

Design and Implementation of Real-time Image
Processing Algorithms for FP camera

by

Andrés Frías Velázquez

A dissertation submitted in partial fulfillment of the

requirements for the degree of:

Master of Science

 in

Research on Information and Communication Technologies

Advisor:

PhD. Josep Ramon Morros i Rubio

TECHNICAL UNIVERSITY OF CATALONIA

Barcelona, Spain

Summer 2008

Abstract

Design and Implementation of Real-time Image Processing

Algorithms for FP camera

by

Andrés Frías Velázquez

Technical University of Catalonia

PhD. Josep Ramon Morros i Rubio, Advisor

A novel approach to perform gray-scale morphological operations based on bitwise-

plane decomposition is preseneted in this work. The project aims to investigate novel

implementation architectures for standard image processing algorithms embedded on a

Focal Plane (FP) camera. Unlike to typical autonomous vision systems, FP camera

allows performing highly-parallelized processing both in real time and at full resolution

that result hard to implement with current techniques. Consequently, this technology

breakthrough opens new fields of research on the design and implementation of basic

vision tools considering the restrictions of this new architecture.

As mentioned, the project mainly focuses on developing gray-scale morphological

operations based on the bitwise decomposition of the images. This sort of

decomposition contrast significantly with the classical threshold decomposition

approach, which most of the current techniques are based on. As a result, the approach

presented in this work not only serves to implement morphological filters but also may

provide novel and interesting theoretical insights on mathematical morphology.

Acknowledgements

Firstly, I would like to thank to God for his care and protection at any moment of

this adventure far away from home. Also, I am very grateful of having this chance to

live abroad and grow as a person from another point of view. I am greatly indebted to

my family for supporting me in this endeavor. In particular, I would like to

acknowledge my parents, Agustín and Avelina, who have always cared about my

education and encouraged me to work hard to accomplish my goals. To my sisters and

brother, Irene, Domi and Juan, I would like to thank them for their advices, patience

and love.

 For making more enjoyable my staying in Belgium and Spain, I would like to

thank to all Merit students for their friendship and introduce me to their culture,

traditions and language. I think I will never forget the trips, meetings, and BBQs we

had together. Special thanks to my friends Xuefeng, Hanif, Rodolfo, Sebastian, Tao, Li

Li, Yang, Adolfo, Salman, and Lu.

I would like to acknowledge to the European Commission and the Erasmus Mundus

programme for supporting my Master studies during these two years.

Finally, I want to thank to my advisor, Dr. Ramon Morros, for his support, guidance

and trust along the development of this thesis.

 i

CONTENTS

Contents . i

List of Figures . iii

List of Tables . v

Nomenclature . vi

1 State-of-the-Art 1

1.1 Introduction . 1

1.1.1 Objectives 3

1.1.2 Justification 3

1.2 The Focal Plane Processor 5

1.2.1 SCAMP-3 Vision System. 7

1.2.2 Eye-RIS CMOS Vision System. 8

1.3 Gray-Scale Morphology. 10

1.3.1 Basics on Mathematical Morphology 10

1.3.2 Threshold Decomposition 12

1.3.3 Generalized Threshold Decomposition 13

Contents ii

2 Morphology based on bitwise processing 16

2.1 Bitwise Decomposition 16

2.2 Bitwise Transformation 18

2.2.1 Binary Search Minimization. 19

2.2.2 Bitwise Image Morphology. 24

2.2.3 Proof of the Bitwise Erosion Algorithm. 28

2.2.4 Bitwise Dilation and Multiple Transformations. 36

3 Results 37

3.1 Bitplane Erosion 37

3.2 Entropic Properties of the Bitwise Erosion Algorithm . . 41

3.2.1 Speed and Quantization Tradeoff. 43

3.3 Morphological Rank Spectrum. 45

3.4 Algorithm Complexity. 49

3.5 Performance of the BEA in the Eye-RIS vision system. . 51

4 Conclusions 54

4.1 Conclusions 54

4.2 Future Work. 55

References . 56

List of Figures iii

List of Figures

Fig. 1.1 Typical focal plane processor 6

Fig. 1.2 Main components of a mixed signal vision system 6

Fig. 1.3 Degradation of an analog memory along time 7

Fig. 1.4 Decomposition by the generalized thresholding property. 14

Fig. 2.1 Bitwise decomposition of a gray-scale image 18

Fig. 2.2 Basic block diagram of a bitwise morphology processing 24

Fig. 2.3 b-Level tree diagram.. 26

Fig. 2.4 Regions of discrimination for two levels. 27

Fig. 2.5 Range comprised of every bitplane obtained by bitwise

decomposition 29

Fig. 2.6 Range comprised of every bitplane obtained by threshold

 decomposition. 29

Fig. 3.1 (a) Original MSB bitplane (b) Bitwise erosion of the MSB bitplane. 37

Fig. 3.2 (a) Original 2nd bitplane (b) Erosion of the MCD branch ሺ࣬ଶ
ଵሻ

(b) Erosion of the NCD branch ሺ࣭ଶ
ଵሻ 38

Fig. 3.3 (a) Eroded 2nd bitplane ሺܫଶ
௧ሻ (b) Erosion without discriminative

conditions (c) Error. 39

Fig. 3.4 (a) Original 3rd bitplane. Erosion of the (b) MCD region of

1-branch (c) NCD region of the 1-branch (d) MCD region of

2-branch (e) NCD region of 2-branch (f) Bitwise erosion of

the 3rd bitplane. 40

Fig. 3.5 (a) High (b) Low dynamic range image. 41

List of Figures iv

Fig. 3.6 Histogram of the (a) Moon (b) Girl. 41

Fig. 3.7 Bitwise erosion for several levels of bit quantization. 43

Fig. 3.8 (a) Execution time (b) PSNR, for several levels of bit quantization 44

Fig. 3.9 Morphological transformations by using several Min/Max bitplane

combinations. 47

Fig. 3.10 Morphological transformations by using several Max-Min bitplane

combinations. 48

List of Tables v

List of Tables

Table 1.1 Features of the SCAMP and Eye-RIS vision systems. 9

Table 2.1 Example of TD and bitwise decomposition. 17

Table 2.2(a) First decision level of the binary search minimization. 20

Table 2.2(b) Second decision level of the binary search minimization. . . . 20

Table 2.2(c) Third decision level of the binary search minimization. 21

Table 2.2(d) Fourth decision level of the binary search minimization. 21

Table 2.3(a) Special case of no binary level discrimination. 22

Table 2.3(b) Rectification of the 4th level of decision. 22

Table 2.4(a) Binary search of the element ranked 2nd. 23

Table 2.4(b) Ranked 2nd element obtained by using duality property. 24

Table 3.1 Assessment of the entropic properties of BEA and TD approaches. 42

Table 3.2 Comparison of the complexity of TD and BEA algorithm. . . . 51

Table 3.3 Processing times of the BEA under different entropic conditions . 52

Table 3.4 Timings for several numbers of erosions. 53

Table 3.5 Opening timings for several neighborhood radiuses. 53

Nomenclature vi

 Nomenclature

ܾ Number of bits.

ࣶ Number of branch of the tree.

ℓ݂ Bitwise bitplane.

݄ℓ. Threshold decomposition bitplane.

 .௘௥ Gray-scale eroded imageܫ

ℓܫ
௧ Transformed bitwise bitplane.

ℓ Bitplane level.

ℓܦܥܯ
ࣶ Binary mask of the MCD condition.

ℓܦܥܰ
ࣶ. Binary mask of the NCD condition.

ܴℓ
ࣶ. Bitplane accumulation of the MCD condition.

࣬ℓ
ࣶ. Erosion of the MCD region.

 .Structuring element ݁ݏ

ܵℓ
ࣶ. Bitplane accumulation of the NCD condition.

࣭ℓ
ࣶ. Erosion of the NCD region.

 .Union set operator ׫

 .Intersection set operator ת

Θ Morphological erosion operator.

۩ Morphological dilation operator.

○ Morphological opening operator.

● Morphological closing operator.

Introduction 1

Chapter 1

 State-of-the-Art

”For since the fabric of the universe is most perfect and the work of a most wise Creator,

nothing at all takes place in the universe in which some rule of
maximum or minimum does not appear.”

-Leonhard Euler-

1.1 Introduction

After developing basic research and being traduced to an algorithm which can be

understood by a computer, there is further research which deals with the optimal

implementation of the algorithm in accordance with the most suitable VLSI (Very-

large-scale integration) architecture. This step is critical in the success of a research

proposal, since the speed of processing and the utilization area of the chip might play a

key role in its performance, as in the case of image and video processing fields.

Given the higher dimensional nature of the images and video, handle such a large

amount of data generated per image it is not an easy task. Normally, images are

treated by computers as a 1-dimensional signal block, where the data is serialized in

order to ease its computing and fit it to the most common architectures. On the other

hand, alternative approaches consist on processing the image under a parallel structure,

which accelerates the processing time at the cost of increasing the chip area, power

consumption and price. As a result, current architectures attempt to tradeoff these

variables in some way in order to adapt the best suitable solution for a given

application.

In recent years, vision systems on chip have started to gain some attention from the

scientific community, which have been called as second wave of solid-state imaging

chips [1]. These sorts of vision chips are parallel computers that attempt to imitate the

neural circuitry in the retina. Unlike a "dumb" video camera that merely records light

intensity, the human eye integrates biological neural networks into each retinal cell,

Technical University of Catalonia

Introduction 2

providing real-time information processing as photons arrive. As a result, only high-

level information, such as edges and motion, are passed up to the brain. Conventional

CCD and CMOS pixel sensors can be used to perform the same motion or edge

detection, but at the cost of large amounts of digital computation after the images are

acquired. By imitating the functionality of the retina, vision chips can eliminate most of

that added computing equipment.

The technology of a vision chip is based on the Cellular Neural Network (CNN)

model, which is a mathematical model that attempts to mimic a biological neural

network allowing communication only between neighboring cells. This model seems to

be a strong candidate to solve the paradigm of designing VLSI image processing

systems, specifically for pixel-parallel vision processing. According to [2], a single analog

programmable array processor can perform some image processing tasks in real-time

with less power budget and manufacturing cost than an array of several digital

processors that are believed necessary to carry out such tasks with floating point

accuracy. Consequently, analog processors seem to be a complementary solution for

vision systems given that the image can be processed in parallel at full resolution as the

image is acquired in the sensor, similarly as the retina does.

The architecture of the analog array processor is not rigid, in the sense that strictly

speaking is a mixed signal processor, since it combines non-linear analog processing

with logic operations. This flexibility allows us to take advantage from both analog and

digital world. Several applications have been envisioned to be suitable under this

architecture, which includes security systems, autonomous robots, artificial implantable

retinas and biochemical analysis.

