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Abstract— We present the analyis of a single-wavelength
Fiber-Delay-Line buffer fed by a batch arrival process,
and apply the results to study the influence of (internal)
synchronization on performance. We rely on generating
functions to develop a discrete-time queueing model that,
unlike previously obtained results, is able to cope with
concurrent arrivals. Without making any special assump-
tions on the burst or batch size distribution, we derive an
expression for the scheduling horizon as seen by arriving
batches in a system of infinite size. From that, we are able
to derive e.g. a maximum tolerable arrival intensity. For
finite systems, we use a heuristic to calculate the burst
loss probability which is validated against simulations.
Consequently, we employ the model assuming a Poisson
batch size distribution, and investigate the influence of
synchronization. Wether or not this turns out beneficial
is shown to relate strongly to the burst size distribution.

Index Terms— fiber delay lines, loss probability, optical
buffers, batch arrivals, synchronization

I. INTRODUCTION

Optical fibers have become the standard carrier for
data transport over long distances. Nowadays, major
cities are connected by dense wavelength division multi-
plexing (DWDM) links, enabling transmission capacities
well beyond the Tbit/s. Packet switching over these
optical links, however, requires that the transmission
speeds over the links are matched by equivalent switch-
ing capacities in the nodes. As current packet switches
perform data processing in the electronic domain, there
is a growing discrepancy between channel capacity and
switching capacity. Due to increased port count figures,
required switching speeds and the associated power con-
sumption, electronical switching might become unfeas-
ible. Solutions like Optical Packet Switching (OPS) and
Optical Burst Switching (OBS) aim to process data in the
optical domain [1], [2], [3]. Both suffer from output port
contention in the switches and therefore equally require
contention resolution. One of several possible solutions
[4], [5] is optical buffering, which uses pieces of Fiber
Delay Lines (FDLs) to delay the light.

Over the last years, several authors have developed
analytic models for optical buffers. One of the first was
Callegati [6], [7], who studied an equidistant single-
wavelength FDL buffer in a continuous-time setting
assuming memoryless burst sizes and inter-arrival times.
His results were later extended to the multi-wavelength
case in [8]. In [9], [10], the loss probability is determined
for an M/D/1/1 system with feedback. In [11], [12], [13],
Almeida et al. consider more general inter-arrival times
and burst sizes. Also, they take a look at more arbitrary
sets of FDL lengths (see below). Such is also done in
[14]. There, it is shown that the equidistant structure
is optimal for lower loads, while the optimum for high
loads depends on the specifics of the traffic.

In this paper, we present an analytic model for an
optical buffer in a discrete-time setting, allowing for mul-
tiple arrivals within the same slot. In this respect, it is an
extension of results in e.g. [15], or, more extensively, in
[5], where the model was restricted to Bernoulli arrivals
from slot to slot. This extension towards batch arrivals is
new, and allows for a study of internal synchronization,
a process at node level that can be implemented by
retiming incoming traffic at the input. In optical net-
work design, synchronization within the network nodes
offers several advantages. Although the retiming itself
is considered hard to implement (see, for example,
[4]), it can reduce the complexity of the node’s control
logic, and make technologically demanding tasks such as
header extraction more feasible. Further, a separate effect
occurs within the buffer, and is addressed in this paper.
The results presented below show that synchronization
can improve the loss performance of an optical buffer
spectacularly, especially in the case of fixed-sized bursts.
In [16], the influence of synchronization on losses was
first mentioned, as the comparison was made between
performance in the synchronous versus the asynchron-
ous time setting. However, there, accuracy dropped for
long synchronization periods, as the restriction to single
arrivals then becomes more and more unrealistic.

Our results now fully incorporate the effects of re-
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timing, and are based on the exact synchronization of a
Poisson arrival process. It is shown that, in the case of
fixed-sized bursts, synchronization can mitigate losses
drastically, while in other cases the loss might even
increase.

This paper is organized as follows. In Section II, we
present the modelling of the optical buffer structure,
and focus on an expression that captures the evolution
in time of the scheduling horizon. From there, our
approach will be to derive results for a system of infinite
size (M = ∞) in Section III, such as the probability
generating function (pgf) of the waiting time of batches,
and the maximum tolerable arrival intensity. We then
generalize and apply these results in Section IV to finite
systems, through the use of heuristics. A seperate section
then investigates the influence of synchronization on
performance. Conclusions are drawn in the last section.

