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Correspondence

Wavelet Thresholding for Multiple Noisy Image Copies  a thresholding step. The question is, which ordering is better, thresh-
) _ _ olding first or averaging first, and what is the threshold value for each
S. Grace Chang, Bin Yu, and Martin Vetterli ordering? The answer is not clear atafriori because thresholding is

anonlinear technique that reduces variance at the expense of increasing
. ) bias. We address these issues in this paper. With the coefficients of each

Abstract—This correspondence addresses the recovery of an image from bband deled | f a Laplaci d iabl d th
its multiple noisy copies. The standard method is to compute the weighted su_ and modeled as samp efs 0 a_ aplacian r_an om variable an_ e

average of these copies. Since the wavelet thresholding technigue has beef0iS€ as samples of a Gaussian variable, we will show that the optimal
shown to effectively denoise a single noisy copy, we consider in this paperordering (in the mean squared error sense) depends on the number of
combining the two operations of averaging and thresholding. Because ayajlable copies and the proportion between the noise power and the
thresholding is a nonlinear technique, averaging then thresholding or - jona| hower. Moreover, we propose near-optimal subband adaptive
thresholding then averaging produce different estimators. By modeling . . .
the signal wavelet coefficients as Laplacian distributed and the noise thresholds for both orderings. Results show that with the optimal or the
as Gaussian, our investigation finds the optimal ordering to depend on proposed near-optimal thresholds, the two methods yield very similar

the number of available copies and on the signal-to-noise ratio. We then performance, and both outperforms weighted averaging substantially.
propose thresholds that are nearly optimal under the assumed model
for each ordering. With the optimal and near-optimal thresholds, the

two methods yield similar performance, and both show considerable 1. DENOISING ALGORITHM FOR MULTIPLE NoISY COPIES
improvement over merely averaging.

! o L . Let f = {f;,;} denote thell x M matrix of the original image to
Index Terms—F-ilter noise, image denoising, image restoration, wavelet .
thresholding. be recovered. (Note that we use the boldfaced letters famtteix of
coefficients, and regular letteys; for individual pixels.) The signaf
has been transmitted over a Gaussian additive noise chahtigles,
I. INTRODUCTION and at the receiver we havé copies of noisy observationg!™ =
n =1, ..., N.For thenth copy,{gg;l)} areiid Gaussian

2

Denoising via wavelet thresholding proposed by Donoho and Johh=+ 5(7;)’ ] ) k ¢

stone [3] is a simple nonlinear yet effective technique which outpef (Vs o5), wherea;_ls the noise vanance of thth copy. The noise _
forms linear techniques in theory and practice (cf. [5, ch. 10]). Siné@MPples between different copies are assumed independent. The goalis
this seminal work, there have been many extensions. Most of thd8dnd an estimatof which minimizes the mean squared error (MSE),
works are for situations where there is only one set of observatioSE = (1/M7) 35, (fij = fij)™.

(e.g., one time series sequence or one still image). However, in manJhe recovery of the image is done in the orthogonal wavelet trans-

applications there are multiple copies of the same or similar imagégl:m domain (the readers are referred to standard wavelet literature

thus it is necessary to investigate denoising techniques which remd&W#&h as [4], [7] for details of the two-dimensional (2-D) dyadic wavelet
noise from multiple corrupted copies of the same signal. For a cdfansform). Let the wavelet transform of the noisy observagfc_iﬁ =
rupted video sequence, suppose we choose a few consecutive frafngss"" be denoted by = X + V(. The wavelet coefficients

in which the motion is not significant and that we have already také€ often grouped intsubbandsf different scale and orientation, with
care of the registration problem, one can view the frames as multilg€ lowest frequency subband, and the rest calleil subbands.
noisy copies of the same image. Another example is when one scafisi§S been found that for a large class of images, the coefficients in
picture, but with unsatisfactory result, thus one does multiple scans, £ftf" detail subband form a histogram well-described by a generalized
then combines these copies to obtain the most noise-free copy possfgissian distribution (cf. [4] and [8]), often simplified to Laplacian
Since wavelet thresholding has worked well for one copy of Cormptgést_nbutlon fo_r tractability. In this Wor_k, we use the_ Laplacian distri-
image (cf. [1], [3], [5], and [6]), we consider its extension to multiplémt'o”- Then it follows t_hat the MSE is well approximated by Ehe
copies in this paper. pectedsquared error, arisk under the squared loss. Thus, we wish to

