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ABSTRACT

Recently, there has been a huge interest in multiresolution
representations that also perform a multidirectional analy-
sis. The Shearlet transform provides both a multiresolu-
tion analysis (such as the wavelet transform), and at the
same time an optimally sparse image-independent repre-
sentation for images containing edges. Existing discrete
implementations of the Shearlet transform have mainly fo-
cused on specific applications, such as edge detection or
denoising, and were not designed with a low redundancy
in mind (the redundancy factor is typically larger than the
number of orientation subbands in the finest scale). In this
paper, we present a novel design of a Discrete Shearlet
Transform, that can have a redundancy factor of 2.6, inde-
pendent of the number of orientation subbands, and that
has many interesting properties, such as shift-invariance
and self-invertability. This transform can be used in a
wide range of applications. Experiments are provided to
show the improved characteristics of the transform.

1. INTRODUCTION

It is well known that while traditional separable multi-
dimensional wavelets are efficient for approximating im-
ages with point-wise singularities, they are not very ef-
fective for line singularities. For this reason, there has
recently been a lot of interest in multiresolution represen-
tations that have basis elements with a much better di-
rectional selectivity, i.e. that also perform a multidirec-
tional analysis. To name a few: steerable pyramids [1,
2], dual-tree complex wavelets [3–7], steerable complex
wavelets [8], Marr-like wavelet pyramids [9], 2-D (log)
Gabor transforms [10, 11], contourlets [12–14], ridgelets
[15,16], wedgelets [17,18], bandelets [19], brushlets [20],
curvelets [21, 22], phaselets [23], directionlets [24] and
surfacelets [25].

One of the most recent siblings in this family of repre-
sentations is the Shearlet transform [26–30], that provides
the mathematical rigidness of a traditional multiresolution
analysis (such as the wavelet transform), and that is at the
same time an optimally sparse, image-independent rep-
resentation for images containing edges. In this work,
we further investigate the implementation of the Discrete
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Shearlet Transform (DST), and we show that a design is
possible with a redundancy factor as low as 2.6, while the
number of orientation subbands can be arbitrarily high and
while offering highly desirable properties such as shift in-
variance and self-invertibility of the transform. This com-
bination of properties is very difficult to achieve with ex-
isting x-let transforms. Further, we put special attention
on design choices and we point out possibilities for fur-
ther improvement. Results are given to demonstrate the
improved characteristics of this transform.

The remainder of this paper is as follows: in Sec-
tion 2 we give an overview the Continuous Shearlet Trans-
form (CST) and its properties that are of importance to
our work. In Section 3 we explain a number of existing
DST implementations and their advantages or drawbacks.
The novel DST implementation is presented in Section 4.
Results and a discussion are given in Section 5. Finally,
Section 6 concludes this paper.

2. THE CONTINUOUS SHEARLET TRANSFORM

2.1. Shearlet basis functions

The CST is a multiresolution transform with basis func-
tions well localized in space, frequency and orientation.
Letψj,k,l(x) denote the shearlet basis functions (or in the
remainder simply called shearlets), then the CST of an im-
agef(x) ∈ L2(R

2) is defined by [29,30]:

[SHψf ] (j, k, l) =

ˆ

R2

f(x)ψj,k,l(l − x)dx (1)

wherej ∈ R, k ∈ R andl ∈ R
2 denote the scale, orien-

tation and the spatial location, respectively. The idea be-
hind the Continuous Shearlet Transform (CST) is to com-
bine geometry and multiscale analysis [27]. Shearlets are
formed by dilating, shearing and translating a mother shear-
let functionψ ∈ L2(R

2), as follows:

ψj,k,l(x) = |det A|
j/2

ψ
(

B
k
A
j
x − l

)

(2)

whereA andB are invertible2×2 matrices, withdet B =
1. The normalization factor|det A|

j/2 has been chosen
such that the norm‖ψ‖2 = ‖ψj,k,l‖2 for all j, k, l. The
basis functions are subject to a composite dilationA

j and
geometrical transformBk. For the shearlet analysis, we
will use the following transform matrices:

A =

(

4 0
0 2

)

and B =

(

1 1
0 1

)

. (3)
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Figure 1. Geometric transformations used by the Shearlet
transform (a) anisotropic dilation (matrixA). (b) shear
(matrixB).

Here,A is an anisotropic scaling matrix (in the x-direction,
the scaling is twice the scaling in the y-direction) andB is
a geometric shear matrix. These transforms are illustrated
in Figure 1.