II. MODEL

A. The FDL Buffer

Different types of optical buffers are presented in
literature. The model we use here was first presented in
[6], and consists of a feed-forward buffer, that has FDLs
of equidistant lengths: corresponding with its index i,
fiber i has a delay time of size i×D. Here, D denotes
the granularity. As our results will show, this is one of the
critical design parameters of an FDL buffer. We further
define the size M of the buffer as the index of the largest
delay line, and assume that also a delayless connection
is present in the buffer; this brings the total number of
connections in a buffer of size M to M + 1. As is done
in [14], we call a buffer of this type an equidistant FDL
buffer.

This buffer is now considered as part of a network
node, located at an output port. This output port is
associated with a single outgoing channel. Whenever
two or more bursts are switched to this channel, and
contend for it at the same time, all but one have to be
buffered. The FDL buffer cannot delay incoming bursts
for an arbitrary period of time, but only for multiples
of the granularity D. Each incoming burst is routed to
the shortest of these FDLs such that the burst will not
overlap on departure with bursts from the other FDLs.
If such an FDL cannot be found, the burst is dropped.
Each burst travels through its assigned FDL only once,
and several bursts might be travelling through a single
FDL at the same time (without overlapping, however).
Typically, bursts are delayed for more time than strictly
needed. This extra delay results in so-called voids, i.e.,
periods during which the output channel remains unused,
despite the fact that the system is not empty. This leads

to an under-utilization of the outgoing channel, leading
e.g. to increased loss.

B. Scheduling Horizon
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Fig. 1. Evolution of the scheduling horizon.

We start out with the system of infinite buffer size.
We consider arriving batches, which we number in the
order of their arrival. We define the scheduling horizon
as the time at which all bursts will have left the buffer,
and the system will become empty again. Note that,
due to the occurence of voids, the scheduling horizon
is in general larger than the unfinished work, and thus
incorporates the effects of granularity. The variable Hk

is derived thereof, and is defined as the scheduling
horizon as seen by the kth arriving batch, just before its
arrival. The arriving batch contains a number of bursts
Nk (Nk ≥ 1), each of which has an associated burst
length Bk,i, i = 1 . . . Nk, which equals the time needed
for its transmission. The time between the kth batch
arrival and the next is captured by the batch inter-arrival
time, denoted by Tk. The evolution of these variables is
described by

Hk+1 =

[
D

⌈
Hk

D

⌉
+

Nk−1∑
i=1

D

⌈
Bk,i

D

⌉
+ Bk,N − Tk

]+

(1)
as illustrated in Figure 1. The expression �x� is equal
to the smallest integer greater than or equal to x. The
notation [x]+ is shorthand for max(x, 0). When the
kth batch sees a non-zero scheduling horizon Hk upon
arrival, the first burst of the batch will have to be delayed
for at least that amount to avoid contention. As the
optical buffer can only realize delays that are a multiple
of D, we obtain that the first burst has to be delayed
for an amount D�Hk/D�. The second burst of the batch
(in case there is one, i.e., Nk > 1) has to be delayed
too, in order for it not to overlap with the first. Again,
only multiples of D are realizable, so that the second
burst needs an additional amount of delay D�Bk,1/D�.
Applying the same reasoning to possible other bursts
in the batch, we obtain that delaying and transmitting
batch k pushes the scheduling horizon (just after arrival)



to D �Hk/D� +
∑Nk−1

i=1 D �Bk,i/D� + Bk,N . Taking
into account the batch inter-arrival times Tk, and the
possibility that the system becomes empty in between
arrivals, one arrives at (1). This is illustrated in Figure 1,
where the kth batch carries two bursts. For the given
setting, with D = 2, Hk = 3, Bk,1 = 3, Bk,2 = 2 and
Tk = 3, one can verify that indeed Hk+1 = 7, namely
Hk+1 = [2�3/2�+2�3/2�+2−3]+ = [4+4+2−3]+ = 7.