The standard method for combining the multiple copies is to corfitd the estimatogfgg) of the coefficients which minimizes the risk,
pute their weighted average. One can only do better by incorporat'rﬁ@“”k = E[(f =]
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optimal soft-thresholding yields a lower risk than optimal hard-thresh-e risk of the estimatof(AT(A) is

olding, as was shown in [1]. Thus, soft-thresholding is the preferred

operation in this work. 1 X :
The next issue is the selection of the threshold value. TheRA7(A) =ExEyq) .. yv)x <T Z m(Y) —X> (4)

threshold selection is performed once for each subband. Thus, let i

us consider coefficients from one detail subband. As in [1], we 1 & (n)

model the wavelet coefficients in a detail subband of the original =ExEyw, . yonx N Z(”AO )—X)

image f as samples from a zero-mean Laplacian random variable n=t

n=1
2

Q)

with an unknown parameter. That is, each; is modeled as 1 - ,
X ~ p(z) = LAP(3) 2 (1/v23) exp {— (V2/3) |z|}. Since =ExEym .. ynx Nz Z(’IA(Y ") - X)
the noise is Gaussian and the wavelet transform is orthogonal, each n=1
wavelet coefficient,Y;;, of the corrupted image has distribution N
Y|X ~ plylr) = N(z, 0?) = 1/V2r0? exp{—(y — x)*/207}. 1 < () . () .
We use the soft-threshold estimaf§, = #,(Y), and the optimal TNz 2 Zl('“(} )= X)) - X)
threshold is defined to be " e
(6)
. . ot w2 1 s N-1
A" = arg S ExByix(X = X) =¥ ExEyix(m(Y) - X)* + N Ex
= arg mAin/ / (ma(y) = @) p(yle)p(e) dy de. (1) [Byjx (m(Y) = X)) )
A1) Ly iti
As far as we know)* does not have a closed form solution and is thuvsvh(i(re (7). f(()jllows JroT _trhhe chlt( g‘a{t} \)’ L Y} conditioned
found numerically (with minimization and numerical integration tech2"- @r€ independent. Thenis TA(A) 1S
niques). A good approximation of* was found in [1] to be\(3) = _ N 2
o?/3, whered is the standard deviation of . It results in less than Rra) =ExEyw), ”"Y(NNX(XI;TA(A) -
0.8% deviation from the minimum MSE (with the optimal threshold =ExEyx(m(Z2) - X), (8)
A*). The threshold\(3) is simple and effective and has an intuitive ex- )
planation. When the noise power is much smaller than the signal powghere Z = (1/N) SN, Y™ and Z|X ~ N(x, 0%/N).
a/8 < 1, the normalized thresholbl/s is small to preserve most of The optimal thresholds are’yr = arg miny Rar(A) and

the signal features; on the other hand, whets > 1, /o is chosen A7, = arg min, R7.4()). Note that\’, and A5 4 depend on

to be large to remove the noise which has overwhelmed the signal. Byand o. We do not have closed form solutions 8 and A 4,
allowing the unknown parametérto be estimated, this method alsothus we resort to numerical methods. Without loss of generality, we
allows adata-drivenselection of the threshold which adapts to eachan setr = 1 (alternatively, one can solve fovyr /o and A5 4 /o

subband. as a function of?/a). For a fixed valuedo, A7.4(30) andXa7(5o)
are found by locating the zero crossing of the derivatives of the risks,
B. Combining Thresholding and Averaging R’y 4(X\) and R4 ()), respectively. Standard numerical integration

When there are multiple copies available, the standard methrg0 tl?::d(ts(;j(c::glizltazg ﬁ;ﬂiﬁggﬁ?gg;ﬂon found in numerical recipes)
is to use the (pixel-wise) weighted average as the estimate. Le 0 compare the risks of these two methods, we look at the scaled
Vi~ N(0,02),n = 1,---, N, be the noise variable for the ._, . . p 2 - N

’ ) _ v ) risk difference(Ra7(N47) — RTA(A74))/0”, as a function ofV

%th CO%Y’ and?(lg? theywelgtlged avsrg?e G’L = X+ 1‘ | .’ and of the ratio? /o, illustrated in Fig. 1. For eacly < 5, there is a
Weﬂ_%&/:v; ?ht':lt the or ;m;Zgr:én(:"_ (1/;\9’)/6;; (}("i/;z)' ;r'% cutoff pointC'% below whichR 47 (A7) > Rr.a()\y4), and above

_ _ 2p n AEE, = nE which Rar (My7) < Rra(A54). ForN > 5, however, the (A(+))
the resulting MSE ig ., = Var(Z—X) = Var (Zn:1 a, V" ) = method is better for any value 8 . The cutoff point<’’%; for eachV
are listed in Table I. This indicates thhe best method depends on the
relative power between the noise and signal, and also on the value of
N. With the optimal thresholds, the improvement of one method over
the other is small, however, on the orderl6f *o2. T (A(-)) requires

. —1
23:1 (1/02)) ,where Va(-) denotes the variance.