The shearlet mother function is a composite wavelet
that satisfies appropriate admissibility conditions [29],and
that is defined in the Fourier transform domain as:

Ψ(ω) = Ψ1 (ωx)Ψ2

(

ωy
ωx

)

(4)

with ω = [ωx ωy], Ψ1(ωx) the Fourier transform of a
wavelet function andΨ2(ωy) a compactly supported bump
function:

Ψ2(ωy) = 0 ⇔ ωy /∈ [−1, 1]. (5)

Note that by this condition, the mother shearlet function is
bandlimited in a diagonal band of the 2-D frequency spec-
trum. Because the basis functions are obtained through
shears and dilations of the mother shearlet function, this
bandlimited property also directly controls the directional
sensitivity of the basis functions. To see this, let us inves-
tigate the effect of a shear operation on the mother shearlet
function. For the shear transform in (3), we have:1

Ψ
(

B
k
ω

)

= Ψ1 (ωx)Ψ2

(

k −
ωy
ωx

)

(6)

which means that a shear operation results in a shift in
the argument ofΨ2(ωy/ωx), hence the orientation of the
basis function is controlled by the parameterk (see Fig-
ure 3b). Similarly, the anisotropic scaling leads to:

Ψ
(

A
j
ω

)

= Ψ1

(

4−jωx
)

Ψ2

(

2−j
ωy
ωx

)

. (7)

Here we see that changing the scale parameterj results
in a scaling in the argument of the waveletΨ1, but it also
affects the support of the bump functionΨ2. More con-
cretely, when the scale parameter is increased by1, the
bandwidth of the shearlet is halved (hence the shearlet has
a finer directional selectivity).

2.2. Shearlets on the cone

So far, we considered shear operations in the vertical di-
rection and anisotropic dilation, with a larger scaling fac-
tor in the x-direction than in the y-direction. To obtain a

1Here, we rely on the fact that the Fourier transform
of a geometrically transformed functionf(Ax) is given by
|detA|−1 F {f}

�
A−T

ω

�
, with F {f} the Fourier transform of

f .

ωx

ωy

ωminC1C1

C2

C2

C3

Figure 2. Partitioning of the 2-D frequency plane into two
cones (C1 andC2) and a square (C3) at the origin.

more equal treatment of the horizontal and vertical direc-
tions, the frequency plane is split into two cones (for the
high frequency band) and a square at the origin (for the
low frequency band), as shown in Figure 2 [26]:

C1 =
{

(ωx, ωy) ∈ R
2| |ωx| ≥ ω0, |ωy| ≤ |ωx|

}

C2 =
{

(ωx, ωy) ∈ R
2| |ωy| ≥ ω0, |ωy| > |ωx|

}

C3 =
{

(ωx, ωy) ∈ R
2| |ωx| < ω0, |ωy| < ω0

}

with ω0 the maximal frequency of the the center square
C3. This square is added to be able to construct a shearlet
tight frame [26, 27]. To treat horizontal and vertical fre-
quencies equally, in coneC2, the x- and y-components for
x need to be switched before applying geometric trans-
forms. This comes down to using the following dilation
and shear matrices in both cones:

A1 =

(

4 0
0 2

)

, B1 =

(

1 1
0 1

)

A2 =

(

2 0
0 4

)

, B2 =

(

1 0
1 1

)

.

Consequently, the horizontal cone is dilated horizontally
by factor 4 per scale, while the vertical cone is dilated
vertically by factor 4. In the following, we make the dis-
tinction between both cones explicit by assigning different
shearlet basis functions to each coned = 1, 2:

ψ
(d)
j,k,l(x) = |det Ad|

j/2
ψ

(

B
k
dA

j
dx − l

)

(8)

Analogously to the wavelet transform [31], it is natural to
discretize the scale, orientation and position indices. In
the remainder, we will therefore restrictj, k, l to discrete
(integer) values. The resulting frequency tiling is illus-
trated in Figure 3a.

2.3. Tight frames of shearlets

Next, we want to represent an arbitrary functionf ∈
L2(R

2) by a set of projections of this function onto the

shearlet basis elements,
〈

f, ψ
(d)
j,k,l

〉

. The family of func-

tions
{

ψ
(1)
j,k,l(x), ψ

(2)
j,k,l(x)|j ∈ Z, k ∈ Z, l ∈ Z

2, j ≥ 0
}
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Figure 3. (a) Frequency tiling of the Shearlet transform in trapezoidal shaped tiles (wedges) [26]. (b) Individual compo-
nentsΨ1(ωx) andΨ2(ωy/ωx) of the Fourier transform of the shearlet mother function andthe selection of orientations
by the parameterk.

forms a tight frame (or Parseval frame) if there exist a pos-
itive constantA > 0 so that for allf ∈ L2(R

2) the Parse-
val relationship holds:

∑

j,k,l,d

∣

∣

∣

〈

f, ψ
(d)
j,k,l

〉
∣

∣

∣

2

= A ‖f‖
2
2 (9)