As discussed above, vision chip systems have very attractive features that enable

them to process images at very high speed; however, it is also convenient to point out

that this type of bio-inspired vision system suffers the same drawbacks that every

analog system possesses. That is, the degradation of the signal along the time and the

high sensitivity to noise. These two factors are the main reasons by which nowadays

our life is predominantly a digital world. Then, coming back to the analog world might

be considered as a lagging by some people; even though, analog and mixed signal

techniques has been improved significantly in the past decades, which have made

digital system designers reconsider about integrating analog circuitry in their systems.

Although the state-of-the-art of analog array processors devoted for vision systems

is relatively new, it has been maturing rapidly in the past 5 years. Currently, two

prototypes have been launched for research purposes and simple industrial applications;

one of them is called SCAMPTM (SIMD Current-Mode Analogue Matrix Processor),

which is developed by the University of Manchester. Some of the features that stand

out in this camera are: 3x3 kernel convolution filtering, Sobel edge detection,

Technical University of Catalonia

Introduction 3

smoothing, active contours, skeletonization, and basic block matching motion field

estimation. On the other hand, Anafocus, a spin-off of the Institute of Microelectronics

of Seville, has created a vision system called Eye-RISTM, which supports the same

features of gray scale filtering, a wide range of binary morphological operations, active

points and blob handling functions.

In both systems only binary morphological operators are supported at the moment.

The relevance of preserving gray-scale information of an image and avoid thresholding

at early processing stages is crucial for diverse applications. Therefore, expanding the

basic morphological operators to gray-scale format seems to be a logical next step;

nevertheless, this task is not trivial as one might expect. Most of the current

approaches that compute gray-scale morphology exploit the binary decomposition of

the image to apply morphological operators onto a row of data rather than a set of

bitplanes. As a result, new techniques have to be formulated considering the restrictions

imposed by the analog world and adapted to this new parallel architecture.

Even though, this technology has just surfaced in recent years, at the end,

combining analog and digital technologies seems to be a good solution that provides the

best tradeoff between reliability and high speed performance for vision applications.

1.1.1 Objectives

This work aims to investigate novel implementation architectures for standard image

processing algorithms embedded on a analog programmable array processor, also called

Focal Plane (FP) camera. As treated previously, unlike to typical autonomous vision

systems, FP camera allows performing highly-parallelized processing both in real time

and at full resolution that result hard to implement with current techniques. Thus, the

project mainly focuses on developing gray-scale morphological operations under this

new architecture.

1.1.2 Justification

Morphological transformations are commonly used to perform a variety of image

processing tasks such as fillets, holes, wedges, and cracks by operating with various

shape-structuring elements (See [3]). Their applications range at different levels of

complexity, from industrial inspection to fast object recognition and image

segmentation. However, morphological operators involve time-consuming processing

given that they require data ordering and min/max computation resulting from the

interaction between image and structuring element. Furthermore, implementation

Technical University of Catalonia

Introduction 4

difficulties arise when an image is processed with a large-size gray-scale structuring

element.

Morphological processing on binary images is simpler because set operators can be

implemented by using logic AND/OR functions. Conversely, it is harder for gray-scale

images because intersection and union of shapes are implemented as maximal or

minimal value selection after addition or subtraction.

There exist several approaches in the literature that deal with the implementation of

gray-scale morphology. The early attempts to implement morphological operations on

hardware are the so-called pipeline architectures [4]-[6], these approaches intend to

carry out binary and gray-scale morphology straightforward by performing additions

and comparisons among the elements affected by the structuring element. These

proposals are considerably inefficient given the excessive hardware employed to

compute the addition and its increasing complexity when the structuring element

becomes large.

An important contribution called threshold decomposition was introduced by Fitch

et al. [7], which enabled performing gray-scale operations through the decomposition of

any k-level signal into a set of k -1 binary signals. This sort of decomposition intends to

serve as a superposition principle for non-linear transformations. In this way, this

approach can be extended to images and being used to manipulate gray-scale images

through binary transformations, which are usually faster and easier of being

implemented with logic gates.

From a practical standpoint, performing image morphology in parallel (i.e. at a

bitplane level) is a difficult task since the hardware area required tends to be very

bulky given the 2D nature of images. Therefore, approaches based on serialization have

been proposed in order to relax the problem. Serial design seems to be more flexible

than pipeline design, but unfortunately with a longer cycle to get the final result.

In order to ease the computing and take advantage of the threshold decomposition,

an hybrid "parallel-pipelined" approach was proposed by Shih et al.[8]. This algorithm

actually aims to apply morphological operations on gray-scale data through a sliding

window. This window contains the input data affected by the kernel, then it is applied

the threshold decomposition, and each resulting binary level is processed in parallel by

using simple logic and shift registers. At the end, the morphological transformation is

obtained by adding the results obtained on every binary level. Other similar approaches

are presented in [9] and [10].

Until now we have seen that no digital approach is able to perform real parallel

morphological operations in a feasible way. Focal plane processors open a new line of

research in which gray-scale morphological processing can be performed at a plane level

rather than at serial or windowing level. In this sense, we can take advantage of the

already existent binary morphological library of the vision chips to extend it to gray-

scale morphology and accelerate its processing.

Technical University of Catalonia

Introduction 5

1.2 The Focal Plane Processor

To meet computational demands of computer vision algorithms, particularly if cost,

size, and power dissipation of the system are important, it is often beneficial to perform

some image processing directly on the focal plane, using a smart-sensor device. Some

simple low-level image processing tasks can be implemented using dedicated analog

circuits embedded within each pixel of the image sensor array.

By assigning a single processor to each pixel of an image the inherent parallelism of

low-level image processing tasks can be fully exploited. Specific hardware solutions,

however, lack the flexibility of a software-programmable computer, specifically on its

ability to implement a variety of complicated algorithms using relatively simple

hardware. The main difficulty on implementing a software-programmable pixel-

preprocessor vision chip is the very limited area available for each processor in the

array. An interesting alternative to digital processors is provided by “analog”

processors, derived from the CNN (Cellular Neural Network) architecture supported

with analog and digital memories.

A vision chip employs switched current “analog microprocessors” as processing nodes

in a digital-like massively parallel computer architecture. Using analog processing

elements allows real-time image processing with high efficiency in terms of silicon area

and power dissipation.

The architecture of a simple focal plane processor is depicted in Fig. 1.1. The vision

chip is composed of an array of Smart Image Sensors (SIS), in which every element not

only serves for light capturing, but also works as an analog processing element. As

mentioned previously, each of these processing elements contains an Arithmetic Logic

Unit (ALU), registers, flags and I/O control, but adapted in an analog fashion. Each

pixel-processor may execute instructions in a local or global manner. This means that

the user is able to indicate to certain cells in the array to perform a given task, while

the others remain awaiting for an instruction. Note that when a local instruction is

ordered, it is performed at once along the entire array or in the cells of interest.

Given that local memories of the analog processor degrade with time and certain

control has to exist on the chip, a digital processor and memories are attached to the

design to make it reliable. Another important advantage is that we can exploit dual

processing, in the sense that while the digital processor performs image post-processing,

the focal plane processor may capture the next image to be processed and remove noise

for example.

Technical University of Catalonia

Introduction 6

Fig. 1.1 Typical Focal plane processor.

The main objective of the focal plane processor is to carry out early image processing

that is implemented more efficiently in the analog array such as image arithmetic,

filtering and morphology. While, the digital processor is devoted to perform operations

that by de facto result natural for this kind of processor such as recursions, shifts, as

well as complicated time-frequency-spatial transformations, which may require high

accuracy. The structure of this dual processing is depicted in Fig. 1.2. Note that after

image post-processing the digital processor may appeal for feedback to the analog

processor, which allows to the digital processor relax its workload at runtime. When

this flow of information between processors occurs, we have to take into account that

switching from digital to analog data representation and vice versa, introduces

quantization errors that might become significant for certain applications.

Fig. 1.2 Main components of a mixed signal vision system.

An important consideration that we have to keep in mind at every moment when

working with analog systems, specifically with analog memories, is that these ones

degrade along the time due to current leakage. Typically, they are conceived for

Technical University of Catalonia

Introduction 7

retaining an image during several frame-times (the time between two consecutive

frames) at 25fps frame rate. Figure 1.3 depicts the mean value of an image stored

within an analog memory (expressed in LSBs) vs. storage time (expressed in

milliseconds). As shown, the mean value of an image decreases around 1 LSB every

50ms. Furthermore, such degradation rate increases with the operation temperature.

The restriction imposed by the analog systems obliges to change the way in which

the instructions of a digital processor are executed. This means that when the digital

processor asks to the focal plane to perform certain computation, the programmer has

to pass effective instructions that should be executed at a minimum time.

Fig. 1.3 Degradation of an analog memory along time.

1.2.1 Scamp Vision System

SCAMP (SIMD Current-Mode Analogue Matrix Processor) is a focal plane processor

that is composed by a mesh connected array of processors, which are called APEs

(analog processing elements). Several basic image processing algorithms have been

implemented under this system, including convolution, linear and non-linear filtering,

edge detection, basic segmentation, motion detection and estimation, histograming and

binary mathematical morphology. Probably, the most attractive features of the

SCAMP system are the ability of computing motion estimation and histograming.

These two applications are quite challenging for any digital signal processor given the

complexity of the algorithms involved and the time-consuming computing. According to

[11], the motion estimator is based on a 21x21 global block search matching in the

horizontal direction with a maximum displacement of ±3 pixels, which is performed in

only in 46.4μs. On the other hand, the same author reports that his system is able to

get a 64-bin histogram in just 205.6μs. These timing figures give us a good idea about

the computing power of the analog processing for such challenging algorithms, since

common digital computers run in several milliseconds.

Technical University of Catalonia

Introduction 8

Another important feature of the system is that the power dissipation of this chip is

comparatively lower than the Eye-RIS vision system and several application-specific

focal plane processors. Moreover, as the algorithmic program execution implies time-

multiplexing of hardware resources, the APE area is not so much larger than the pixel

area of many special-purpose vision chips, which implement algorithms in hardware.

One major concern for potential users of this "strange" system is that programming

and controlling such a device might be a difficult task. However, there exists software

that enables the control of the vision system, supports algorithm development,

simulation, compilation and host communication. High-level instructions of the most

common algorithms are already available for the user, which alleviates the painful work

of programming two processors at low-level programming language.

1.2.2 Eye-RIS Vision System

The AnaFocus Eye-RIS v1.2 Vision System is a compact and modular vision

system including all the elements needed for sensing images, enhancing the sensor

operation, processing in real-time the image flow, interpreting the information

contained in the image flow, and supporting decision-making based on the outcome of

such interpretation [12].

