depend on
the number of available copies and on the signal-to-noise ratio. We then
propose thresholds that are nearly optimal under the assumed model
for each ordering. With the optimal and near-optimal thresholds, the
two methods yield similar performance, and both show considerable
improvement over merely averaging.

Index Terms—Filter noise, image denoising, image restoration, wavelet
thresholding.

I. INTRODUCTION

Denoising via wavelet thresholding proposed by Donoho and John-
stone [3] is a simple nonlinear yet effective technique which outper-
forms linear techniques in theory and practice (cf. [5, ch. 10]). Since
this seminal work, there have been many extensions. Most of these
works are for situations where there is only one set of observations
(e.g., one time series sequence or one still image). However, in many
applications there are multiple copies of the same or similar images,
thus it is necessary to investigate denoising techniques which remove
noise from multiple corrupted copies of the same signal. For a cor-
rupted video sequence, suppose we choose a few consecutive frames
in which the motion is not significant and that we have already taken
care of the registration problem, one can view the frames as multiple
noisy copies of the same image. Another example is when one scans a
picture, but with unsatisfactory result, thus one does multiple scans, and
then combines these copies to obtain the most noise-free copy possible.
Since wavelet thresholding has worked well for one copy of corrupted
image (cf. [1], [3], [5], and [6]), we consider its extension to multiple
copies in this paper.

The standard method for combining the multiple copies is to com-
pute their weighted average. One can only do better by incorporating
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a thresholding step. The question is, which ordering is better, thresh-
olding first or averaging first, and what is the threshold value for each
ordering? The answer is not clear at alla priori because thresholding is
a nonlinear technique that reduces variance at the expense of increasing
bias. We address these issues in this paper. With the coefficients of each
subband modeled as samples of a Laplacian random variable and the
noise as samples of a Gaussian variable, we will show that the optimal
ordering (in the mean squared error sense) depends on the number of
available copies and the proportion between the noise power and the
signal power. Moreover, we propose near-optimal subband adaptive
thresholds for both orderings. Results show that with the optimal or the
proposed near-optimal thresholds, the two methods yield very similar
performance, and both outperforms weighted averaging substantially.

II. DENOISING ALGORITHM FORMULTIPLE NOISY COPIES

Let fff = ffijg denote theM �M matrix of the original image to
be recovered. (Note that we use the boldfaced letters for thematrix of
coefficients, and regular lettersfij for individualpixels.) The signalfff
has been transmitted over a Gaussian additive noise channelN times,
and at the receiver we haveN copies of noisy observations,ggg(n) =
fff + """(n); n = 1; � � � ; N . For thenth copy,f"(n)ij g are iid Gaussian
N(0; �2n), where�2n is the noise variance of thenth copy. The noise
samples between different copies are assumed independent. The goal is
to find an estimator̂fff which minimizes the mean squared error (MSE),
MSE = (1=M2) M

i; j=1(f̂ij � fij)
2.

The recovery of the image is done in the orthogonal wavelet trans-
form domain (the readers are referred to standard wavelet literature
such as [4], [7] for details of the two-dimensional (2-D) dyadic wavelet
transform). Let the wavelet transform of the noisy observationggg(n) =
fff + """(n) be denoted byYYY (n) = XXX + VVV (n). The wavelet coefficients
are often grouped intosubbandsof different scale and orientation, with
one lowest frequency subband, and the rest calleddetail subbands.
It has been found that for a large class of images, the coefficients in
each detail subband form a histogram well-described by a generalized
Gaussian distribution (cf. [4] and [8]), often simplified to Laplacian
distribution for tractability. In this work, we use the Laplacian distri-
bution. Then it follows that the MSE is well approximated by theex-
pectedsquared error, orrisk under the squared loss. Thus, we wish to
find the estimatorf̂(g) of the coefficients which minimizes the risk,
Risk = E[(f � f̂)2].