This relationship implies that any function inL2(R
2) can

be expanded into a set of functions [31]:

f = A−1
∑

j,k,l,d

〈

f, ψ
(d)
j,k,l

〉

ψ
(d)
j,k,l (10)

For the shearlet functions, equation (9) amounts to a sim-
ple design constraint for the functionsΨ1(ω) andΨ2(ω):

∑

j≥0

∣

∣Ψ1(4
−jω)

∣

∣

2
= 1 for |ω| ≥ ω0 (11)

2j−1
∑

k=−2j

∣

∣Ψ2(2
jω − k)

∣

∣

2
= 1 for |ω| ≤ π (12)

which practically means that the sum of the energies of
Ψ1(ω) andΨ2(ω) for respectively scaled frequencies and
shifted frequencies must be one. The Parseval relation-
ship holds for the part of the frequency plane that excludes
the center square (see Figure 2), although this can be triv-
ially extended to the complete frequency plane by adding
a bandlimited scaling function [27]:

Φ(ωx, ωy) =











Φ̃ (ωx) |ωy| ≤ |ωx| < ω0

Φ̃ (ωy) |ωx| ≤ |ωy| < ω0

0 else

(13)

with Φ̃(ω) a 1-D scaling function that satisfies:

∑

j≥0

∣

∣Ψ1(4
−jω)

∣

∣

2
+

∣

∣

∣
Φ̃ (ω)

∣

∣

∣

2

= 1 for |ω| < ω0 (14)

By comparing equation (2) to equation (13), it can be
noted that the scaling function is more or less isotropic.
This behavior resembles the isotropy of the scaling func-
tions in the 2-D discrete wavelet transform (DWT), with
the only difference that in the DWT, 2-D scaling functions
are formed by a tensor products of one-dimensional scal-
ing functions, instead of being defined per cone.

2.4. Shearlets or curvelets?

Shearlets are very similar to curvelets in the sense that
both perform a multiscale and multidirectional analysis.
Each basis element has a frequency support that is con-
tained in a rectangle of size proportional to2j × 4j (or
4j×2j) in both transforms, which means that the length of
the frequency support is approximately the squared width
of the frequency support. This property is calledpar-
abolic scaling, hence the frequency supports become in-
creasingly thin asj decreases [22, 27]. Both transforms
have very similar asymptotic approximation properties:
for imagesf(x) that areC2 everywhere except near edges,
wheref(x) is piecewiseC2, the approximation error of a
reconstruction with theN -largest coefficients (fN(x)) in
the shearlet/curvelet expansion is given by [22,26]:

‖f − fN‖
2
2 ≤ B ·N−2 (logN)

3
, N → ∞

with B a constant. Because this is the optimal approxi-
mation rate for this type of functions [26], this property is
often referred to asoptimal sparsity. Still, there are a num-
ber of differences between shearlets and curvelets [27]:

• Shearlets are generated by applying a family of op-
erators to a single function, while curvelet basis el-
ements are not in the form of equation (2).

• Shearlets are normally associated to a fixed transla-
tion lattice, while curvelets are not. This is of im-
portance for applications: when combining infor-
mation from multiple scales and orientations (e.g.



to model inter- or intrascale dependencies), curvelet
techniques need to take into account that the trans-
lation lattice is not fixed.

• In the construction of the shearlet tight frame above,
the number of orientations doubles at every scale,
while in the curvelet frame, this number doubles at
every other scale.

• Shearlets are associated to a multiresolution analy-
sis, while curvelets are not.

Perhaps the most primary advantage, that we want to point
out in this work, is that shearlets allow for a much less re-
dundant sparse tight frame representation, while offering
shift invariance.

3. EXISTING DISCRETE SHEARLET
TRANSFORMS

3.1. Direct discretization

The most straightforward way to design the DST is to ap-
ply a direct discretization to the shearlet filtersψ(d)

j,k,l(x).
This approach is applied for example in [28]. First, the
functionsΨ1(ω), Ψ2(ω) andΦ̃(ω) are designed according
to the constraints in equations (11)-(13) (see [27] for the
design details). Next, the shearlet filters can be expressed
in the discrete time Fourier transform domain as:

Ψ
(1)
j,k,0(ω) = 23j/2Ψ1(4

−jωx)Ψ2

(

2−j
(

ωy
ωx

− k

))

Ψ
(2)
j,k,0(ω) = 23j/2Ψ1(4

−jωy)Ψ2

(

2−j
(

ωx
ωy

− k

))

A frequency domain implementation for an image of size
N ×M follows by samplingΨ(1)

j,k,l(ω) andΨ
(2)
j,k,l(ω) in

the pointsω =
(

2πn
N

2πm
M

)T
, for m = 0, ...,M −

1 andn = 0, ..., N − 1. Let B(m,n) denote the Dis-
crete Fourier Transform (DFT) of the input image, then
the DFTs of the shearlet coefficient subbands can be com-
puted as:

W
(d)
j,k (m,n) = B(m,n)Ψ

(d)
j,k,0

(

2πn

N
,
2πm

M

)

,

with j = 1, ..., J, d = 1, 2 andk = −2j, ..., 2j − 1.