The Q-Eye is a Quarter CIF (Common Intermediate Format) resolution fully-

programmable smart image sensor. It consists of an array of 176 x 144 cells and a

surrounding global circuitry. Each cell comprises multi-mode optical sensors, pixel

memories, and linear and non-linear analog processors and binary processors. Also, the

cells are interconnected each other in several ways with its 8 closest neighbors, allowing

highly flexible, programmable, efficient, real-time image acquisition and spatial

processing operations. Under Smart Image Sensor technology, each processor is merged

with an optical sensor. This means that each pixel can both sense the corresponding

spatial sample of the image and process this data in close interaction and cooperation

with other pixels. In fact, Smart Image Sensors are also called focal-plane processors
because they process images at the same physical layer where they are sensed.

The hardware components of the Eye-RIS system are divided basically in three

layers.

1. The Anafocus Q-Eye Smart Image Sensor, which performs the image acquisition

and the early image processing tasks through the focal plane processor.

Technical University of Catalonia

Introduction 9

2. The Altera NIOS II digital processor, which is in charge of controlling the

operation of the Q-Eye as well as ports. Also, its duties concern with the post

processing of the image and decision-making.

3. I/O ports. It includes a variety of digital input and output ports such as SPI,

UART, PWM ports, GPIOs and USB 2.0.

An important advantage of the Eye-RIS vision system over SCAMP is precisely the

ability of interfacing with different types of commercial and well-known industrial

communication standards, which increase its versatility. In fact, according to the

company, an Ethernet interface might be available in the system in order to control the

system remotely. From the application developer's point of view, programming the Eye-

RIS vision system provides the advantages that C/C++ programming language offer,

since the programming of the digital and analog processor is based on these languages.

 Table 1.1 presents the capabilities of both vision systems for comparison. In overall,

the functionalities offered by both systems are very similar. The actual differences lie on

the programmability of the parameters in a given function or algorithm. For instance,

the Eye-RIS system allows setting the sigma value of a Gaussian smoothing as well as a

range of values to define the mask of a convolution filter. On the other hand, SCAMP

is able to compute difficult applications such as motion estimation and active contours,

but fails to provide programming flexibility to the user in some of their applications

and communication tools.

 Table 1.1 Features of the SCAMP and Eye-RIS vision systems.

Feature SCAMP Eye-RIS

Resolution 128x128 176x144

Smooth using 3x3 convolution template S S

Sharpen using 3x3 convolution mask S S

Sobel Edge detection S S

Median Filter of 3x3 mask S S

Histogram with 64 bins S NS

Motion estimation S NS

Binary Morphology S S

Active Contours S NS

Blob handling functions NS S

Stand-Alone operation NS S

Ctrl and comm. interfaces NS S

 Note: S - Supported, NS — Non-supported.

Technical University of Catalonia

Introduction 10

1.3 Gray-Scale Morphology

Mathematical morphology is a theory of image transformations and image functionals

which is based on set-theoretical, geometrical, and topological concepts. [13]. There

exist several motivations for using morphological filters in diverse applications related

to image enhancement, detection, texture analysis, industrial inspection. On the one

hand, these sorts of filters concede major importance to preserve, uncover, or detect the

structure of image objects, which make them more suitable than linear filters for

geometry based enhancement and detection. On the other hand, given their non-linear

nature are highly efficient to suppress non-Gaussian noise.

Binary morphology was the basis of early morphology foundations and it is based on

the geometrical relationship or connectivity of pixels that are deemed to be of the same

class. The basic operators are erosion and dilation, which cause an image to increase or

decrease in spatial extent, respectively. In association with logic operators such as

AND, OR and NOT it is possible define other interesting operators like skeletonization,

thinning, thickening and shrinking. Since the aim of this work is to introduce

implementation techniques, it is advised to the interested reader knowing in depth

about these topics to look at the surveys and tutorials presented in [3] and [14].

1.3.1 Basics on Mathematical Morphology

 As previously stated, the two most common morphological operations are dilation

(۩) and erosion (Θ). Specifically, in dilation, the center or active pixel is set to the

maximum of its neighbors, and in erosion it is set to the minimum of its neighbors.

Since these operations are often performed on binary images, dilation tends to expand

edges, borders, or regions, while erosion tends to decrease or even eliminate small

regions. On the other hand, if morphological operations are performed to gray-scale

images, dilation will expand maximum values on the image (brighter areas), whereas

erosion will expand darker areas. Obviously, the size and shape of the neighborhood

used has a very strong influence on the effect produced by either operation.

The two processes can be done in tandem, over the same area. Since both erosion

and dilation are nonlinear operations, they are not invertible transformations; that is,

one followed by the other will not generally result in the original image. If erosion is

followed by dilation, the operation is termed opening (○). If the image is binary, this

combined operation will tend to remove small objects without changing the shape and

size of larger objects. Basically, the initial erosion tends to reduce all objects, but some

of the smaller objects will disappear altogether. The subsequent dilation will restore

those objects that were not eliminated by erosion. If the order is reversed and dilation

Technical University of Catalonia

Introduction 11

is performed first followed by erosion, the combined process is called closing (●).

Closing connects objects that are close to each other, tends to fill up small holes, and

smooths an object’s outline by filling small gaps. As with the more fundamental

operations of dilation and erosion, the size of objects removed by opening or filled by

closing depends on the size and shape of the neighborhood that is selected.

In order to put in context the definitions presented above, we will revisit the

mathematical expressions of such operations and their properties, which are defined as

follows: Let the grayscale input signal be denoted by f, and the structuring element as

se with size N. The dilation and erosion operations of f by se, respectively, are in

general defined by equations (1) and (2).

 ሺ݂ ْ ሻሾ݊ሿ݁ݏ ൌ ሧ ሺ݂ሾ݇ሿ ൅ ሾ݊݁ݏ െ ݇ሿሻ
ஶ

௞ୀିஶ

 (1)

 ሺ݂ ٓ ሻሾ݊ሿ݁ݏ ൌ ሥ ሺ݂ሾ݇ሿ െ ሾ݇݁ݏ െ ݊ሿሻ
ஶ

௞ୀିஶ

 (2)

where ∨ denotes supremum (or maximum for finite se) and ∧ denotes infimum (or

minimum for finite se). Flat erosion (dilation) of a function f by a small convex set se
reduces (increases) the peaks (valleys) and enlarges the minima (maxima) of the

function.

Properties of Erosion and Dilation

 Several morphological properties are usually applied in order to obtain more

sophisticated operators or to decompose complex transformations. As a matter of fact,

they serve as basis to manipulate symbolically the images, as the algebra serves for

linear systems. For notation simplicity, spatial coordinates of a set are discarded.

Commutation:

 ݂ ۩ ݁ݏ ൌ ݁ݏ ۩ ݂ (3)

 ݂ Θ ݁ݏ ് ݁ݏ Θ ݂ (4)

Incresing, considering that ݂ ك ݃:

 ݂ ۩ ݁ݏ ك ݃ ۩ (5) ݁ݏ

 ݂ Θ ݁ݏ ك ݃ Θ (6) ݁ݏ

Technical University of Catalonia

Introduction 12

Duality:

 ݂ Θ തതതതതതതത݁ݏ ൌ ݂ҧ ۩ ෦݁ (7)ݏ
where ݏ෦݁ is the reflection of the structuring element.

Relationship with set operators:

 ሺ݂ ת ݃ሻ ۩ ݁ݏ ك ሺ݂ ۩ ሺ݃ځሻ݁ݏ ۩ ሻ (8)݁ݏ

 ሺ݂ ת ݃ሻ Θ ݁ݏ ൌ ሺ݂ Θ ሺ݃ځሻ݁ݏ Θ ሻ (9)݁ݏ

 ሺ݂ ׫ ݃ሻ ۩ ݁ݏ ൌ ሺ݂ ۩ ሻ݁ݏ ׫ ሺ݃ ۩ ሻ (10)݁ݏ

 ሺ݂ ׫ ݃ሻ Θ ݁ݏ ل ሺ݂ Θ ሻ݁ݏ ׫ ሺ݃ Θ ሻ (11)݁ݏ

Erosion and dilation by a pair intersection set:

 ݂ ۩ ሺ݁ݏଵ ת ଶሻ݁ݏ ك ሺ݂ ۩ ሺ݂ځଵሻ݁ݏ ۩ ଶሻ (12)݁ݏ

 ݂ Θ ሺ݁ݏଵ ת ଶሻ݁ݏ ل ሺ݂ Θ ଵሻ݁ݏ ׫ ሺ݂ Θ ଶሻ (13)݁ݏ

Erosion and dilation by a pair union set:

 ݂ Θ ሺ݁ݏଵ ׫ ଶሻ݁ݏ ൌ ሺ݂ Θ ଵሻ݁ݏ ׫ ሺ݂ Θ ଶሻ (14)݁ݏ

 ݂ ۩ ሺ݁ݏଵ ׫ ଶሻ݁ݏ ൌ ሺ݂ ۩ ଵሻ݁ݏ ׫ ሺ݂ ۩ ଶሻ (15)݁ݏ

Chain rules:

 ݂ ۩ ሺ݁ݏଵ ۩ ଶሻ݁ݏ ൌ ሺ݂ ۩ ۩ଵሻ݁ݏ ଶ (16)݁ݏ

 ݂ Θ ሺ݁ݏଵ ْ ଶሻ݁ݏ ൌ ሺ݂ Θ ଵሻ݁ݏ Θ ଶ (17)݁ݏ

1.3.2 Threshold Decomposition (TD)

As mentioned previously, the transition between binary to gray-scale morphology is

not trivial. In order to be able to give such a big step, it is necessary a tool to extend

the binary properties to a multilevel decomposition. In traditional linear systems, any

signal can be decomposed into simple sinusoids, which can be isolated, transformed

independently, and then recomposed. Unfortunately, this property does not hold on

non-linear systems and other alternative procedures have to be found to accomplish the

separation of a non-linear signal. Fitch et al. [15] introduced a tool named threshold

decomposition, which achieves decomposing a k-level signal into the sum of k - 1 binary

Technical University of Catalonia

Introduction 13

signals. Each of them can be transformed through non-linear operators, and then

recombined via another tool called (Stacking) to get the output of the filter as if the

transformation had been taken place in gray-scale format.

Mathematically speaking, the decomposition is defined as follows: Let ܽሺ݊ሻ be a

multilevel discrete sequence of length L, in the range of 1 ൑ ݊ ൑ and for each n, ܽሺ݊ሻ ,ܮ
is quantized to one of the k values 0, 1, ..., k-1. Then, the level i threshold

decomposition of the original signal at point n is:

௢ݐ
௜ ሺ݊ሻ ൌ ൜

1 ݂݅ ܽሺ݊ሻ ൒ ݅
0 ݂݅ ܽሺ݊ሻ ൏ ݅ (18)

where 1 ൑ ݅ ൑ ݇ െ 1.