A. Wavelet Thresholding and Threshold Selection

To denoise one copy, the wavelet thresholding operation proposed by
Donoho and Johnstone [3] has three steps. First, take the wavelet trans-
form of the noisy observationggg to yieldYYY . Then each coefficientYij
(except in the lowest resolution subband) is thresholded with a chosen
threshold. Finally, the thresholded coefficients are transformed back to
yield the recovered signal.

There are two popular thresholding functions: thesoft-threshold
function, ��(t) = sgn(t) � max(0; jtj � �), which shrinks the
input toward zero by amount�, and thehard-thresholdfunction,
 �(t) = t � 1fjtj > �g, which keeps the input only if it is above the
threshold�. Although the soft-thresholding operation tends to smooth
the image slightly more than the hard-threshold function, it yields
images with better visual quality especially when the noise power
is significant. Furthermore, with the chosen probability distribution,
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optimal soft-thresholding yields a lower risk than optimal hard-thresh-
olding, as was shown in [1]. Thus, soft-thresholding is the preferred
operation in this work.

The next issue is the selection of the threshold value. The
threshold selection is performed once for each subband. Thus, let
us consider coefficients from one detail subband. As in [1], we
model the wavelet coefficients in a detail subband of the original
imagefff as samples from a zero-mean Laplacian random variable
with an unknown parameter. That is, eachXij is modeled as
X � p(x) = LAP(�)

�
= 1=

p
2� exp � p

2=� jxj . Since
the noise is Gaussian and the wavelet transform is orthogonal, each
wavelet coefficient,Yij , of the corrupted image has distribution
Y jX � p(yjx) = N(x; �2) = 1=

p
2��2 expf�(y � x)2=2�2g.

We use the soft-threshold estimate,X̂ = ��(Y ), and the optimal
threshold is defined to be

�� = arg min
�

EXEY jX(X̂ �X)2

= arg min
�

1

�1

1

�1

(��(y)� x)2p(yjx)p(x)dy dx: (1)

As far as we know,�� does not have a closed form solution and is thus
found numerically (with minimization and numerical integration tech-
niques). A good approximation of�� was found in [1] to be~�(�) =
�2=�, where� is the standard deviation ofX. It results in less than
0.8% deviation from the minimum MSE (with the optimal threshold
��). The threshold~�(�) is simple and effective and has an intuitive ex-
planation. When the noise power is much smaller than the signal power,
�=� � 1, the normalized threshold~�=� is small to preserve most of
the signal features; on the other hand, when�=� � 1, ~�=� is chosen
to be large to remove the noise which has overwhelmed the signal. By
allowing the unknown parameter� to be estimated, this method also
allows adata-drivenselection of the threshold which adapts to each
subband.

B. Combining Thresholding and Averaging

When there are multiple copies available, the standard method
is to use the (pixel-wise) weighted average as the estimate. Let
V (n) � N(0; �2n); n = 1; � � � ; N , be the noise variable for the
nth copy, andZ be the weighted average ofY (n) = X + V (n),
Z = N

n=1 �nY
(n) = X + N

n=1 �nV
(n) , where �n = 1. It is

well-known that the optimal�n are��n = (1=�2n)=
N

i=1 (1=�
2
i ), and

the resulting MSE is�2total = Var(Z�X) = Var N

n=1 �
�
nV

(n) =

N

n=1 (1=�
2
n)

�1

, where Var(�) denotes the variance.
Now let us incorporate thresholding into averaging.Z is a new

random variable withZjX � N(x; �2total). Since this is exactly the
setting for one copy thresholding, we can simply use�total=� as the
threshold. However, can we do better than that? More specifically,
since we have two operations here, averaging and thresholding, of
which one is linear and the other not, the ordering could make a
difference. Thus we investigate which ordering is best in the mean
squared sense.