C. Traffic Model

To analyze (1), we need to impose restrictions on the
involved variables Tk, Nk and Bk,i. We assume the Tk

to form a sequence of iid (independent and identically
distributed) random variables (rv’s), having a common
geometrical distribution. The batch sizes Nk and burst
sizes Bk,i also form a sequence of iid rv’s, and can
have a general distribution, thus being independent of
the index k and, in the case of the burst size, also i.
In our analysis, we will use the probability generating
function (pgf) of the probability mass function (pmf) of
the involved variables. The burst sizes Bk,i, e.g., have a
common distribution of general form with a pgf

B(z) = E[zBk,i ] =
∞∑

n=1

znPr[Bk,i = n]

The inter-arrival times were assumed to have a geometric
distribution, implying that the associated pmf is

Pr[Tk = n] = pp̄n−1 n ≥ 1

and its resulting pgf

T (z) =
pz

1− p̄z

where we adopted the standard notation p̄ = 1− p. The
mean inter-arrival time is 1/p. For the expectation of
Tk, Nk and Bk,i, we make the usual assumption that
E[Tk], E[Nk], E[Bk,i] <∞.

III. ANALYSIS

A. Main Result

We begin by analyzing the infinite system. All deriva-
tions assume the system is stable. On this condition, to be
discussed later on, the distributions of Hk converge, for
k →∞, to a unique stochastic equilibrium distribution,
independent of the initial system conditions. By H ,
we will denote a generic random variable following
this equilibrium distribution. Likewise, we will drop the
index k for other variables involved. This enables us to
write (1) as

H ←
[
D

⌈
H

D

⌉
+

N−1∑
i=1

D

⌈
Bi

D

⌉
+ BN − T

]+

(2)

where the arrow denotes convergence in distribution for
k →∞. Furthermore, we will denote

H∗ = D �H/D�
B∗

i = D �Bi/D� (3)

To solve (2), we will follow the same approach as in
[15]. In the expression, we discern two types of non-
linear effects. The first type we call the queueing effect,
since it is related to the non-negativeness of the buffer
content. The second type of non-linearity is called the
FDL effect, since it is related to the finite granularity of
the FDLs. It requires the analysis of the expressions in
(3). Both effects will first be analyzed separately, their
combination will then lead to the overall solution.

The queueing effect can be formulated as

H = [G− T ]+

where

G = H∗ +
N−1∑
i=1

B∗
i + BN (4)

The variable T is the inter-arrival time of batches (and
not of distinct bursts, as was the case in previous work).
As T is geometrically distributed, and independent of G,
the solution in terms of pgf’s is a well known result in
queueing theory (see, for example, [17]):

H(z) =
p

z − p̄
G(z) +

z − 1
z − p̄

K (5)

with

G(z) = H∗(z)
N(B∗(z))

B∗(z)
B(z) (6)

and K a constant that will be determined later on. Note
that (6) follows directly from (4), because the random
variables involved are independent.

For the FDL effect we find from previous work (see
[5] for full detail) that

H∗(z) =
D−1∑
k=0

1
D

zD − 1
zεk − 1

H(zεk)

B∗(z) =
D−1∑
k=0

1
D

zD − 1
zεk − 1

B(zεk) (7)

where εk = exp(j2πk/D), for k = 0 . . . D − 1 (the D
different complex Dth roots of unity).

Combining the solutions of the queueing effect (5) and
FDL effect (7), we find (after some simplification in the
numerator)

H∗(z) =
K ·

[
p̄D−1(zD − 1)

zD − p̄D

]

1−
[

D−1∑
k=0

1
D

zD − 1
zεk − 1

pB(zεk)
zεk − p̄

]
· N(B∗(z))

B∗(z)



This expression is the generating function of H∗, which
is the waiting time of the first burst of an arriving batch.
We further remark that this expression is similar to the
formula in [15]. The difference is captured within the
factor N(B∗(z))/B∗(z) , which is the pgf of

∑N−1
i=1 B∗.

This sum is associated with the total amount of work
brought about by all bursts that do not arrive last. In the
case of single burst arrivals, N(z) = z, and this factor
simplifies to 1, and we obtain again the expression in
[15].

Next task is to determine the constant K occurring in
the formula for H∗(z). This can be done by demanding
that H∗(1) be one, as prescribed by the normalization
condition. By applying the rules of de l’Hôpital, we find

K =
1− p̄D

Dp̄D−1
·
(

1
p

+
D−1∑
k=1

B(εk)
εk − p̄

(8)

−N ′(1) ·
[
B′(1) +

D − 1
2

+
D−1∑
k=1

B(εk)
εk − 1

])

Now, the expressions for H(z) and H∗(z) can be
obtained as a combination of the expressions above.