 This approach can be easily extended to images (2D), in the sense that each

quantized level obtained by thresholding represents a binary image. The resultng set of

binary images can be now manipulated independently with any morphological operator,

that is:

௦ݔ
௜ሺ݊ሻ ൌ ࣩ൛ݐ௢

௜ ሺ݊ሻൟ௦௘

(19)

The resulting gray-scale image is recomposed by using the stacking approach, as stated

in (20).

௦ሺ݊ሻݕ ൌ ෍ ௦ݔ
௜ሺ݊ሻ

௞ିଵ

௜ୀଵ

 (20)

The method of threshold decomposition yields important theoretical insights in the

manipulation of non-linear operators at gray-scale level. On the one side, it shows that

non-linear transformations of multilevel signals are reduced to the much simpler

analysis of binary signals. On the other side, the decomposition has an important

impact from the implementation point of view, since the computation might be

performed under a parallel or serial architecture.

1.3.3 Generalized Threshold Decomposition

An extension of the work of Fitch [15] that deals with the signal decomposition for

non-linear transformations was proposed by Mitra [16]. The author presents a new

approach that is more flexible than the simple threshold decomposition, which can lead

to more efficient implementations of non-linear filters (rank filters) and provides some

understanding about the properties of these kinds of transformations.

 Some disadvantages on the VLSI implementation of the rank filters have been

identified when binary threshold decomposition is applied. That is, the number of

binary rank filters becomes very large for many practical applications and it doubles for

each additional bit of the input signal.

Technical University of Catalonia

Introduction 14

The proposal of Mitra [16] called generalized threshold decomposition can lead to

fewer sub-sequences compared to that obtained using conventional threshold

decomposition and is capable to deal with bipolar signals. The approach states that for

any monotone increasing decomposition function ௜݂ሺ·ሻ 1 ൑ ݅ ൑ ݇ െ 1, the rank ordering

of each sample of the input sequence is preserved in each of the decomposed sequences

 .௜ሺ݊ሻ, which yields (21) fulfilling the stacking propertyݑ

 ෍ ௜ሺ݊ሻݑ
௞ିଵ

௜ୀଵ
ൌ ܽሺ݊ሻ (21)

where ݑ௜ሺ݊ሻ ൌ ௜݂ሺܽሺ݊ሻሻ.

 Fig. 1.4 shows how the input signal is splitted in several subsequences, not

necessarily binary, and introduced to rank filters of lower order with a window of size

L. This transformation may be expressed as follows:

௜ሺ݊ሻݕ ൌ ,௜ሺ݊ሻݑሺݎ݋ݐܽݎ݁݌݋_݇݊ܽݎ … , ௜ሺ݊ݑ െ ܮ ൅ 1ሻ ሻ (22)

The output of the filter can be recovered as stated in (23).

ሺ݊ሻݕ ൌ ෍ ௜ሺ݊ሻݕ
௞ିଵ

௜ୀଵ

 (23)

Fig. 1.4 Decomposition by the generalized thresholding property.

This generalized threshold decomposition allows splitting the multilevel input signal

into several subsequences of lower dynamic range, not necessarily binary, and being

processed separately with small rank filters. With this, the number of bits of the rank

filter is reduced, which can be useful if the hardware being used performs better for

smaller number of bits. The output is reconstructed by adding the results from all the

filtered levels.

a(n)

y(n)
⊕

uk-1(n)

u2(n)

u1(n)

y(n) a(n)

f1(.)

f2(.)

fk-1(.)

Small
Rank filter

Small
Rank filter

Small
Rank filter

Rank Filter

Technical University of Catalonia

Introduction 15

Observe that the binary threshold decomposition is a particular case of the more

general decompositions for which the above theorem applies. Also note that the usual
bitwise decomposition cannot be obtained through a monotone increasing
function; therefore, applying directly any morphological filter to this decomposition

does not result in the correct morphological transformation.

A particular case that is treated in [16] is the Bit-related threshold decomposition,

which is a mapping that fulfills threshold decomposition property and it is closely

related to the bit-wise decomposition. For instance, assume that each sample of the

input signal has b bits, which means a mapping between 0 and 2b-1. Then, we can split

the input signal with the following decomposition:

ଵሺ݊ሻݑ ൌ ቊ1 ݂݅ ሺ݊ሻݑ ൒ 2௕ିଵ

0 ݂݅ ሺ݊ሻݑ ൏ 2௕ିଵ (24)

ଶሺ݊ሻݑ ൌ ቊ2௕ିଵ െ 1 ݂݅ ሺ݊ሻݑ ൒ 2௕ିଵ

ሺ݊ሻݑ ݂݅ ሺ݊ሻݑ ൏ 2௕ିଵ (25)

ଷሺ݊ሻݑ ൌ ቊݑሺ݊ሻ െ 2௕ିଵ ݂݅ ሺ݊ሻݑ ൒ 2௕ିଵ

0 ݂݅ ሺ݊ሻݑ ൏ 2௕ିଵ
(26)

 In this decomposition the input signal is divided in three parts. Equation (25)

represents the sum of the binary decomposition from the levels in the range [1, 2b-1-1),

whereas (24) is just the binary level at 2b-1. On the other hand, (26) is the sum of the

binary decomposition from the levels in the range [2b -1+1, 2b-1]. This decomposition

can be repeated iteratively to the sequences in (25) and (26), since they still remain as

multilevel signals. Note that this decomposition reduces by two the dynamic range of

the original multilevel signal, which is an interesting property that helps to implement

non-linear transformations in a feasible way. Also, this property will be very helpful

further to derive our approach.

 It is worth to point out that there is a similar analysis that was developed

independently by Zhang [17]. However, in this approach is asserted that there exists a

mapping that allows non-linear transformation by using bit-wise decomposition, if

certain conditions are fulfilled. Such constrain says that rank filters may be applied to a

bit-wise decomposition only if the input signal belongs to the space:

॰ ൌ ሼ0, 1, 3, 7,15, … ሽ. Evidently, this restriction avoids using rank filters for diverse

applications, since the space of numbers that is normally used is much larger, and

hardly fit to this constrain.

16

Chapter 2

Morphology based on Bitwise
Processing

"If people do not believe that mathematics is simple,
 it is only because they do not realize how complicated life is "

-John von Neumann-

2.1 Bitwise Decomposition

 As revisited in the last chapter, the Threshold Decomposition method allows
implementing multilevel morphological filtering by using binary operators. However,
three important inconveniences arise by using this approach if we desire to keep the
complexity of the filters at a binary level:

1. The decomposition of the multilevel signal to binary is not performed in a typical
bitwise representation. That is, thresholding should be applied to each level,
which is an overhead in the processing.

2. As a result of the decomposition, the number of binary levels depends on the

dynamic range of the input signal, which implies the same number of
morphological filters. Thus, the complexity of processing in parallel becomes an
issue when the dynamic range is large, especially if we are dealing with images.

3. The recomposition of the filtered signal requires performing numeric addition of
all the binary sequences, which is a strong overhead since the complexity of the
full-adder might be comparable to the morphological filter itself.

 Technical University of Catalonia

Morphology based on bitwise processing 17

The usual bitwise decomposition of a multilevel signal into binary is an alternative

approach that should be considered in order to minimize the overhead and make

morphological filtering more efficient. This sort of decomposition offers attractive

advantages over TD, since the overhead of decomposition/recomposition of the

input/filtered signal can be drastically reduced by employing simple bit shifts and

logical operators. Normally, multilevel data is stored in a bitwise fashion; therefore, the

decomposition is performed in natural way since the complexity lies on reading the bit-

fields or using bit shifts to extract the bits one by one. Of course, this depends on the

flexibility of the processor's architecture. On the other hand, given that the bit fields

are independent each other, the recomposition is accomplished by using both OR logical

operator and bit shifts. By doing this we avoid using a full-adder, which is a burden for

the threshold decomposition approach.

An example of the threshold and bitwise decomposition is presented in Table 2.1.

We can note that by using bitwise decomposition the number of binary levels is only 3,

whereas threshold decomposition requires 7. In this sense, threshold decomposition is a

linear representation of the multilevel data; that is, the number of binary levels depends

linearly on the dynamic range of the data. On the other hand, the bitwise

decomposition is a logarithmic base 2 representation, which reduces significantly the

number of binary levels.

 Table 2.1 Example of TD and bitwise decomposition.
Bitwise decomposition Thresh. Decomposition
Data 3 7 4 2 0 Data 3 7 4 2 0

MSB 0 1 1 0 0 Top 0 1 0 0 0

 1 1 0 1 0 0 1 0 0 0

LSB 1 1 0 0 0 0 1 0 0 0

 0 1 1 0 0

 1 1 1 0 0

 1 1 1 1 0

 Down 1 1 1 1 0

 Bitwise decomposition can be easily extended to images as shown in Fig. 2.1. These

bit planes represent the decomposition of an 8 bit gray-scale image. Note that if we had

performed the decomposition with TD, we would have obtained 256 bit planes.

Moreover, if one bit is added to represent the gray-scale image, the number of bit

planes is doubled.

Another important difference between threshold and bitwise decomposition is that bit

planes obtained through the bitwise approach are hierarchically disposed according to

their significance, whereas in TD every bit plane is equally significant. In overall, from

a practical point of view, bitwise decomposition seems to be a better way to manipulate

images at a binary level.

 Technical University of Catalonia

Morphology based on bitwise processing 18

 MSB bitplane 7th bitplane 6th bitplane

 5th bitplane 4th bitplane 3rd bitplane

 2nd bitplane LSB bitplane

Fig. 2.1 Bitwise decomposition of a gray-scale image.

2.2 Bitwise Transformation

Bitwise decomposition/recomposition provides significant advantages over TD in

terms of processing speed and minimum hardware overhead. However, as mentioned in

the previous chapter, bitwise decomposition is not monotone increasing, which implies

that does not follow the threshold decomposition method. That is, we cannot apply

 Technical University of Catalonia

Morphology based on bitwise processing 19

directly a morphological operator to each binary level and obtain the correct multilevel

transformation by recomposing the processed binary data. Then, we have to look for

alternatives approaches that allow processing the binary data under this scheme.