Consider the special case when�1 = �2 = � � � = �N
�
= �. Thus,

�1 = � � � = �N = 1=N . To make references more convenient, let
A(�) denote the weighted average operation andT (�) the thresholding
operation, and we give the following notation to the two orderings:

A(T (Y (1); � � � ; Y (N))): X̂AT (�) =
1

N

N

n=1

��(Y
(n)) (2)

T (A(Y (1); � � � ; Y (N))): X̂TA(�) = ��
1

N

N

n=1

Y (n) : (3)

The risk of the estimator̂XAT (�) is

RAT (�) =EXEY ; ���; Y jX

1

N

N

n=1

��(Y
(n))�X

2

(4)

=EXEY ; ���; Y jX

1

N

N

n=1

(��(Y
(n))�X)

2

(5)

=EXEY ; ���; Y jX

1

N2

N

n=1

(��(Y
(n))�X)2

+
1

N2

N

n=1

N

(��(Y
(n))�X)(��(Y

(m))�X)

(6)

=
1

N
EXEY jX(��(Y )�X)2 +

N � 1

N
EX

� EY jX(��(Y )�X)
2

(7)

where (7) follows from the fact thatfY (1); � � � ; Y (N)g conditioned
onX are independent. The risk of̂XTA(�) is

RTA(�) =EXEY ; ���; Y jX(X̂TA(�)�X)2

=EXEZjX(��(Z)�X)2; (8)

where Z = (1=N) N

n=1 Y
(n), and ZjX � N(x; �2=N).

The optimal thresholds are��AT = arg min� RAT (�) and
��TA = arg min� RTA(�). Note that��AT and ��TA depend on
� and�. We do not have closed form solutions for��AT and��TA,
thus we resort to numerical methods. Without loss of generality, we
can set� = 1 (alternatively, one can solve for��AT =� and��TA=�
as a function of�=�). For a fixed value�0, �T A(�0) and�AT (�0)
are found by locating the zero crossing of the derivatives of the risks,
R0
T A(�) andR0

AT (�), respectively. Standard numerical integration
routines (such as the Romberg integration found in numerical recipes)
are used to calculate the expectations.

To compare the risks of these two methods, we look at the scaled
risk difference,(RAT (�

�
AT ) � RTA(�

�
TA))=�

2, as a function ofN
and of the ratio�=�, illustrated in Fig. 1. For eachN � 5, there is a
cutoff pointC�

N below whichRAT (�
�
AT ) > RTA(�

�
TA), and above

whichRAT (�
�
AT ) < RTA(�

�
TA). ForN > 5, however, theT (A(�))

method is better for any value of�=�. The cutoff pointsC�
N for eachN

are listed in Table I. This indicates thatthe best method depends on the
relative power between the noise and signal, and also on the value of
N . With the optimal thresholds, the improvement of one method over
the other is small, however, on the order of10�3�2. T (A(�)) requires
much less computation thanA(T (�)) (since the former can be imple-
mented by computing the wavelet transform once, whereas the latter
computes itN times). Thus if computation is an issue,T (A(�)) is pre-
ferred. However, thresholding each individual copy of the image may
be advantageous. It is possible that a different noisy copy is collected
and processed at each receiving station, and only this processed copy is
kept. At a later time, these separately processed copies can be collected
by a central receiver to yield one better copy.

By plotting the numerically found��T A=� and��AT =� against�=�
andN , we discover that there is a simple analytical expression which
well approximates��TA and ��AT . For theT (A(�)) estimator, the
threshold is simply a modification of~� for one copy denoising, but
with a change in the noise variance

~�T A =
�2=N

�
: (9)
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Fig. 1. Scaled MSE difference(R (� )�R (� ))=� as a function
of N and�=�.