Now let us Incorporate thresholding into averagidfy.is a new
random variable withZ|X ~ N(z, ¢2,.,). Since this is exactly the
setting for one copy thresholding, we can simply usg..//J as th.e fnuch less computation tha#(7 (-)) (since the former can be imple-
threshold. However, can we do better than that? More specifical v, .

. . . . nted by computing the wavelet transform once, whereas the latter
since we have two operations here, averaging and thresholding, 0 L . L . , .

. o . computes itV times). Thus if computation is an iSSUE(.A(-)) is pre-

which one is linear and the other not, the ordering could make_ a . . .

. . . . o . ferred. However, thresholding each individual copy of the image may

difference. Thus we investigate which ordering is best in the mean - . . ; :
squared sense e advantageous. It is possible that a different noisy copy is collected

. ’ . / and processed at each receiving station, and only this processed copy is
Consider the special case when= o3 = --- = on 2. Thus, P 9 Y P by

kept. At a later time, these separately processed copies can be collected
a1 = --- = ay = 1/N. To make references more convenient, | P P yp P

eh tral receiver to yield one bett :
A(-) denote the weighted average operation @nig the thresholding y 8 CenTal FECeIver to yiel one Hetier copy.

. X ) ) .2 By plotting the numerically found’ 4 /o and\’yr /o against3/«
operation, and we give the following notation to the two orderings: and N, we discover that there is a simple analytical expression which

N well approximates\7 4 and A% 7. For the T (A(-)) estimator, the
.A(T(Y(l), Y(N))): XAT(A) _ i Z ,M(Y(n)) @) threshold is simply a modification of for one copy denoising, but
' N with a change in the noise variance

n=1

N
AN o 1 ~(n - 2 /AT
T(A(Y“)~ LY (N))): Xza(\) = <_/\_f' E :5 ( )) . (3) Npa = o él\ _ ©)

n=1
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Fig.1. Scaled MSE differen¢R a7 (A% )—Rza(X54))/0o? asafunction X ar (——). wheno — 1 andg = 1.

of N and3/o.

TABLE |
CUTOFF VALUES (IN UNIT 0, /0) FOR 5
EACH N, WHERE C'}, IS THE CUTOFF VALUE FOR WHEN USING THE OPTIMAL
THRESHOLDS AND C'y (LISTED ONLY FOR IV < 5) IS THE CUTOFF VALUE
WHEN USING THE PROPOSEDTHRESHOLDS 1 47 AND 17 4
Cy Cn |
N=2| .6367 | .1379 )
o
N =31 .7154 | .7654 2
[
N=4| 9601 | .9466 2
'_
N =5 | 1.9768 | 1.0884 05l
N>5 0 > 1.23
For the A(7 (-)) method, we found the approximation
2 /Ar(3/4)
v o /N
AT = /— (20) o . . ; . . . ,
I} 0 05 1 15 2 25 3 35 4
. . . /
Fig. 2 compares the optimal and approximate thresholds for bo... plo
methods as a function a¥, for¢ = 1 and3 = 1. The thresholds _ o . N
A7 andAar result in less than 0.2% deviation from the minimunfi9: 3 Comparing\’,, () andAaz (--)foroy =ox =--- =on =0
o . . . . s a function of3/s andN = 2, ---, 6.
MSE (with A7 4 andA% 7, respectively). Fig. 3 compares the optlmafi

threshold\’7 and the approximation\47 (scaled byl/s) as a

function ofﬁ/a for N = 2,-.-, 6. The MSE due to\ 47 deviates - E{y(n)}‘x[—XAT()\) — E{y(n)HXX.AT()\)
from the optimal MSE by less than 3.5% f6yfo < 1 and less than E %o (X) — XT2 12
0.1% for3/c > 1. Since typically the signal power is much larger + Ey oy x Xar(A) = X] (12)
than the noise power (otherwise the image features has been greatly = Eyooyx[Xar(h) - E{y(n)}|xXAT(>\)]2
corrupted), inaccurate approximations for smalb- are acceptable. E (N — XV 4 2F, )