2.2.1 Binary Search Minimization

 Binary search method is a well-known ordering technique in computer science and

employed in diverse applications to rank finite sequences of integer data represented in

a bitwise format. In order to illustrate its convenience and fast convergence let consider

the following finite sequence:

ܣ ൌ ሼ14, 8,5,1,9,0, 11, 4,10ሽ

(27)

Since morphological filters are mainly based on max and min operators, we will focus

on obtaining the minimum (erosion) of this sequence following the binary search

method. First, note that the sequence A can be represented in a 4 bit format; then, at

most 4 levels of decision will be required to reach the minimum. A level of decision is

nothing more than the regions in which a sequence is thresholded given their bit of

significance, that is d = {1, 2, 4, 8, ...}. The search is performed in a top-down fashion;

thus, in the first level of decision we look for the elements that fulfill the condition

stated in (28).

ܣ ൏ 8 ൌ ଵܦ ൌ ሼ5, 1, 0,4ሽ (28)

Consequently, in the second level of decision we will get

ଵܦ ൏ 4 ൌ ଶܦ ൌ ሼ 1, 0ሽ (29)

The third level of decision:

ଶܦ ൏ 2 ൌ ଷܦ ൌ ሼ 1, 0ሽ (30)

Finally, the fourth level should provide us the minimum of this sequence:

ଷܦ ൏ 1 ൌ ସܦ ൌ ሼ0ሽ (31)

 Technical University of Catalonia

Morphology based on bitwise processing 20

Note that the search space is reduced significantly from one decision level to other, and

in some cases the minimum can be found with less decision levels. On the other hand,

the maximum of the sequence can be found only by replacing the inequality (<) by (≥).
One important advantage of this method is that it can be implemented easily at a

binary level by using logic operators and binary morphology. In the set of tables

presented below is shown how we can reach the same result as the one obtained in (31).

The first decision level is presented in Table 2.2(a). In this table we can see the bitwise

decomposition of the data sequence ordered from the most to less significant level. Also,

it is indicated what sort of rank operator is being applied to each binary level, whereas

in the bottom shows how the data sequence is transformed.

For the first decision level, we apply the condition stated in (28). As a result, the

boldfaced elements are the ones that fulfill such condition. Also, given that now our

data is composed only by 0 and 1, we can replace the conditional inequality by a

minimum binary operator. The minimum operation at this binary level yields a 0 in the

erosion field.

Table 2.2(a) First decision level of the binary search minimization.

 Data sequence

Level Operator 14 8 5 1 9 0 11 4 10 Erosion

MSB- 1 Min 1 1 0 0 1 0 1 0 1 0

2 Min 1 0 1 0 0 0 1 1 0 -

3 Min 1 0 0 0 0 0 0 0 1 -

LSB- 4 Min 0 0 1 1 1 0 1 0 0 -

Transformed data 14 8 5 1 9 0 11 4 10

Now, we proceed to apply the condition of the second decision level as we did in (29).

Note that in such equation we discarded all the elements of the sequence except for {0,

1}. Then, we need some binary artifact to invalidate elements of sequence that are not

candidates to be the minimum as we process each binary level. The logic OR operator

allow us to do that when applied to the first and second levels of Table 2.2(a). The

resulting transformation is substituted in the level 2 of Table 2.2(b) yielding the desired

result. Now, the possible candidates to be the minimum is restricted to the elements

highlighted in bold {0, 1}. On the other hand, the erosion at this level gives 0.

Table 2.2(b) Second decision level of the binary search minimization.

 Data sequence

Level Operator 14 8 5 1 9 0 11 4 10 Erosion

MSB -1 Min 1 1 0 0 1 0 1 0 1 0

 2 Min 1 1 1 0 1 0 1 1 1 0

 3 Min 1 0 0 0 0 0 0 0 1 -

LSB -4 Min 0 0 1 1 1 0 1 0 0 -

Transformed data 14 12 5 1 13 0 13 4 14

 Technical University of Catalonia

Morphology based on bitwise processing 21

For the third decision level, we apply the same procedure yielding Table 2.2(c). Note

that the candidates to be the minimum are the same as in the previous decision level,

which agrees with the results obtained in (30). Note also, that as we manipulate each

binary level, the row transformed data also changes. The elements that have been

discarded in previous levels increased their numeric value in the row transformed data,

while the minimum candidates are kept untouched.

Table 2.2(c) Third decision level of the binary search minimization.

 Data sequence

Level Operator 14 8 5 1 9 0 11 4 10 Erosion

MSB- 1 Min 1 1 0 0 1 0 1 0 1 0

2 Min 1 1 1 0 1 0 1 1 1 0

3 Min 1 1 1 0 1 0 1 1 1 0

LSB- 4 Min 0 0 1 1 1 0 1 0 0 -

Transformed data 14 14 7 1 15 0 15 6 14

Finally, in Table 2.2(d) the last decision level is presented. Note that the procedure

of bitwise addition leads us to the same result presented above. In the erosion column

of Table 2.2(d) the bitwise decomposition of the minimum value is finally obtained, (i.e.

0 for this specific case). After processing all the levels, the method is able to return the

minimum of the sequence in two different ways. The former is called straight, which

yields the bitwise decomposition of the minima (e.g. erosion column of Table 2.2 (d)),

whereas the latter is called referenced because does not retrieve its value, but the

location of the minima in the sequence (e.g. boldfaced element in the 4th level).

In this case, binary search minimization served as transformation to make possible

applying binary erosion on each level. Therefore, in loose terms, we can state that the

binary search minimization attempts to transform bitwise levels into a threshold

decomposition equivalent. Note that this specific transformation is only valid if the non-

linear filter to be applied is an erosion.

Table 2.2(d) Fourth decision level of the binary search minimization.

 Data sequence

Level Operator 14 8 5 1 9 0 11 4 10 Erosion

MSB- 1 Min 1 1 0 0 1 0 1 0 1 0

2 Min 1 1 1 0 1 0 1 1 1 0

3 Min 1 1 1 0 1 0 1 1 1 0

LSB- 4 Min 1 1 1 1 1 0 1 1 1 0

Transformed data 15 15 7 1 15 0 15 7 15 0

 Technical University of Catalonia

Morphology based on bitwise processing 22

Binary Level Rectification

A special case of this method takes place when all the positions in a given binary

level are set to 1, as shown in the third level of Table 2.3(a). Note that if we proceed

with the bitwise addition till the fourth level, the final result is not correct. This is

because in the third level there is no new information that might help us to

discriminate between the potential candidates (i.e. {3, 2}) to be the minima. Therefore,

the fourth binary level is transformed by applying the bitwise addition between the

fourth level and the bitwise accumulation of the second level instead, yielding the

desired result as shown in Table 2.3(b).

Table 2.3(a) Special case of no binary level discrimination.

 Data sequence

Level Operator 14 8 5 3 9 2 11 4 10 Erosion

MSB-1 Min 1 1 0 0 1 0 1 0 1 0

2 Min 1 1 1 0 1 0 1 1 1 0

3 Min 1 1 1 1 1 1 1 1 1 1

LSB-4 Min 0 0 1 1 1 0 1 0 0 -

Transformed data 14 14 7 3 15 2 15 6 14

Table 2.3(b) Rectification of the 4th level of decision.

 Data sequence

Level Operator 14 8 5 3 9 2 11 4 10 Erosion

MSB-1 Min 1 1 0 0 1 0 1 0 1 0

2 Min 1 1 1 0 1 0 1 1 1 0

3 Min 1 1 1 1 1 1 1 1 1 1

LSB-4 Min 1 1 1 1 1 0 1 1 1 0

Transformed data 15 15 7 3 15 2 15 7 15 2

Binary Search Maximization

 The maximization of a data sequence can be easily obtained by using the duality

property stated in (7). In this sense, a few extra steps have to be done to get the

maximum: 1) Apply the one's complement to every binary level. 2) Apply the method

of binary search minimization. 3) Get the one's complement of the result obtained. The

maximization can be also performed in a straightforward manner, avoiding the

overhead of complementing the input and output data. However, bitwise addition (OR)

and binary minimization (erosion) should be replaced by bitwise multiplication (AND)

and binary maximization (dilation), respectively. This last statement is supported by

the De Morgarn's theorem, which states (32) and (33).

 Technical University of Catalonia

Morphology based on bitwise processing 23

ܣ ת ܤ ൌ ഥܣ ׫ തതതതതതതതത (32)ܤ

ܣ ׫ ܤ ൌ ഥܣ ת തതതതതതതതത (33)ܤ

Rank Searching

 Binary search method not only can be used to find the maximum or minimum in a

sequence, but also to extract a number according to its rank in the sequence. For

instance, assume that our data sequence is composed by the set of numbers shown in

(34). This sequence has been already put in order to better illustrate how the rank

searching is obtained.

ܣ ൌ ሼ0, 1, 2, 3, 4, 5, 6, 7ሽ (34)

Note that in the previous examples, the minimum operator was used in all the

binary levels. However, max and min operators can be alternated to regard any element

of the sequence. For convention, let regard 0 as the element ranked 1st (minimum),

while 7 is the one ranked 8th (maximum) in the sequence. Suppose that we want to

extract the element ranked 2nd. First, note that 3 binary levels are enough to represent

the set of numbers in the sequence; then, the operators that we have to employ for the

three binary levels is (min-min-max) as shown in Table 2.4(a). The order in which

every operator is set provides the key to regard the element desired. In this case, the

maximum operator in the least significant binary level allows extracting the 2nd ranked

instead of the 1st ranked element.

Table 2.4 (b) shows how the ranked 2nd is obtained by using the duality property,

since the 3rd binary level has been complemented and applied the process of binary

search minimization. At the end, the result of minimizing of the third level is once

again complemented, yielding now the correct ranked element.

Note that the elements ranked 3rd and 4th can be regarded by the following

combinations (min-max-min) and (min-max-max), respectively. As a result, there exist

23 combinations, which each of them regard one element of the sequence if this is full in

range.

Table 2.4(a) Binary search of the element ranked 2nd.

 Data sequence

Level Operator 0 1 2 3 4 5 6 7 Rank 2nd

MSB-1 Min 0 0 0 0 1 1 1 1 -

2 Min 0 0 1 1 0 0 1 1 -

LSB-3 Max 0 1 0 1 0 1 0 1 -

 Technical University of Catalonia

Morphology based on bitwise processing 24

Table 2.4(b) Ranked 2nd element obtained by using duality property.

 Data sequence

Level Operator 0 1 2 3 4 5 6 7 Rank 2nd Rank 2nd (comp,)

MSB-1 Min 0 0 0 0 1 1 1 1 0 0

2 Min 0 0 1 1 1 1 1 1 0 0

LSB-3 Min 1 0 1 1 1 1 1 1 0 1

2.2.2 Bitwise Image Morphology

 Bitwise processing can be easily extended to images by using bitplane decomposition

as depicted in Fig. 2.1. Now, our goal is to derive from each bit plane its corresponding

morphological transformation at the same level of decomposition. In order to do so,

each level is processed with a block called Bitwise Morphology Transformation (BMT)

as shown in Fig. 2.2. Note that most of the blocks depend on the results obtained in the

decision levels of greater significance, similarly as what happened when processing a

data sequence.