TABLE I
CUTOFF VALUES (IN UNIT � =�) FOR

EACH N , WHEREC IS THE CUTOFF VALUE FOR WHEN USING THEOPTIMAL

THRESHOLDS, AND ~C (LISTED ONLY FOR N � 5) IS THE CUTOFF VALUE

WHEN USING THE PROPOSEDTHRESHOLDS, ~T AND ~T

For theA(T (�)) method, we found the approximation

~�AT =
�2=N (3=4)

�
: (10)

Fig. 2 compares the optimal and approximate thresholds for both
methods as a function ofN , for � = 1 and� = 1. The thresholds
~�T A and~�AT result in less than 0.2% deviation from the minimum
MSE (with��TA and��AT , respectively). Fig. 3 compares the optimal
threshold��AT and the approximation~�AT (scaled by1=�) as a
function of�=� for N = 2; � � � ; 6. The MSE due to~�AT deviates
from the optimal MSE by less than 3.5% for�=� < 1 and less than
0.1% for�=� > 1. Since typically the signal power is much larger
than the noise power (otherwise the image features has been greatly
corrupted), inaccurate approximations for small�=� are acceptable.
The thresholds~�T A and~�AT also yield a different set of cutoff values
~CN (tabulated in Table I forN � 5). Notably forN > 5, there are
some ~CN less than1, but even above these~CN , the MSE of the two
methods are so close that either one can be chosen. The scaled MSE
difference(RAT (~�AT ) � RTA(~�T A))=�

2 is similar to the curves
shown in Fig. 2 for optimal thresholds and is of the same order of
magnitude. Thus, the use of~�T A and~�AT do not change the previous
conclusions.

Notice that the threshold forA(T (�)) decreases asN increases, even
though at the thresholding stage, each copy is thresholded indepen-
dently of the other copies. To explain this dependency onN , we rewrite
the inner expectation ofRAT (�)

EY ; ���; Y jX(X̂AT (�)�X)2 (11)

Fig. 2. Comparing� (���) versus~� (� � �), and� (—) versus
~� (–�–�), when� = 1 and� = 1.

Fig. 3. Comparing� (—) and~� (� � �) for � = � = � � � = � = �
as a function of�=� andN = 2; � � � ; 6.

= EfY gjX [X̂AT (�)� EfY gjXX̂AT (�)

+ EfY gjXX̂AT (�)�X]2 (12)

= EfY gjX [X̂AT (�)� EfY gjXX̂AT (�)]
2

+ (EfY gjXX̂AT (�)�X)2 + 2EfY gjX

� [(X̂AT (�)� EfY gjXX̂AT (�))

� (EfY gjXX̂AT (�)�X)] (13)

= EfY gjX [X̂AT (�)� EfY gjXX̂AT (�)]
2

+ (EfY gjXX̂AT (�)�X)2 (14)

= EfY gjX

1

N
n

��(Y
(n))�EY jX��(Y )

2

+ (EY jX��(Y )�X)2 (15)

=
1

N
EY jX(��(Y )�EY jX��(Y ))2

+ (EY jX��(Y )�X)2 (16)
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wherefY (n)ghasbeenusedasashorthandforY (1); � � � ; Y (N).Thefirst
termisthevariancefromthresholding,whilethesecondtermisthesquare
of the bias. The optimal threshold is obtained from the tradeoff between
the variance term (which decreases with increasing�) and the bias term
(which increases with increasing�). AsN becomes large, the variance
term decreases due to the1=N factor while the bias term stays the same.
Thus,� needs to be decreased as well to obtain the minimum total.

Up to now we have assumed the knowledge of the noise variance
�2 and the standard deviation,�, of X. In practice, these two values
may not be known and need to be estimated from the noisy observa-
tions. For both methods, these two parameters are estimated the same
way for a fair comparison. First the noise variance�2n is estimated
by the robust median estimator in the highest subband (also used in
[3]), �̂n = Median(jY

(n)
ij j)=0:6745, with all Y (n)

ij in the HH1 sub-
band of thenth copy, then̂�2 is taken to be the average of theseN
estimates. Since the noise is independent from the signal, Var(Z) =
Var(X) + �2=N = �2 + �2=N . Thus, for each subband ofZZZ =
(1=N) N

n=1 YYY
(n), the sample variance estimate of Var(Z), �̂2Z =

Average(Zij�Mean(Zij))2, is calculated, and the estimate of the stan-
dard deviation of the Laplacian distribution is

�̂ = max(0; �̂2Z � �̂2=N): (17)

Heterogeneous Noise Variances:Now consider the case when the
noise variances�2n are different. This extension is straightforward in
theT (A(�)) case. The multiple copies are averaged with coefficients
��n, and the threshold is~�TA in (9) but with�2=N replaced by�2total.