The DFT of the scaling coefficients is given by:

W s(m,n) = B(m,n)Φ

(

4−J
2πn

N
, 4−J

2πm

M

)

,

whereJ denotes the number of scales. The DFT of the
reconstructed imagẽB(m,n) is obtained by applying the
appropriate reconstruction filters to the shearlet subbands
and by summing the results:

B̃(m,n) = W s(m,n)Φ

(

4−J
2πn

N
, 4−J

2πm

M

)

+

∑

j,k,d

W
(d)
j,k (m,n)Ψ

(d)
j,k,0

(

2πn

N
,
2πm

M

)

wherex denotes the complex conjugate ofx.
Even though the scheme is computationally simple and

shift-invariant, the redundancy factor is high due to the
lack of downsampling operations in the decomposition.
More specifically, the redundancy factor is:

1 +

J
∑

j=1

2j+1 = 2J+2 − 3,

when choosing2J+1 orientations for the first scale. For
example, using3 scales gives redundancy factor29! In
analogy to the undecimated DWT, we will call this trans-
form theundecimated DSTbecause of the lack of decima-
tions.

3.2. Related existing implementations

Recently, a number of related DST implementations have
been proposed. Easley et al. [27] propose a discrete im-
plementation with one of the main applications in image
denoising. In their work, a Laplacian pyramid is followed
by windowing filters in the Pseudo-Polar DFT domain.
By including decimations in the Laplacian pyramid, the
redundancy of the transform is reduced. Because the re-
dundancy factor per scale of the transform increases lin-
early with the number of orientations for that scale, the
overall redundancy factor is still high. Finally, we remark
that the Laplacian pyramid representation of [32] that is
used in [27] is not a tight frame in its standard form, how-
ever a tight frame can be constructed by using orthogonal
pyramid filters [33].

Yi et al. [30] outline a different implementation for
edge detection and analysis. In their implementation, there
is an explicit distinction between horizontal and vertical
shearlets. However, the authors do not take further steps
to reduce the redundancy, as they choose to stay faithful
to the CST in terms of edge analysis. Further, it is not
clear which cascade algorithm would be the best to do the
inverse transform of this scheme, as no reconstruction al-
gorithm is proposed.

These implementations are designed for specific appli-
cations in mind and have a redundancy factor that is lower
(or equal) than the redundancy factor of the undecimated
DST. The following questions arise:

1. Can this DST be designed to use in a wide range of
applications?

2. Is it possible to devise a DST that is maximally dec-
imated, i.e. with redundancy factor as low as possi-
ble? And what can be said about the shift-variance
of such schemes?

In the next subsection, we will explain how do design such
a transform.

4. NEW DESIGN OF THE DISCRETE SHEARLET
TRANSFORM

As we explained in Section 2.2, for the CST there is an ex-
plicit separation of the horizontal coneC1 and the vertical



coneC2. An obvious discrete realization would be to use
hourglass-shaped filters. We prefer not to do this, as this
either increases the redundancy factor by2, or causes an-
gular aliasing when including decimations in the angular
filtering.2 The presence of angular aliasing is very cum-
bersome in practical applications as it severely degrades
the directional selectivity of the basis functions. Instead,
we apply only one angular filtering stage at each scale to
directly split up all orientation subbands, which also has
the advantage that the corresponding filterbank is concep-
tually more clean.

To proceed, we will define shearlet filters in pseudo-
polar frequency coordinates (FC). Every shearlet filter will
extract a wedge-shaped region of the 2-D frequency plane;
these wedge filters can be easily described in pseudo-polar
FC.

4.1. Pseudo-polar coordinate system

We use FC(ωr, ϑ) in a pseudo-polar grid [34], that is con-
sistent to a polar grid, in the sense that the pseudo-angle is
in the rangeϑ ∈ [−π, π]. The corresponding conversion
from Cartesian coordinates(ωx, ωy) to pseudo-polar FC
(ωr, ϑ) is given by:

ωr(ωx, ωy) =

√

√

√

√

1 + max
(

|ωx|
2
, |ωy|

2
)

1 + π−2
(15)