 Fig. 2.2 Basic block diagram of a bitwise morphology processing.

Bitwise Morphology Transformation

The BMT block is the core of the algorithm, which relies on simple logic functions

and binary erosion operator. This block intends to generate the bit planes of the eroded

image by processing the corresponding bit planes in the original image.

I

It
LSB

It
MSB-3

It
MSB-2

It
MSB-1

It
MSB

IMSB-1

IMSB

Bitwise
Decomposition

BMT8

BMT7

IMSB-2 BMT6

BMT5

BMT1

IMSB-3

ILSB

Recomposition Ier

 Technical University of Catalonia

Morphology based on bitwise processing 25

Recall that, before using any morphological operator, certain image manipulation

has to be done in order to accomplish the desired result. In the development of the

algorithm we consider three basic assumptions that allow us to manipulate the bit

planes:

1. The bitwise decomposition of the original image follows a hierarchical order in

accordance with their bit of significance, which provides us information to

discriminate the rank of each pixel.

ெௌ஻ܫ ൐ ெௌ஻ିଵܫ ൐ ڮ ൐ ௅ௌ஻ାଵܫ ൐ ௅ௌ஻ (35)ܫ

2. The bit plane transformation ܫ௧ at certain level ℓ ሺܫℓ
௧ሻ only depends on the

interested and upper significance bit planes.

ℓܫ
௧ ൌ ࣠൫ܫℓ, ℓାଵܫ , … , ெௌ஻൯ܫ (36)

3. As occurs in the binary search minimization for a data sequence, two possible

cases might take place when we are manipulating a bitplane.

(a) No Candidate Discrimination (NCD): In this case, no information about the

possible candidates to be the minimum is available along certain neighborhood.

The set of neighborhoods that fulfill such condition compose a common area in

the bitplane that we have called NCD region.

(b) Minimum Candidate Discrimination (MCD): In this case, there exists at least

minimal information that let us discriminate in which positions of the

neighborhood the minimum is likely located. As a result, this condition

composes a complementary area to the NCD region, which we have named

MCD region.

In practical terms, the NCD relates when all the positions in the neighborhood are

set to 1, whereas the MCD when at least one of such positions is set to 0. Given that

these two cases can take place at any bitplane, we have to consider them as the

minimization search is performed, since binary level rectification has to be done only

in the NCD case.

 Technical University of Catalonia

Morphology based on bitwise processing 26

b-Level Tree Diagram

As we know, potential candidates to be the minimum are discriminated by applying

the Boolean addition of consecutive levels. The result of such operation is accumulated

and applied to the next level. When such bitwise accumulation does not provide

information about the minimum, we appeal to the binary level rectification, which

corrects the bitwise accumulation to the latest level where some information about the

minimum was available. Therefore, this rectification oblige us to consider both NCD

and MCD cases when each bit plane is processed, which lead us to decompose each

bitplane in two or more subsets. This sort of processing produces a b-level tree structure

as the one depicted in Fig. 2.3, where b denotes the necessary number of bits to

represent the whole data. On the other hand, ܵℓ
ࣶ and ܴℓ

ࣶ represent the bitwise

accumulation at ℓ-level and ࣶ-branch, with or without binary level rectification,

respectively.

Fig. 2.3 b-Level tree diagram.

Note that this tree only describes the bitwise accumulation of the complete bitplanes

according to the probable cases of discrimination for every branch and corresponding

level, but not the actual NCD and MCD regions of every branch in which they take

place. Such regions are, on the other hand, described in Fig. 2.4. At the left, the MSB-1

bit plane is divided into two regions. The gray shaded region ܰܦܥெௌ஻ିଵ
ଵ represents a

binary mask that shows the set of values where the NCD case was fulfilled at the MSB-

1 level in the 1st branch. On the other hand, the mask ܦܥܯெௌ஻ିଵ
ଵ represents the MCD

case. Consequently, each region is divided in two subregions in the next bit plane level,

ெௌ஻ܫ

ܴெௌ஻ିଵ ܵெௌ஻ିଵ

ܴெௌ஻ିଶ
ଵ ܵெௌ஻ିଶ

ଵ ܵெௌ஻ିଶ
ଶ ܴெௌ஻ିଶ

ଶ

ܴெௌ஻ିଷ
ଵ ܵெௌ஻ିଷ

ଵ ܴெௌ஻ିଷ
ଶ ܵெௌ஻ିଷ

ଶ ܵெௌ஻ିଷ
ଷ ܴெௌ஻ିଷ

ଷ ܵெௌ஻ିଷ
ସܴெௌ஻ିଷ

ସ

MSB-1 Level

MSB-2 Level

ெௌ஻ିଵܫ

MSB Level

ெௌ஻ିଶܫ

ெௌ஻ିଷܫ
MSB-3 Level

 Technical University of Catalonia

Morphology based on bitwise processing 27

since the NCD and MCD cases might occur on each of the original regions. Finally,

this sort of decomposition continues until the LSB plane level is reached.

Note that each bitplane is fragmented into independent regions, which agrees with

the number of branches generated on each level of the tree presented above. Such

segments will eventually serve as binary masks to extract the regions of interest of the

accumulators (i.e. ܵℓ
ࣶ and ܴℓ

ࣶ) after being processed.

Given the symmetry pattern of the algorithm, we can take advantage of such feature

to construct iteratively the tree based on the example depicted in Fig. 2.4.

Fig. 2.4 Regions of discrimination for two levels.

Algorithm

Several steps that have been used in previous sections to compute the minimum or

maximum of a data sequence are extended now to images. For simplicity, we assume

that an erosion of the image is being performed.

Step 1: Compute the bitwise accumulation for the two branches resulting from one node

of the tree in the precedent level. In this step, we just follow the structure of the tree

depicted in Fig. 2.3. Note that ࣛℓାଵ represents the bitwise accumulation of the node of

the precedent level.

 ܴℓ
ࣶ ൌ ࣛℓାଵ ׫ ℓ (37)ܫ

 ܵℓ
ࣶ ൌ ࣛℓାଶ ׫ ℓ (38)ܫ

Step 2: Perform the binary erosion for each branch, which is similar to apply the Max

or Min operator to a binary level of a data sequence.

 ࣟோ ൌ ܴℓ
ࣶ Θ se (39)

 ࣟௌ ൌ ܵℓ
ࣶ Θ se (40)

ெௌ஻ିଵܦܥܯ
ଵ

ெௌ஻ିଵܦܥܰ
ଵ

ெௌ஻ିଶܦܥܯ
ଵ

ெௌ஻ିଶܦܥܯ
ଶ

ெௌ஻ିଶܦܥܰ
ଵ

ெௌ஻ିଶܦܥܰ
ଶ

MSB-1 Level MSB-2 Level

 Technical University of Catalonia

Morphology based on bitwise processing 28

Step 3: Extract the eroded segment of each branch through the masks that corresponds

to the MCD and NCD cases.

 ࣬ℓ
ࣶ ൌ ࣟோ ת ℓܦܥܯ

ࣶ (41)

 ࣭ℓ
ࣶ ൌ ࣟ௦ ת ℓܦܥܰ

ࣶ (42)

Step 4: Get the boolean addition of the two cases of discrimination to yield a segment

of the erosion that corresponds to a given node of the tree diagram.

 ݅ℓ
ࣶ ൌ ࣬ℓ

ࣶ ׫ ࣭ℓ
ࣶ (43)

Step 5: Compute the NCD and MCD regions for each of the resulting subsets. Note

that ܰܦܥℓିଵ
ଵ and ܰܦܥℓିଵ

ଶ are the new regions where the NCD condition is established,

and in accordance with Fig. 2.4, these new regions are subsets of the previous regions of

upper levels. This happens because new information is introduced when step 1 takes

place, which redistributes the regions where the cases of candidate discrimination occur.

ℓିଵܦܥܰ
ࣶ ൌ ࣬ℓ

ࣶ (44)

ℓିଵܦܥܰ
ࣶାଵ ൌ ࣭ℓ

ࣶ (45)

ℓିଵܦܥܯ
ࣶ ൌ ࣬ℓ

ࣶതതതത ת ℓܦܥܯ
ࣶ (46)

ℓିଵܦܥܯ
ࣶାଵ ൌ ࣭ℓ

ࣶതതതത ת ℓܦܥܰ
ࣶ (47)

Finally, steps 1 to 5 are repeated in all the branches of a given level, the boolean

addition of all partial erosions will yield the final erosion in a given bitplane (i.e.

ℓܫ
௧ ൌ ݅ℓ

ࣶ ڂ ݅ℓ
ࣶାଵ ڂ … ݅ℓ

௝), where ݆ ൌ 2ெௌ஻ିℓ. This procedure is extended to the subsequent

bitplanes.

2.2.3 Proof of the Bitwise Erosion Algorithm

The algorithm of bitwise erosion proposed above is basically supported by the binary

search minimization method, which is a well-known minimization technique. However

its extension to images is not trivial and certain questions arise about its relation with

the method of threshold decomposition. Therefore, such relationship should be

investigated in order to shed some light about the theoretical insight that yields this

new approach. For this purpose, let us demonstrate how the erosion obtained through

the bitwise erosion algorithm yields the same mathematical expression as if the image

were eroded through threshold decomposition technique. We will assume that the image

has a dynamic range of 8, and the range comprised by using bitwise and threshold

decomposition is presented in Fig. 2.5 and Fig. 2.6, respectively.

 Technical University of Catalonia

Morphology based on bitwise processing 29

Fig. 2.5 Range comprised of every bitplane obtained by bitwise decomposition.

Fig. 2.6 Range comprised of every bitplane obtained by threshold decomposition.

7th-Level h7

1st-Level h1

2nd-Level h2

3rd-Level h3

4th-Level h4

5th-Level h5

6th-Level h6

7 6 54321 0

7 6 54321 0

7 6 54321 0

7 6 54321 0

7 6 54321 0

7 6 54321 0

7 6 54321 0

LSB Bitplane f1

2nd Bitplane f2

MSB Bitplane f3
7 6 54321 0

7 6 54321 0

7 6 54321 0

 Technical University of Catalonia

Morphology based on bitwise processing 30

Relationships Between Boolean and Real Number Algebra

Before to proceed to get the proof of the bitwise erosion algorithm, let introduce

some properties that allow translate boolean to real number algebra. These properties

can be very useful to ease the manipulation of boolean expressions and provide the

framework to support the relationship between threshold decomposition and the erosion

technique presented in this work. The following properties hold if and only if ݃, ݃ଵ, ݃ଶ א

ሼ0,1ሽ.