For theA(T (�)) method, one needs to find the optimal threshold
�n for each copy and the optimal weights�n. By minimizing

the risk EXEY ; ���; Y jX
N
n=1 �n�� (Y (n))�X

2

with respect to�1; � � � ; �N subject to �n = 1, and also
with respect to�1; � � � ; �N , one can find the optimal values.
The optimal �n are found numerically to be almost identical
to the values in��n. We do not have the closed form solu-
tion of the optimal thresholds. Thus, we approximate them by
~�
(n)
AT = �

1=2
n =� 1= N

i=1 (1=�
2
i )

3=4

; n = 1; � � � ; N , which

yields ~�AT in (10) when�1 = �2 = � � � = �N . Fig. 4 compares
the optimal thresholds (—) and the thresholds~�

(n)
AT (� � �) for N = 3

and f�ng = f1; 3; 5g, against� on the horizontal axis. The plot
shows the best fit for the threshold corresponding tominf�ng, and
the approximation worsens for thresholds whose corresponding�n is
further fromminf�ng, especially in the region of small� (relative to
minf�ng). This inaccuracy is mitigated by the fact that the��n’s for
large�n’s are small, thus the overall MSE is still close to the optimal
MSE (less than 0.3% for� > 1 for the graph shown).

III. EXPERIMENTAL RESULTS

To validate our proposed methods, we take as the test image a
256 � 256 block from the greyscale imagesBarbara and Lena,
with �1 = �2 = � � � = �N = � = 30, using Daubechies’ least
unsymmetric wavelet with eight vanishing moments (i.e., Symmlet8)
and four scales of wavelet transform. The algorithm is not too sensitive
to the choices of wavelet and number of levels, as long as the wavelet
is smooth enough (has several vanishing moments) and at least three
or four levels are used for this magnitude of� (for example, using
Symmlet4 increases the MSE by 1%–2% and using two levels of
decomposition increases the MSE by 2%–4%). The parameters� and
� are estimated as discussed previously. We compare the MSE’s of
five methods forN ranging from 1 to 25:

1) averaging;
2) A(T (�));
3) T (A(�));

Fig. 4. ForN = 3 and different noise� ([1], [3], [5]), compare the optimal
threshold forA(T (�)) (—) and~� (� � �).

Fig. 5. For the imageBarbara, comparing as a function ofN the MSE of
averaging (�), A(T (�)) (x), T (A(�)) (+), switching (�), and Wiener filtering
( ), for � = 30. Note that the (+) and (�) curves are overlapping.

4) switching between the two thresholding methods (only forN �

5) with cutoff values ~CN (thus the switching method becomes
T (A(�)) for N > 5);

5) Wiener filtering of the averaged copy [from (a)].
The Wiener filter is the “wiener2” routine from the MATLAB image
processing toolkit, with the input noise power unknown and the adap-
tation window size set to the default (3� 3). The resulting MSE’s are
shown in Fig. 5 forBarbaraand Fig. 6 forLena.The three thresholding
methods show significant improvement over merely averaging, ranging
from 70% to 30% reduction in MSE forN varying from 2 to 25, and are
either comparable or up to 5%–15% improvement over Wiener filtering
(depending onN ). The removal of noise due to thresholding is also
significant visually (see Fig. 7 forbarbaraatN = 4), especially for
smallN . ForN = 1 and� = 30, Wiener filtering does poorly because
of the large noise power. For largerN , the averaging reduces the noise
power substantially, and thus Wiener filtering yields images comparable
with those from thresholding, though slightly more blurry. Among the
thresholding methods, theT (A(�))method is the best in terms of MSE,
even better than switching, suggesting that perhaps theA(T (�))method
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Fig. 6. For the imageLena, comparing as a function ofN the MSE of
averaging (�), A(T (�)) (x), T (A(�)) (+), switching (�), and Wiener filtering
( ), for � = 30. Note that the (+) and (�) curves are overlapping.