The thresholds..4 and) 47 also yield a different set of cutoff values + (Epyeoyx Xat(d) = X7 4 2B 0y x

C'y (tabulated in Table | forV < 5). Notably for N' > 5, there are [(XarN) = By ooy Xar (V)
someC'y less tharo, but even above thesgy, the MSE of the two . (E{V(n)}\xXAT()‘) - X)] (13)
methods are so close that either one can be chosen. The scaled MSE . N 9
difference(Rar(Aa7) — Bra(A7.4))/c” is similar to the curves = By oy x[Xar(A) = By ooy x Xar (V)]
shown in Fig. 2 for optimal thresholds and is of the same order of + (E{YW}‘XX’AT(/\) -X)? (14)
magnitude. Thus, the use d 4 and\ 47 do not change the previous ) 2
conclusions. - E il ny (VWY — (Y
! . =FE oy | = (YY) — By xma (Y

Notice that the threshold fot (7 (-)) decreases &¥ increases, even NN N ; * rixmit)
though at the thresho_ldnng stage,_eac_h copy is thre;holded |_ndepen- + (Byxm (V) — X)? (15)
dently of the other copies. To explain this dependenciVomwe rewrite 1
the inner expectation aR 47 () = 5 Evix(m(Y) = Evix m(Y))?

Eyy, . yoox(Xar(A) — X)? (11) + (Eyxm(Y) = X)? (16)
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where{Y (")} hasbeenusedasashorthandfy, - - -, Y ™) Thefirst s
termisthevariance fromthresholding, whilethe secondtermisthe squi
of the bias. The optimal threshold is obtained from the tradeoff betwet _
the variance term (which decreases with increasirand the bias term 4ar
(which increases with increasing. As N becomes large, the variance
term decreases due to thé&V factor while the bias term stays the same. ,
Thus,\ needs to be decreased as well to obtain the minimum total. %
Up to now we have assumed the knowledge of the noise varian i
o® and the standard deviatiod, of X . In practice, these two values 22°"
(72}
g

3.5

may not be known and need to be estimated from the noisy obsen
tions. For both methods, these two parameters are estimated the s:
way for a fair comparison. First the noise variance is estimated 150
by the robust median estimator in the highest subband (also used
[3]), & = Median(]Y;"[)/0.6745, with all ;" in the HH, sub-
band of thenth copy, thens? is taken to be the average of the¥e 05
estimates. Since the noise is independent from the signalZVas
Var(X) + ¢*/N = 3> + ¢”/N. Thus, for each subband & = %
(1/N) S, Y the sample variance estimate of V&), 6% =
Averagé Z;;—Mean Z;;))?, is calculated, and the estimate of the stan-
dard deviation of the Laplacian distribution is Fig. 4. ForN = 3 and different noise,, ([1], [3], [5]), compare the optimal

threshold forA(7(-)) (—) andA) (- ).
8= \/ma‘X(O, G% — 62/N). a7
10 T

Heterogeneous Noise Variancedlow consider the case when the \
noise variances? are different. This extension is straightforward in \
the 7 (A(-)) case. The multiple copies are averaged with coefficient X
o2, and the threshold 57 4 in (9) but witha? /N replaced by2. ...

For the A(7(-)) method, one needs to find the optimal thresholc

M, for each copy and the optimal weights,. By minimizing g
the  risk  ExEyq) .. yovx (Zfﬂ anm, (Y) = X @
with respect toay, ---, any subject 03 a, = 1, and also 8T
with respect toA, ---, Ay, one can find the optimal values. u
The optimal «,, are found numerically to be almost identical =

to the values ina),. We do not have the closed form solu-
tion of the optimal thresholds. Thus, we approximate them b

A= %3 (1/ (Z;ll (1/a$)))3/4, n = 1,---, N, which
yields A47 in (10) whens; = o2 = --- = on. Fig. 4 compares
the optimal thresholds (—) and the threshoj@%} (--)forN =3 10 L - = = .
and{s,} = {1, 3, 5}, againstg on the horizontal axis. The plot N (Number of Copies)

shows the best fit for the threshold correspondingui@a{s,, }, and

the approximation worsens for thresholds whose correspordirig ~ Fig- 5. For the imagdarbara, comparing as a function o the MSE of
further frommin{c, }, especially in the region of small (relative to aéer?gmgf),?’g\(a(-)) E}x), 7h'(“4(')) g")' switching 6), ar}d Wiener filtering
min{a, }). This inaccuracy is mitigated by the fact that #g’s for (O). for o = 30. Note that the-£) and @) curves are overlapping.
larges,,’s are small, thus the overall MSE is still close to the optimal
MSE (less than 0.3% fo# > 1 for the graph shown).