B. Further Derivations

The probability of finding the system empty upon
arrival, relates to the constant K, as

H(0) = lim
k→∞

Pr[Hk = 0] =
K

p̄

Demanding the infinite system to be stable, is equivalent
to demanding this probability not to be zero. The con-
dition H(0) > 0 defines a maximum tolerable arrival
intensity pmax, which is the solution of

1
pmax

= N ′(1) ·
[
B′(1) +

D − 1
2

+
D−1∑
k=1

B(εk)
εk − 1

]

−
D−1∑
k=1

B(εk)
εk − p̄max

(9)

We note that this only involves the mean of the batch
size distribution E[N ] = N ′(1), and any type of batch
size distribution with the same mean thus produces the
same pmax.

Presently we can also define an equivalent load,

ρeq = p ·
{

N ′(1) ·
[
B′(1) +

D − 1
2

+
D−1∑
k=1

B(εk)
εk − 1

]

−
D−1∑
k=1

B(εk)
εk − p̄

}

that incorporates the effects of voids, and is 100% when
p = pmax.

IV. HEURISTICS FOR THE BLP IN FINITE SYSTEMS

In this section, heuristics are derived for the finite
system. They involve the tail probabilities of H in the
infinite system, for which a dominant pole approximation
is developed first.

A. Dominant Pole Approximation

For the dominant pole approximation, we start from
the relation

Pr[H > n] = Res

[
1

zn+1
· H(z)− 1

z − 1

]
z=0

(10)

This relation implies the calculation of the residu at z =
0. At this point, we need further assumptions on H(z)
to proceed. If we assume that H(z) has no singularities
other than isolated poles, we are able to move from (10)
to

Pr[H > n] = −
∑

l

Res

[
1

zn+1
· H(z)− 1

z − 1

]
z=zl

where the summation index l runs over all poles zl of
H(z). This relation can now be approximated as

Pr[H > n] ≈ −
∑

k

Res

[
1

zn+1
· H(z)− 1

z − 1

]
z=zk

(11)

where the summation index k only runs over the poles
zk of H(z) with smallest modulus.

Clearly, given (5), these so-called dominant poles are
also the dominant poles of G(z), and, given (6), the
dominant poles of the product of H∗(z), B(z) and
N(B∗(z))/B∗(z). Therefore, the assumption made on
H(z) has implications for B(z) and N(z). A sufficient
condition is to assume that B(z) and N(z) have no
singularities (if any) other than dominant poles. This as-
sumption includes the broad class of rational generating
functions, and also frequently used others, such as the
pgf of the Poisson distribution. Excluded is the class of
heavy-tailed distributions. We note that the assumption
allows us to apply the dominant pole approximation but
that, even for heavy-tailed distributions, all additional
derivations from the previous sections remain valid.

With these additional assumptions, we are in the
position to use (11), retaining the dominant poles of
H∗(z). Their number is D, each has multiplicity one,
and is of the form zk = z0εk (k = 0 . . . D − 1), with z0

the positive real one. Applying this allows to write the



approximate relation as

Pr[H > n] ≈ − limz→z0 [H∗(z)(z − z0)]
zn+1
0

·
D−1∑
k=0

1
εn
k

B(z0εk)
z0εk − 1

p

z0εk − p̄

N(B∗(z0))
B∗(z0)

=
C∗(n)

zn
0

(12)

where we introduced the notation C∗(n) to lay emphasis
on the quasi-geometrical tail decay, with decay rate z0.
The function C∗(n) is periodical, i.e. C∗(n + m ·D) =
C∗(n) (m = 0, 1, 2 . . .). The values that will be of
interest here are

C∗(M ·D) = − 1
z0

lim
z→z0

[H∗(z)(z − z0)]
D

zD
0 − 1

which can be found from (12), using the fact that z0 is
a pole of H∗, i.e.,

1−
[

D−1∑
k=0

1
D

zD
0 − 1

z0εk − 1
pB(z0εk)
z0εk − p̄

]
· N(B∗(z0))

B∗(z0)
= 0

Determining the limits involved, provides us with an
approximative expression for Pr[H > n]. This result we
then use to estimate the BLP (burst loss probability),
through

BLP ≈ 1− ρeq

ρeq
· Pr[H∞ > M ·D]
1− Pr[H∞ > M ·D]

which was also applied in [15]. This heuristic, denoted
heuristic A, performs well for high losses, while a related
one,

BLP ≈ (1− ρeq) · Pr[H∞ > M ·D]
1− Pr[H∞ > M ·D]

denoted heuristic B, performs better in case of low BLP.