is more sensitive to model errors and threshold estimation errors. For
large values of� (e.g., 30),A(T (�)) produces noticeably more noisy
images thanT (A(�)), though for smaller values, it yields images of
comparable quality as those fromT (A(�)). For 1 < N � 5, the
switching method yields MSE’s that are between those ofA(T (�)) and
T (A(�)). TheT (A(�)) method requires the least amount of computa-
tion since it can be implemented with only one wavelet transform and
seems to work well for large values of� as well. Thus, in practice, the
T (A(�))method suffices to combine multiple noisy copies.

It is curious to investigate if an additional stage of thresholding
(i.e., performingT (A(T (�)))) can have a significant improvement.
It cannot do worse, since we can always choose the latter stage
threshold to be zero. To test this idea, we take the output ofA(T (�))
and optimally threshold it assuming that we have the original. The
resulting MSE is only slightly better than theT (A(�)), suggesting that
thresholding of the weighted average yields a sufficiently denoised
image already. Furthermore, finding the optimal thresholds of a
two-stage thresholding operation is difficult.

IV. CONCLUSION

In this paper, we addressed the issue of image recovery from its
multiple noisy copies. We explored the idea of combining the wavelet
thresholding technique with the more traditional averaging operation.
Our investigation showed that the optimal ordering of these two opera-
tions is not so straightforward and is in fact a function of the number of
available copies and of the relative energy between noise and signal. We
proposed a near-optimal threshold for each ordering. With these thresh-
olds, the performances are similar, and for computational reasons, av-
eraging followed by thresholding is recommended. Furthermore, all of
these thresholding methods show substantial improvement over mere
averaging and moderate improvement over Wiener filtering, both visu-
ally and in the MSE sense.

REFERENCES

[1] S. G. Chang, B. Yu, and M. Vetterli, “Image denoising via lossy com-
pression and wavelet thresholding,” inProc. IEEE Int. Conf. Image Pro-
cessing, vol. 1, Nov. 1997, pp. 604–607.

[2] I. Daubechies,Ten Lectures on Wavelets. Philadelphia, PA: SIAM,
1992.

Fig. 7. Comparison of denoised images, forN = 4: (a) original, (b)
noisy image with� = 30, (c) averaging, (d) switching, (e)A(T (�)),
(f) T (A(�)), and (g) Wiener filtering. This image can be found at
http://www-wavelet.eecs.berkeley.edu/~grchang/multiThresh/.

[3] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation via wavelet
shrinkage,”Biometrika, vol. 81, pp. 425–455, 1994.

[4] S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 11, pp. 674–693, July 1989.

[5] S. Mallat,A Wavelet Tour of Signal Processing. New York: Academic,
1998.

[6] P. Moulin and J. Liu, “Analysis of multiresolution image denoising
schemes using generalized-Gaussian and complexity priors,”IEEE
Trans. Inform. Theory, vol. 45, pp. 909–919, Apr. 1999.

[7] M. Vetterli and J. Kovăcević, Wavelets and Subband
Coding. Englewood Cliffs, NJ: Prentice-Hall, 1995.

[8] P. H. Westerink, J. Biemond, and D. E. Boekee, “An optimal bit alloca-
tion algorithm for sub-band coding,” inProc. Int. Conf. Acoustic Speech
Signal Processing, Dallas, TX, Apr. 1987, pp. 1378–1381.