Complement:

 ҧ݃ ൌ 1 െ ݃ (48)

Multiplicative:

 ݃ଵ ת ݃ଶ ൌ ݃ଵ݃ଶ (49)

If ݃ଵ ك ݃ଶ:

 ݃ଵ ת ݃ଶ ൌ ݃ଵ (50)

Distributive:

 ݃ଵ ת ݃ଶതതത ൌ ݃ଵሺ1 െ ݃ଶሻ ൌ ݃ଵ െ ݃ଵ݃ଶ (51)

Additive:

݃ଵ ׫ ݃ଶ ൌ ݃ଵ ൅ ݃ଶ െ ݃ଵ ת ݃ଶ

 ൌ ݃ଵ ൅ ݃ଶ െ ݃ଵ݃ଶ (52)

If two binary images are disjoint ݃ଵ ת ݃ଶ ൌ :then ,׎

 ݃ଵ ׫ ݃ଶ ൌ ݃ଵ ൅ ݃ଶ (53)

 Technical University of Catalonia

Morphology based on bitwise processing 31

Erosion of the MSB bitplane

 The erosion of the MSB bitplane can be obtained straightforward, since there is no

other biplane of greater significance. Also note from Fig. 2.5 and Fig. 2.6 that ଷ݂ ൌ ݄ସ.

Therefore, the erosion in terms of the bitwise and threshold decomposition is presented

in (54).

ଷܫ
௧ ൌ ଷ݂ Θ ݁ݏ ൌ ݄ସ Θ (54) ݁ݏ

where se is an arbitrary structuring element.

Erosion of the 2nd bitplane

 In order to get the mathematical expression that yields the erosion of the 2nd

bitplane, we will follow the steps explained above in equations (37)-(47). First, we state

that the boolean addition of the 2nd bitplane with and without binary level rectification

can be obtained as shown in (55) and (56).

 ܴଶ
ଵ ൌ ଷ݂ ׫ ଶ݂ (55)

 ܵଶ
ଵ ൌ ଶ݂ (56)

 By following the steps depicted in eq. (39)-(42), we can reach (57) and (58). Observe

that ܦܥܯଶ
ଵ ൌ ଷܫ

௧ഥ and ܰܦܥଶ
ଵ ൌ ଷܫ

௧, given that they represent the regions where the NCD

and MCD cases were fulfilled in the past decision level. It is worth to point out that the

erosion of the MSB plane tell us about the positions where the elements in the

neighborhood were set to "1" (NCD). Therefore, the complement of this region

automatically leads us to the MCD region.

 ࣬ଶ
ଵ ൌ ሺܴଶ

ଵ Θ ሻ݁ݏ ת ଷܫ
௧ഥ (57)

 ࣭ଶ
ଵ ൌ ሺܵଶ

ଵ Θ ሻ݁ݏ ת ଷܫ
௧ (58)

The erosion of the second bitplane is obtained according to (43) and rewritten in (59).

ଶܫ
௧ ൌ ൣሺܴଶ

ଵ Θ ݁ݏሻ ת ଷܫ
௧ഥ൧ ׫ ሾሺܵଶ

ଵ Θ ሻ݁ݏ ת ଷܫ
௧ሿ (59)

 The NCD and MCD regions of the next decision level can be computed by using eq.

(44)-(47), yielding (60)-(63).

 Technical University of Catalonia

Morphology based on bitwise processing 32

ଵܦܥܰ
ଵ ൌ ࣬ଶ

ଵ (60)

ଵܦܥܰ
ଶ ൌ ࣭ଶ

ଵ (61)

ଵܦܥܯ
ଵ ൌ ࣬ଶ

ଵതതതത ת ଶܦܥܯ
ଵ (62)

ଵܦܥܯ
ଶ ൌ ࣭ଶ

ଵതതത ת ଶܦܥܰ
ଵ (63)

Now we will focus on express (59) in terms of the h-bitplanes, which represent the

decomposition of the image by using TD property. Let rewrite (59) in its expanded

form as stated in (64).

ଶܫ
௧ ൌ ൣ൫ሺ ଷ݂ ׫ ଶ݂ሻ Θ ൯݁ݏ ת ଷ݂ Θ തതതതതതതതത൧݁ݏ ׫ ሾሺ ଶ݂ Θ ሻ݁ݏ ת ሺ ଷ݂ Θ ݁ݏሻሿ (64)

We can start to simplify this equation by using the property that relates erosion with

set operators; such property was previously established in (9), resulting (65).

ଶܫ
௧ ൌ ൣ൫ሺ ଷ݂ ׫ ଶ݂ሻ Θ ൯݁ݏ ת ଷ݂ Θ തതതതതതതതത൧݁ݏ ׫ ሾሺ ଶ݂ ת ଷ݂ሻ Θ ሿ (65) ݁ݏ

Note that in the present form of (65) is difficult to get a simpler expression in terms of

set operators. Therefore, the relationships stated in (48)-(53) might help us to translate

boolean to real number algebra. Then, applying (51) and (9) in (65) lead us to (66).

ଶܫ
௧ ൌ ൣሺ ଷ݂ ׫ ଶ݂ሻ Θ ݁ݏ െ ൫ሺ ଷ݂ ׫ ଶ݂ሻ ת ଷ݂൯ Θ ൧݁ݏ ׫ ሾሺ ଶ݂ ת ଷ݂ሻ Θ ݁ݏ ሿ (66)

Note that by helping us from Fig. 2.5 and the property stated in (50) and we can assert

that ሺ ଷ݂ ׫ ଶ݂ሻ ת ଷ݂ ൌ ሺ ଷ݂ ת ଷ݂ሻ ׫ ሺ ଶ݂ ת ଷ݂ሻ ൌ ଷ݂, yielding (67).

ଶܫ
௧ ൌ ሾሺ ଷ݂ ׫ ଶ݂ሻ Θ ݁ݏ െ ଷ݂ Θ ሿ݁ݏ ׫ ሾሺ ଶ݂ ת ଷ݂ሻ Θ ሿ (67) ݁ݏ

Now, we can realize that in (67) the union set may be replaced by a sum applying (52),

which lead us to (68).

ଶܫ
௧ ൌ ሺ ଷ݂ ׫ ଶ݂ሻ Θ ݁ݏ െ ଷ݂ Θ ݁ݏ ൅ ሺ ଶ݂ ת ଷ݂ሻ Θ (68) ݁ݏ

Finally, we can help us from Fig. 2.5 and Fig. 2.6 to express (68) in terms of h-

bitplanes, since ଷ݂ ׫ ଶ݂ ൌ ݄ଶ, ଷ݂ ൌ ݄ସ, ଶ݂ ת ଷ݂ ൌ ݄଺. Thus, we can reach (69).

ଶܫ
௧ ൌ ݄ଶ Θ ݁ݏ ൅ ݄଺ Θ ݁ݏ െ ݄ସ Θ (69) ݁ݏ

 Technical University of Catalonia

Morphology based on bitwise processing 33

Erosion of the 3rd bitplane

If we follow the structure of the decision tree depicted in Fig. 2.3, we can see that in

this level the algorithm processing is divided in two branches. Therefore each branch

can be analyzed independently by considering its corresponding NCD and MDC cases

and the bitplane accumulation from the 2nd bitplane. Thus, we proceed to get binary

erosion corresponding to the 1st branch.

A similar procedure to the one performed in the 2nd bitplane is now followed for the

1st branch. Therefore, we directly present the erosion for each of the cases. Note that

ଵܦܥܰ
ଵ and ܦܥܯଵ

ଵ were previously computed in (60) and (62).

 ࣬ଵ
ଵ ൌ ሾሺ ଷ݂ ׫ ଶ݂ ׫ ଵ݂ሻ Θ ሿ݁ݏ ځ ൣ࣬ଶ

ଵതതതത ת ଷܫ
௧ഥ൧ (70)

 ଵ࣭
ଵ ൌ ሾሺ ଷ݂ ׫ ଵ݂ሻ Θ ሿ݁ݏ ת ࣬ଶ

ଵ (71)

In order to simplify (70) in terms of h-bitplanes, consider that ଷ݂ ׫ ଶ݂ ׫ ଵ݂ ൌ ݄ଵ and

the results obtained in the previous bitplane, which lead us to state (72) and finally

assert (73).

 ࣬ଵ
ଵ ൌ ሺ݄ଵ Θ ݁ݏሻሺ1 െ ݄ଶ Θ ݁ݏ ൅ ݄ସ Θ ሻሺ1݁ݏ െ ݄ସ Θ ሻ (72)݁ݏ

 ࣬ଵ
ଵ ൌ ݄ଵ Θ ݁ݏ െ ݄ଶ Θ (73) ݁ݏ

On the other hand, (71) can be manipulated in a similar way as shown in (74).

 ଵ࣭
ଵ ൌ ሾሺ ଷ݂ ׫ ଵ݂ሻ Θ ሿሾ݄ଶ݁ݏ Θ ݁ݏ െ ݄ସ Θ ሿ (74)݁ݏ

Given that the property of multiplication is commutative we can recompose (74) as

stated in (75).

 ଵ࣭
ଵ ൌ ൫ሺ ଷ݂ ׫ ଵ݂ሻ ת ݄ଶ൯ Θ ݁ݏ െ ൫ሺ ଷ݂ ׫ ଵ݂ሻ ת ݄ସ൯ Θ (75) ݁ݏ

By using simple algebra of sets we can get (76).

 ଵ࣭
ଵ ൌ ݄ଷ Θ ݁ݏ െ ݄ସ Θ (76) ݁ݏ

Finally, the erosion of the 1st branch can be obtained by substituting (73) and (76) in

(77), which yields (78).

 ݅ଵ
ଵ ൌ ࣬ଵ

ଵ ׫ ଵ࣭
ଵ (77)

 ݅ଵ
ଵ ൌ ݄ଵ Θ ݁ݏ ൅ ݄ଷ Θ ݁ݏ െ ݄ଶ Θ ݁ݏ െ ݄ସ Θ (78) ݁ݏ

 Technical University of Catalonia

Morphology based on bitwise processing 34

For the 2nd branch we can get

 ࣬ଵ
ଶ ൌ ሾሺ ଶ݂ ׫ ଵ݂ሻ Θ ځሿ݁ݏ ଵܦܥܯ

ଶ (79)

 ଵ࣭
ଶ ൌ ሺ ଵ݂ Θ ଵܦܥܰځሻ݁ݏ

ଶ (80)

Given that ܦܥܯଵ
ଶ has been previously defined in (63), we can redefine (79) as in (81).