B. Numerical Examples

For ease of notation, we introduce an additional ran-
dom variable A, defined as the number of arrivals in
a random slot, which is perhaps a more natural way
of describing the arrival process in discrete-time. Of
course, A, T and N are related. One can easily show that
Pr[A = 0] = p̄, and Pr[A = n |A > 0] = Pr[N = n],
n ≥ 1, and A(z) = p̄+p ·N(z), so that A(z) determines
T (z) and N(z).

We now apply the obtained results to special cases
of the burst and batch size distribution. In Figure 2, the
BLP as a function of granularity is considered, for a
deterministic burst size distribution, with value E[B] =

1E-3
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1E+0
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simulation
heuristic A
heuristic B

D

BLP
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M=20

Fig. 2. Burst loss probability for Poisson batch size distribution.

B = 50. The batch size distribution is chosen Poisson.
In that case, A is distributed as

Pr[A = k] = e−λ λk

k!
, k = 0, 1, 2 . . . (13)

where the parameter λ denotes the average number of
arrivals per slot. Further, the load was fixed to ρ = 60%.
For buffer sizes M = 5 and M = 20, results from
simulation, heuristic A and heuristic B are compared.
As was remarked before in [15], heuristic B performs
better than A around the optima, and attains a very high
accuracy for large buffer sizes. Heuristic A performs
better than B only for high values of the granularity.
The curves differ only little from the case of Bernoulli
arrivals, as the probability of observing more than a
single arrival, Pr[A > 1], is rather small. Results for other
values of the load, not included here, reveal similar plots.
The accuracy of heuristic B remains high, especially
when the BLP drops below 10−2.

To further assess the accuracy of our heuristics, we
also take a look at a more exotic case of a deterministic
batch size distribution, with E[N ] = N = 2. Figure 3
shows curves of the BLP as a function of granularity,
again for a fixed load of ρ = 60%, with buffer sizes
M = 5 and M = 20. The match between heuristic B
and simulations is again very good. As in the case of the
single arrivals, local optima occur, but, here, performance
is even more sensitive to the value of D.

Having sufficient confidence in the accuracy of the
heuristics, we now move on to the study of synchroniz-
ation.
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Fig. 3. Burst loss probability for deterministic batch size distribution
(N = 2).

V. SYNCHRONIZATION

A. Imposing a Slotted Structure

time

padding

time

Fig. 4. Synchronization effects on traffic.

By synchronization we intend the transformation from
an asynchronous, i.e., unslotted setting, to a setting with
a slot length ∆, at node level. This means that, within
a network, this synchronization uses a local clock, and
only has impact on traffic within the node.

The process is illustrated in Figure 4. In the initial
setting, depicted on the upper time axis, arrivals can
occur at the input at any instant, and are assumed to
happen one at a time. In the synchronized environment,
depicted on the lower time axis, bursts are forced to
arrive at slot boundaries by imposing a small delay,
which is uniformly distributed between 0 and ∆. Due
to this retiming effect, several bursts can now arrive at
the same slot boundary, i.e., they can arrive in batches.

For the burst sizes, a different effect comes about.
Once synchronized, traffic patterns are captured using
discrete variables, that express an integer number of time
slots involved. Burst sizes are thus virtually increased to

an integer multiple of slots. This effect, that adds to the
burst size an amount ranging from 0 to ∆, is denoted
padding, as indicated in gray in Figure 4.

B. Poisson Batch Sizes and Padded Burst Sizes

With this definition of synchronization, we can now
look at the impact on the number of arrivals per slot
A, and the batch size B. The number of arrivals A
per slot in a synchronized setting is derived from the
number of arrivals A that can be expected to arrive in
the asynchronous setting, in a time period of length ∆. In
general, this derivation is a non-trivial one, and it is only
in some special cases, such as a Poisson arrival process,
that synchronization results in a number of arrivals that
is independent and identically distributed from slot to
slot. In that case, A has a Poisson distribution, with
parameter λ, and pmf as in (13). We find that A remains
Poisson distributed regardless of the slot length, with
parameter λ scaling linearly with this slot length. This
allows us to study the impact of synchronization within
the single framework of Poisson batch arrivals. We note
that this is not possible if A would have a Bernoulli
distribution, as a Bernoulli arrival process is not the
result of a synchronization process. For that reason, the
comparison made in [16] became less and less accurate
with increasing ∆.
As for the padding of burst sizes, we remark that no
padding takes place, whenever the burst size is an integer
multiple of the slot length. In other situations, padding
can account for serious loss, as it increases the mean
value of the burst size, and thus the load. Instances of
both situations will be given in the next paragraph.