ϑ(ωx, ωy) =











































π
4

(

ωy

ωx

)

|ωx|> |ωy| andωx≥0

π
4

(

2-ωx

ωy

)

|ωx|< |ωy| andωy≥0

π
4

(

4 +
ωy

ωx

)

|ωx|>ωy≥0 andωx<0

π
4

(

-4 +
ωy

ωx

)

|ωx|> -ωy>0 andωx<0

π
4

(

-2-ωx

ωy

)

|ωx|< |ωy| andωy<0

(16)

where we replace the fractionsωx/ωy andωy/ωx by 0
whenever the denominator becomes0. The denomina-
tor in (15) has been chosen such thatωr(±π,±π) = π.
Important to note is that adding a constant to the pseudo-
angleϑ corresponds to a vertical shear transform if both
(ωx, ωy) ∈ C1 and the transformed point also belong to
C1. Equivalently, if(ωx, ωy) ∈ C2, adding a constant to
ϑ corresponds to a horizontal shear transform if the trans-
formed point also belongs toC2. Transiting fromC1 to
C2 (or vice versa) can be done using a cascade of a hori-
zontal and vertical shear transform. The pseudopolar grid
defined above is illustrated in Figure 4. It can be noted
that contours of equal pseudo-radial frequenciesωr define
concentric squares around the origin, instead of circles as
is the case with a polar grid.

4.2. Filter bank

The filter bank design that we propose is mostly related to
the design of the Steerable Pyramid transform [2], in the

2Such an angular filterbank with decimation is used in e.g. thecon-
tourlet transform [13].
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Figure 4. Pseudo-polar coordinate system.

sense that we use a frequency partitioning intoKj ≥ 2
orientation subbands and a lowpass subband at each scale.
In our scheme, the specific way of decimating the horizon-
tal and vertical orientation subbands, is different, as well
as the pseudo-polar grid for defining the filters and the fil-
ters being used. This will allow us to further subsample
the orientation subbands.

At each scale of our DST, we use a(Kj + 1)-band re-
cursive decomposition intoKj (bandpass or highpass) ori-
entation bands and a lowpass band. Let us denote the scal-
ing analysis filters asH(ω) and the shearlet analysis filters
asGk(ω), with k = 1, ...,Kj the index of the orientation
band. The scaling synthesis filters and shearlet synthesis
filters areH̃(ω) and G̃k(ω), respectively. The analysis
and synthesis filter bank is shown in Figure 5. In our filter
bank, the image is first filtered using the oriented shearlet
filters Gk(ω), subsequently the result is decimated with
a scale-dependent factorqj , in the direction orthogonal
to the main filter orientation (i.e. horizontal or vertical).
Next, the filter bank is iterated on the decimated output of
the scaling filters, where the decimation factor for the scal-
ing stepj is denoted bypj . The synthesis filter bank is en-
tirely analogous, hence when designing the filters appro-
priately, the filter bank can be made to be self-inverting.

To design the filters, we express the perfect recon-
struction equations for Figure 5, and try to find filters that
satisfy these equations. The first perfect reconstruction
(PR) condition for this filter bank is given by:

H(ω)H̃(ω) +

Kj
∑

k=1

Gk(ω)G̃k(ω) = 1, ω ∈ Ω (17)

with Ω = [−π, π] × [−π, π]. For a decimated transform,
other PR conditions are needed, to state that the aliasing
caused by the downsampling operations should cancel it-
self. We will call these conditions the aliasing canceling
conditions. Note that for some combinations of(p, q) PR
is not even possible (e.g.(p, q) = (4, 2)), in that case, the
PR conditions are conflicting.

We investigatep = 4 andq = 1 with anisotropic di-
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Figure 5. Shearlet analysis and synthesis filterbank.

lation matrices as in Section 2. The aliasing canceling PR
conditions are:

H
(

ωx, ωy

)

H̃
(

ωx+
mπ

2
, ωy+

nπ

2

)

= 0, (18)

with m = 0, ..., 3, n = 0, ..., 3 and(m,n) 6= 0. No-
tably, equation (18) only affects the scaling filter and not
the shearlet filters: the scaling filterH(ω) must have fre-
quency support[−π

4 ,
π
4 ] × [−π

4 ,
π
4 ]. Consequently,H(ω)

cannot have compact support in spatial domain (see [31]).
Nevertheless, because of the lack of aliasing, the trans-
form can be made to beshift-invariant, in a similar way
as done for the steerable pyramid transform [1,35]. To do
so, we define the filters in separable pseudo-polar FC (see

Section 4.1):

H(ωr, ϑ) = H0(ωr),

Gk(ωr, ϑ) = G0(ωr)

+∞
∑

i=−∞

R

(

(ϑ+ iπ)Kj

π
− k + 1

)

,

H̃(ωr, ϑ) = H̃0(ωr),

G̃k(ωr, ϑ) = G̃0(ωr)