4) switching between the two thresholding methods (only¥oK
5) with cutoff valuesC'x (thus the switching method becomes
T(A()) for N > 5);

5) Wiener filtering of the averaged copy [from (a)].

To validate our proposed methods, we take as the test imageqi Wiener filter is the “wiener2” routine from the MATLAB image
256 x 256 block from the greyscale imagé&arbara and Lena, processing toolkit, with the input noise power unknown and the adap-
with o1 = 02 = -+ = on = ¢ = 30, using Daubechies’ least tation window size set to the default (33). The resulting MSE's are
unsymmetric wavelet with eight vanishing moments (i.e., Symmlet8hown in Fig. 5 foBarbaraand Fig. 6 foil_ena.The three thresholding
and four scales of wavelet transform. The algorithm is not too SenSitiH%thodS show signiﬂcant improvement over mere|y averaging, ranging
to the choices of wavelet and number of levels, as long as the wavetgin 70% to 30% reduction in MSE fo¥ varying from 2 to 25, and are
is smooth enough (has several vanishing moments) and at least thfigger comparable or up to 5%—15% improvement over Wiener filtering
or four levels are used for this magnitude cof(for example, using (depending onV). The removal of noise due to thresholding is also
Symmlet4 increases the MSE by 1%-2% and using two levels fnificant visually (see Fig. 7 fdvarbaraat N = 4), especially for
decomposition increases the MSE by 2%—-4%). The parametensl small V. ForV = 1 ands = 30, Wiener filtering does poorly because
o are estimated as discussed previously. We compare the MSE'sspfhe large noise power. For largaft, the averaging reduces the noise
five methods forV ranging from 1 to 25: power substantially, and thus Wiener filtering yields images comparable

I1l. EXPERIMENTAL RESULTS

1) averaging;
2) A(T();
3) T(A());

with those from thresholding, though slightly more blurry. Among the
thresholding methods, t%(.A(-)) method is the best in terms of MSE,
even better than switching, suggesting that perhap4 i€ - ) ) method
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MSE (Log Scale)

10 15, 20 25
N (Number of Copies)

Fig. 6. For the imagd.ena, comparing as a function oV the MSE of
averaging €), A(7(+)) (x), T (A(+)) (+), switching 6), and Wiener filtering
(O), for o = 30. Note that the+{) and @) curves are overlapping.

©

is more sensitive to model errors and threshold estimation errors. |
large values ot (e.g., 30),A(7 (-)) produces noticeably more noisy
images thari7 (.A(-)), though for smaller values, it yields images ol
comparable quality as those from(\A(-)). Forl < N < 5, the
switching method yields MSE'’s that are between thosé(@f (-)) and
T(A(-)). TheT (A(-)) method requires the least amount of compute
tion since it can be implemented with only one wavelet transform ai
seems to work well for large values @fas well. Thus, in practice, the
7 (A(-)) method suffices to combine multiple noisy copies.

It is curious to investigate if an additional stage of thresholdin
(i.e., performingZ (A(7(-)))) can have a significant improvement.
It cannot do worse, since we can always choose the latter ste
threshold to be zero. To test this idea, we take the output(af(-))
and optimally threshold it assuming that we have the original. Tt
resulting MSE is only slightly better than tHg.A(-)), suggesting that
thresholding of the weighted average yields a sufficiently denois:
image already. Furthermore, finding the optimal thresholds of
two-stage thresholding operation is difficult.

IV. CONCLUSION

In this paper, we addressed the issue of image recovery from
multiple noisy copies. We explored the idea of combining the wavelet

1635

thresholding technique with the more traditional averaging operatidfig. 7. Comparison of denoised images, f5t = 4: (a) original, (b)

Our investigation showed that the optimal ordering of these two opef&”
tions is not so straightforward and is in fact a function of the numbergﬁJ
available copies and of the relative energy between noise and signal.
proposed a near-optimal threshold for each ordering. With these thresh-
olds, the performances are similar, and for computational reasons, av3]
eraging followed by thresholding is recommended. Furthermore, all of 4]
these thresholding methods show substantial improvement over mer[a
averaging and moderate improvement over Wiener filtering, both visu-

ally and in the MSE sense. [6]
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