C. Numerical Examples

In this section, we take a look at two synchroniza-
tion settings. Both assume a Poisson arrival process in
the asynchronous setting, that is then synchronized up
to a varying slot length ∆. As mentioned above, the
modelling thereof implies using Poisson batch sizes and
padded burst sizes. The load was fixed to ρ = 60%,
with a buffer size M = 20. Recall that this load
applies before any synchronization is done. Based on the
results in paragraph IV-B, we will only show heuristic B.
(Simulation results not included here, again showed that
this heuristic was accurate.)

In Figure 5, we present the BLP for the case of
geometric burst sizes, as a function of the granularity.
The mean burst size before synchronization is E[B] =
50µs, which corresponds to approximately 60 KiB. (A
rather high value like this one might occur in OBS, where
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Fig. 5. Influence of synchronization on burst loss probability, for
geometric burst size distribution.

bursts are typically large, as they consist of an aggreg-
ation of packets gathered at the edge nodes.) Different
slot lengths, ranging from 1µs to 50µs, are applied, and
the mean burst size increases due to padding. Clearly,
synchronization does not have a large impact on burst
losses, and the curves overlap almost completely. Only
for large slot lengths (∆ = 25µs and ∆ = 50µs), the
BLP alters a little bit. When considering the effects of
retiming and padding seperately, we found that, while re-
timing actually betters performance, padding annihilates
this benefit.

In Figure 6, a similar setting is assumed, now with a
deterministic burst size of B = E[B] = 50µs. Clearly,
synchronization now has a huge impact on performance,
especially for large slot lengths. If we consider the loss
for D = B = 50µs, we find that losses are reduced
more than 106 times. Looking for the cause of this
drastic reduction, we find that, due to the good choice
of slot lengths, burst sizes could always be expressed
as a multiple of slots. Therefore, no padding comes
about, and B is 50µs in both the asynchronous and
synchronized setting. On the other hand, the benefits of
retiming are bigger than in the case of a geometric burst
size distribution, and, for a slot length ∆ = D = B =
50µs, voids are even cancelled out completely. Then,
the optical buffer’s loss performance is equal to that of
a RAM (Random Access Memory) buffer of the same
size.

Taking into account both examples, we conclude that
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Fig. 6. Influence of synchronization on burst loss probability, for
deterministic burst size distribution.

synchronization can lower losses significantly if the burst
size is fixed. In that case, we consider retiming a viable
and effective way to mitigate losses drastically, and cost
and effectiveness should be weighed to decide wether
or not to implement this type of retiming. Further,
synchronization is found to be of little merit (with respect
to buffer performance) if burst sizes are distributed
exponentially. Although not investigated upon explicitly,
the intermediary case where only a limited number of
burst sizes plays a role is expected to also allow for a
bettering in loss performance. This benefit is expected
to be not as drastic as in the case of fixed-sized bursts,
yet still significant, if the synchronization slot length is
chosen well.

VI. CONCLUSIONS

Our analysis allowed to model an optical buffer fed by
batch arrivals. By constructing the pgf of the scheduling
horizon, we derived several measures of interest, such
as the maximum tolerable arrival intensity in an infinite
system, valid for general batch and burst sizes. Using
heuristics, we obtained an estimate of the burst loss
probability in a finite system. Its accuracy was illustrated
in two cases, where it showed to match simulation results
well.

Further, it was shown that synchronization benefits
loss performance drastically when burst sizes are fixed.
Together with other advantages (e.g., a simplification of
the control logic), this might justify the additional cost
of implementing retiming within an optical node.



In future work, we intend to study the impact of
correlation in the arrival process on system performance.
This research could then reveal the impact of synchron-
ization within this context. The case where multiple
channels serve a shared FDL buffer is also of great
practical interest. As the analysis will run into the same
mathematical difficulties as that of conventional multi-
server queues, this promises to be a very challenging
problem.
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