∞
∑

i=−∞

R̃

(

(ϑ+ iπ)Kj

π
− k + 1

)

(19)

with H0(ωr) the frequency response of a 1-D scaling fil-
ter,G0(ωr) the frequency response of a 1-D wavelet filter
andR(ϑ) a real-valued compactly supported bump func-
tion. In equation (19), the bump function is periodized
in ϑ with period π to construct filters with real-valued



impulse responses. In practice we can assume thatϑ ∈
[−π, π], by the construction of the pseudo-polar grid (see
Section 4.1). Consequently, the summation in (19) only
needs to iterate over a finite number of values fori.
Using the above filters, the PR conditions come down to:

H0(ωr)H̃0(ωr) +G0(ωr)G̃0(ωr) = 1, ωr ∈ [−π, π]

K
∑

k=1

+∞
∑

i=−∞

R

(

(ϑ+ iπ)Kj

2π
− k + 1

)

·

R̃

(

(ϑ+ iπ)Kj

2π
− k + 1

)

= 1, ϑ ∈ [−π, π]

(20)

H0(ωr) = H̃0(ωr) = 0, |ωr| >
π

4
(21)

In Figure 7a, an example of radial filters satisfying these
equations is shown. It can be seen that the scaling filter has
a band center frequency∼ π/8, as a result the frequency
resolution of this DST may be rather poor (for the second
scale, this frequency becomes∼ π/32; hence much of
the frequency content of the image is contained in the first
scale). Therefore, we propose to replace (21) by a less
strong condition:

H0(ωr) = H̃0(ωr) = 0, |ωr| >
π

2

and modify the decimation operations appropriately, such
that there is no information loss and hence PR is still pos-
sible. For the first scale, we setp1 = 2, q1 = 1 and
starting from the second scale (j > 1), we usepj = 4
and qj = 2. In Table 1, the decimation factorspj and
qj are listed per scale. The modified Meyer wavelet and
scaling filters with adjusted frequency scaling is shown in
Figure 7b. The use of the Meyer wavelet here is an ap-
pealing choice due to its excellent localization properties
in both time and frequency and also because the filters are
defined directly in frequency domain [31]:

H0(ωr) =















1 |ωr| <
π
4

cos
(

π
2 v

(

4|ω|
π − 1

))

π
4 ≤ |ωr| ≤

π
2

0 else

,

G0(ωr) =















0 |ωr| <
π
4

sin
(

π
2 v

(

4|ω|
π − 1

))

π
4 ≤ |ωr| ≤

π
2

1 else

,

H̃0(ωr) = H0(ωr),

G̃0(ωr) = G0(ωr)

where we use the following interpolation function (Fig-
ure 6):

v(x) =











3x2 − 2x3 0 ≤ x ≤ 1

0 x < 0

1 1 < x

(22)

for x ∈ [0, 1]. This function is chosen such that it satisfies
v(x) = 1−v(1−x) (see [31]), while being aC3 function.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

x

v(
x)

Figure 6. The interpolation functionv(x).

scalej pj qj

1 2 1
2 4 1
3 4 2
4 4 4
5 4 4

Table 1. Proposed decimation factors for the DST with
anisotropic dilation (also see Figure 5).

Similarly, angular filters satisfying (21) are given by:

R(x) = R̃(x) =































0 x < − 1+α
2

sin
(

π
2 v

(

α+2x+1
2α

)) ∣

∣x+ 1
2

∣

∣ ≤ α
2

1 |x| < 1−α
2

cos
(

π
2 v

(

α+2x−1
2α

))
∣

∣x− 1
2

∣

∣ ≤ α
2

0 else

with α ∈
[

0, 1
2

]

a constant parameter that determines the
bandwidth of the angular filters. In Figure 7c,R(x) is de-
picted for different values ofα. Higher values ofα corre-
spond to a slower decay of the transition bandwidth. The
corresponding filters̃Gk(ωr, ϑ) for ωr = π

2 andα = 1
2

are shown in Figure 7d. The choice ofα has an influence
on the redundancy factor of the DST. We will go deeper
into this in Section 4.4.

4.3. Folding and angular decimation

By the compact support ofR(x), the filtersGk(ωr, ϑ) are
supported on trapezoidal wedges in the frequency plane.
Outside these wedges, the filtered DFT coefficients are0.
In case of more than two orientations (K > 2), we can
partially get rid of the extra redundancy in two different
ways (see Figure 8):

• (Folding) Shear the filtered subbands such that the
frequency support is fully contained in the central
rectangles as shown in Figure 8a. Subsequently, a
vertical decimation can be applied to the subbands
in coneC1 and a horizontal decimation to the sub-
bands in coneC2. Note that a suitable (possibly
non-integer) decimation factor needs to be chosen,
we will explain this further on. For the shear trans-
form, we rely on bandlimited interpolation (most ef-
ficiently implemented in the DFT domain). For the
exact details of the shear transform implementation,
we refer to [36].

• (Non-folding) Perfect reconstruction is possible even
without folding. Therefore we need to make sure
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Figure 8. Strategies to reduce the redundancy of the DST. (a)Perfect reconstruction by shear operations and decimating
(Folding), (b) Perfect reconstruction by decimating without shearing (Non-folding). See text also.

that the aliasing caused by the decimations does not
contaminate the content of the wedges of interest.
This can again be done by chosing the decimation
factor suitably (actually the same as in the fold-
ing strategy). This approach is illustrated in Fig-
ure 8b. Even though many aliasing copies are pro-
duced during decimation, the original wedges can
be perfectly reconstructed after applying the recon-
struction filterG̃k(ωr, ϑ).

Both schemes have the same redundancy factor. The dif-
ference is that in thefoldingstrategy, the translation lattice
is sheared, while without folding, the translation lattice
remains Cartesian, which can be an advantage in certain
applications. Additionally, thenon-foldingstrategy heav-
ily relies on aliasing and it is easy to show that the non-
folding strategy isnot shift-invariant, whereas the folding
strategyis shift-invariant.

For a squared subband at scalej of sizeNj, we com-
pute the decimation factor from Figure 8 as follows:

dj = max

(

1,
Nj

d(1 + 2α)Nj/ (Kj/2)e

)

(23)

In our implementation, the folding is performed in the
DFT domain;Nj/dj then determines the integer number
of DFT coefficients to keep per row or column. For this
reason a ceiling function is present in equation (23).

More importantly, because we haveKj orientation sub-
bands per scale, we see that the redundancy for scalej of
the transform, that is proportional toKj/dj ≈ 2(1 + 2α),
becomes independent ofKj! 3

Because the filters are defined in frequency domain,
our current implementation of this filterbank makes use of

3Up to small deviations caused by the ceiling operation, but this is
usually neglectible.

number of α
scalesJ 1

32
1
8

1
2

1 2.19 2.56 4.06
2 2.66 3.13 5.00
3 2.67 3.14 5.03
4 2.67 3.15 5.03
5 2.67 3.15 5.03

Table 2. Redundancy factors forJ scales, computed using
equation (24).

FFTs. Because the filtersH0(ωr), G0(ωr), H̃0(ωr) and
G̃0(ωr) are bandlimited, the filters do not have compact
support in spatial domain. Nevertheless, it is possible to
approximate the impulse response by truncation, as pro-
posed e.g. in [37] for the steerable pyramid filters.

4.4. Computation of the redundancy factor

The redundancy factor for our scheme is given by the re-
cursive formula:

R ≈

[

2

q1
+

1

p2
1

(

2

q2
+

1

p2
2

(

2

q3
+

1

p2
3

(

2

q4
+ · · ·

)))]

(24)

· (1 + 2α) + 2−2
P

J
j=1

pj .

with pj andqj as listed in Table 1 and where the approx-
imation sign is due to neglecting the ceiling operation in
equation (23). Each fraction2/qj corresponds to shearlet
subbands for scalej, while the fractions1/p2

j are related
to the decimations during the scaling steps. In Table 2, re-
dundancy factors of the transform are given with respect
to the number of scalesJ and the parameterα.
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Figure 7. (a) Shearlet radial magnitude responses for di-
lation factor 4 (using the Meyer wavelet), (b) Shearlet fil-
ter radial magnitude responses with proposed adjustment
to increase the lowpass center band frequency (using the
Meyer wavelet), (c) Angular responseR(x), (d) Shear-
let filter magnitude responses for the constant radial fre-
quencyωr = π/2.

5. RESULTS AND DISCUSSION

First, we will look closer at some of the properties of our
DST implementation. In Figure 9, shearlet basis func-
tions are shown for different scales and orientations. Even
though the size of the support of these basis functions
is not finite, these functions have a fast decay and are
well localized in space, frequency and orientation. In Fig-
ure 10, the frequency response of one shearlet function
is depicted. This function has a very compact support in
frequency domain and a clear orientation. In Figure 11,
the influence of the parameterα on the spatial localiza-
tion of the shearlet is illustrated: the smallerα, the larger
the side-lobes of the basis function, hence the worse the
spatial localization. As mentioned before, the redundancy
of our DST is directly related toα (values are given in Ta-
ble 2), so we can conclude thatα allows us to trade off

redundancy to spatial locatization.
In Figure 12, the DST subband decomposition of the

“blackman” test image is shown. Here, we used the fold-
ing strategy to reduce the redundancy of the transform. In
the magnified part of one of the subbands, it can be noted
that the DST coefficients are not subject to spurious os-
cillations (aliasing) as for example shown in Figure 12d.
These spurious oscillations are often present in subbands
of shift-variant transforms and are very disturbing as the
local energy signature of edges depends on the exact edge
position.

Another interesting experiment is the trade-off between
spatial localization and the number of orientation subbands
while keepingα = 1/2. For our DST implementation,
this also means that the redundancy factor of the transform
remains constant. In Figure 13, we reconstruct the zone
plate image from the DST coefficients from one orienta-
tion subband from the first (finest) scale of the transform,
while increasing the number of orientationsK1 for the
first scale. We observe that forK1 ≥ 16, edges with ori-
entation around 135º are still well detected, however, their
position becomes less certain, as the responses are more
spread over the entire image. This shows that the spatial
localization properties of the shearlet basis elements are
heavily reduced in this case.

As a final example, we investigate the approximation
quality of different multiresolution transforms. We start
from a test image, apply a given wavelet or shearlet trans-
form to this image and we reconstruct the image from the
2.5% largest wavelet or shearlet coefficients (in magni-
tude). In Figure 14, the results are given for the zone plate
image and the barbara image, for the decimated DWT, the
undecimated DWT, the dual-tree complex wavelet trans-
form (DT-CWT) and the DST. We also list the redundancy
factor of each transform in the figure, because this factor
plays a big role here. The DWT is a shift variant trans-
form, and the aliasing creates disturbing artifacts in the
end result. The undecimated DWT has the largest number
of coefficients retained in absolute terms, however the ba-
sis functions of this transform corresponding to theHHj

subbands have a poor directional selectivity, which causes
here the blurring of some of the edges. The DT-CWT
basis functions have an excellent spatial localization, but
are only able to distinguish 6 orientations, also causing a
fair amount of blurring here (see Figure 14c/g). The DST
gives here the best visual result, mainly because of its ex-
cellent directional selectivity and shift-invariance.

6. CONCLUSION

In this paper, we described a novel design of the Discrete
Shearlet Transform with a redundancy factor that is very
low and independent of the number of orientation sub-
bands, while offering shift-invariance. The filters of this
transform are designed in pseudo-polar frequency coor-
dinates, based on the Meyer wavelet. A special decima-
tion scheme is applied to the filtered subbands, to further
reduce the redundancy. This results in a multiresolution
transform, that allows to easily make a trade-off in spatial
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Figure 9. Shearlets basis elements forα = π

2 . For illustration purposes, we usedK1 = 16 (instead of 32) orientations for
the first scale.

(b)

(a)

(c)

(d)

Figure 12. (a) The “blackman” image. (b) DST decomposition (with folding) of the “blackman” image into three scales.
Eight orientations are used for the first scale. Note that thesubbands for the finest scale of coneC2 have been rotated 90º.
(c) Crop out of one subband, to illustrate the lack of aliasing. (d) Aliasing in a subband of the DST (implemented without
folding) of the image in (a).



(a) (b)K1 = 2 (c)K1 = 4

(d)K1 = 8 (e)K1 = 16 (f) K1 = 32

Figure 13. Illustration of the directional selectivity of the DST (a) the zone plate image (b)-(f) reconstruction from one
orientation subband of a DST with one scale (J = 1), and for an increasing number of orientations (K1).

(a) DWT (1) (b) UDWT (7) (c) DT-CWT (4) (d) DST (4.06)

(e) DWT (1) (f) UDWT (7) (g) DT-CWT (4) (h) DST (4.06)

Figure 14. Reconstruction from 2.5% of thex-let coefficients, for (a),(e) DWT with 2 scales, (b),(f) Undecimated
DWT with 2 scales, (c),(g) dual-tree complex wavelet transform [6] with 2 scales, (d),(h) DST with 1 scale (because
of anisotropic dilation with factor 4).Top row: crop out of the Barbara image,bottom row: crop out of the zone plate
image (see Figure 13a). Between parentheses is the redundancy factor of each transform in this experiment.
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Figure 10. Magnitude response of a shearlet basis ele-
ment.
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Figure 11. Shearlets for different values of the parameter
α, showing the impact of the angular bandwidth on the
spatial support of the shearlets.

localization, frequency localization and directional selec-
tivity, while keeping the redundancy factor more or less
constant. There are a number of interesting open issues
remaining. First is how the idea of scale and orientation
shiftability from [1] can be applied to this transform, with-
out sacrificing redundancy. A second issue is that the re-
dundancy of the transform can possibly be decreased fur-
ther, while allowing certain forms of aliasing (hence being
not completely shift-invariant). Finally, another open is-
sue is the design of non-separable or separable shearlet
filters with compact support in spatial domain, while stay-
ing faithful to the CST.
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