 ࣬ଵ
ଶ ൌ ሾሺ ଶ݂ ׫ ଵ݂ሻ Θ ଶ࣭ൣځሿ݁ݏ

ଵതതത ת ଷܫ
௧൧ (81)

Consider that ሺ ଶ݂ ׫ ଵ݂ሻ ת ଷ݂ ൌ ݄ହ and ࣭ଶ
ଵ was derived in the 2nd bitplane, which yields

(82) and its simplification (83).

 ࣬ଵ
ଶ ൌ ሺ݄ହ Θ ሻ(1݁ݏ െ ݄଺ Θ (82) (݁ݏ

 ࣬ଵ
ଶ ൌ ݄ହ Θ ݁ݏ െ ݄଺ Θ (83) ݁ݏ

On the other hand, we can simplify (80) by using (61) leading us to (84) and (85).

 ଵ࣭
ଶ ൌ ሺ ଵ݂ Θ ሻ݁ݏ ת ࣭ଶ

ଵ (84)

 ଵ࣭
ଶ ൌ ሺ ଵ݂ ځ ݄଺ሻ Θ (85) ݁ݏ

From Fig. 2.5 and 2.6, we can state that ଵ݂ ځ ݄଺ ൌ ݄଻, yielding (86).

 ଵ࣭
ଶ ൌ ݄଻ Θ (86) ݁ݏ

It is interesting to observe that any subset of the bitplanes that correspond to one of

the discrimination cases (i.e. ࣭ℓ
ࣶ, ࣬ℓ

ࣶ) can be regarded by a difference of the eroded h-

bitplanes, which exactly correspond to the differences of translating h-bitplanes to

bitwise bitplanes as you can observe in Fig. 2.5 and Fig. 2.6. Now, we can recompose

the erosion of the 2nd branch in terms of the h-bitplanes as presented in (87). Given

that the elements at both sides of the union set are disjoint we can use the property

derived in (53), which results (88).

 ݅ଵ
ଶ ൌ ሺ݄5 Θ ݁ݏ െ ݄6 Θ ሻ݁ݏ ׫ ሺ݄7 Θ ሻ (87)݁ݏ

 ݅ଵ
ଶ ൌ ݄7 Θ ݁ݏ ൅ ݄5 Θ ݁ݏ െ ݄6 Θ (88) ݁ݏ

 Technical University of Catalonia

Morphology based on bitwise processing 35

The boolean addition of the 1st and 2nd branches will finally lead us to the erosion of the

3rd bitplane as shown in (89).

ଵܫ

௧ ൌ ݅1
1 ׫ ݅1

2 ൌ ݄ଵ Θ ݁ݏ ൅ ݄ଷ Θ ݁ݏ ൅ ݄ହ Θ ݁ݏ ൅ ݄଻ Θ ݁ݏ െ ڮ

ڮ െ ݄ଶ Θ ݁ݏ െ ݄ସ Θ ݁ݏ െ ݄଺ Θ (89) ݁ݏ

Recomposition of the Bitwise Eroded Image

 The eroded multilevel image can be recomposed from its bitplanes as shown in (90)

and (91).

௘௥ܫ ൌ 2ଶ כ ଷܫ
௧ ൅ 2ଵ כ ଶܫ

௧ ൅ 2଴ כ ଵܫ
௧ (90)

௘௥ܫ ൌ 4 כ ሺ݄ସ Θ ݁ݏሻ ൅ 2 כ ሺ݄ଶ Θ ݁ݏ ൅ ݄଺ Θ ݁ݏ െ ݄ସ Θ ሻ݁ݏ ൅ ڮ

ڮ ൅ ݄ଵ Θ ݁ݏ ൅ ݄ଷ Θ ݁ݏ ൅ ݄ହ Θ ݁ݏ ൅ ݄଻ Θ ݁ݏ െ ݄ଶ Θ ݁ݏ െ ڮ

ڮ െ ݄ସ Θ ݁ݏ െ ݄଺ Θ ݁ݏ

(91)

 Finally, the simplification of (91) leads us to (92).

௘௥ܫ ൌ ݄ଵ Θ ݁ݏ ൅ ݄ଶ Θ ݁ݏ ൅ ݄ଷ Θ ݁ݏ ൅ ݄ସ Θ ݁ݏ ൅ ݄ହ Θ ݁ݏ ൅ ڮ

ڮ ൅ ݄଺ Θ ݁ݏ ൅ ݄଻ Θ (92) ݁ݏ

Note that the result is the same as if we were used the Threshold Decomposition

technique, and this in turn not only proves that the Bitwise Erosion Algorithm is an

erosion strictly speaking, but also provides significant theoretical insight about the

relationship between monotone and non-monotone increasing image decomposition. As

noted, bitwise decomposition is a highly compact binary representation of a multilevel

signal in comparison to threshold decomposition, which involves intensive non-linear

manipulation in order to unfold bitwise bitplanes into h-bitplanes. Also, it is worth to

point out the fact that given the symmetry of the bitwise decomposition, the analysis

presented here can be extended for greater number of bitplanes since every subset of a

bitplane in certain level generates two subsets in the following one. As a result, every

eroded subset will yield the difference of the eroded h-bitplanes that compose such

subset. Another point that should be remarked is the importance of the properties

presented in (48)-(53), since they are the key to link algebra of sets to real number

algebra. Therefore, its application can be extended to other rank operators and enable

their implementation under different block configurations and computer architectures,

which may help to optimize their performance.

 Technical University of Catalonia

Morphology based on bitwise processing 36

2.2.4 Bitwise Dilation and Multiple Transformations

The dilation of an image can be obtained analogously as we did with data sequences.

Thus, two options can be followed: 1. Dilation by duality. 2. Transform the bitwise

erosion algorithm to an algorithm that leads the dilation straightforward by using both

duality property and the De Morgan's theorem. The former approach can be very

suitable for applications where erosion and dilation operators are employed in the

processing, since the same algorithm is used to compute both approaches and just a

minimum overhead is necessary to obtain the dilation. The steps that should be

followed to obtain the dilation are stated in the duality property presented in (7).

1. Get the one's complement of the bitplanes and obtain the reflection of the

structuring element if this is not symmetric.

2. Apply the Bitwise Erosion Algorithm.

3. Get the one's complement of the transformed bitplanes.

As noted, the overhead introduced is a simple complement operator (NOT), which is

applied in the input and output bitplanes.

On the other hand, if an application demands only dilation operator it would be

more convenient to have an approach that might leads us to the dilation

straightforward. By using the De Morgan's theorem (32) and (33), we can convert the
bitwise erosion algorithm to actually a dilation transformation. Such transformation can
be derived easily by replacing the union set operator ׫ by the intersection ת, and the
erosion symbol Θ by dilation ْ, in the equations (37)-(47). Note that the complexity is
the same as in the case of the of the bitwise erosion algorithm, but no overhead is
introduced as in the case of dilation by duality.

Multiple erosion/dilation can be achieved by using the chain rules previously
established in (16) and (17). If a priori we know that multiple morphological
transformations will be applied to the image, we can transform each bitplane directly
by dilating the structuring element in the number times that the image will be eroded.
This new structuring element it is applied to the bitwise erosion algorithm yielding the
corresponding erosion bitplanes as if they were obtained by consecutives erosions.
Finally, opening and closing operators can be also derived from the bitwise erosion
algorithm if erosion and dilation are applied in tandem.

 37

Chapter 3

Results

“Science is but an image of the truth”

-Francis Bacon-

3.1 Bitplane Erosion

In order to illustrate how the bitwise erosion algorithm works at a bitplane level, let

obtain the erosion of the bitplane decomposition of the lena image previously presented

in Fig. 2.1. Moreover, we will relate the resulting eroded bitplanes with the equations

obtained in the proof of the algorithm described in section 2.2.4. It is worth to mention

that the equations derived are valid even though the dynamic range of lena image is

not 8. The erosion is performed twice with a cross shape 4-connected structuring

element.

The erosion of the most significant bitplane is depicted in Fig. 3.1(b). Recall that the

bitwise erosion of the MSB bitplane is straightforward, thus we can observe how the

feather in the hat and some other details in the background were removed respect to

the original bitplane Fig. 3.1(a). Note also that all the regions set to "1" represent the

NCD region of the following bitplane, whereas its complement represents the MCD.

Fig. 3.1 (a) Original MSB bitplane (b) Bitwise erosion of the MSB bitplane.

 Technical University of Catalonia

Results 38

For the second bitplane we know that the bitwise erosion will be splitted in two

cases, each of them corresponds to the MCD and NCD conditions and processed

according to equations (57) and (58). The resulting images are presented in Fig. 3.2(b)

and Fig. 3.2(c).

Note that Fig. 3.2(b) is very close to the complement of Fig. 3.1(b), this is because the

new information provided by the second bitplane is restricted to the MCD region,

which is the complement of the erosion of the first bitplane. On the other hand, Fig.

3.2(c) shows the contribution of the second bitplane in the NCD region. At the end, in

Fig. 3.3(a) the union set of the two regions is presented. Once again the unconnected

pixels were removed and the edges of solid structures were reduced. However, some

regions seem to be dilated instead when we compare the upper part of Fig. 3.3(a) and

the original bitplane presented in Fig. 3.2(a). This happens because the contribution of

the first plane fills some of the holes of the second bitplane, thus some regions look as if

they were dilated.

In order to contrast the effect of applying directly the erosion operator to a bitplane

without considering discriminative cases let introduce Fig. 3.3(b). On the other hand,

the error generated by these two approaches it is depicted in Fig. 3.3(c). Note that the

differences are significant and the main errors lay on the contours as well as regions

where the contribution of the first bitplane is considerable; that is, the regions that

looked dilated (i.e. top of the hat, upper regions of the bitplane). This example proves

that TD property does not hold under a bitwise decomposition and the errors in the

resulting gray-scale image might become very noticeable, especially in the contours. It

is worth to remark that the binary images in Fig. 3.2 (b)-(c) will be used to compute

the discriminative cases in the following decision level.

(a) (b) (c)

Fig. 3.2 (a) Original 2nd bitplane. (b) Erosion of the MCD branch ሺ࣬ଶ
ଵሻ (c) Erosion of the

NCD branch ሺ࣭ଶ
ଵሻ.

 Technical University of Catalonia

Results 39

 (a) (b) (c)
Fig. 3.3 (a) Eroded 2nd bitplane ሺܫଶ

௧ሻ (b) Erosion without discriminative conditions (c)
Error.

For the third bitplane, every discriminative region in the previous decision level

generates an independent branch in the current level, which we have called 1st and 2nd

in the mathematical development performed in section 2.2.4. Fig. 3.4(b) and Fig. 3.4(c)

shows the erosion that correspond to the MCD and NCD conditions for the 1-branch,

respectively. On the other hand, Fig. 3.4(d) and Fig. 3.4(e) represent the same

conditions but for the 2-branch. The original bitplane presented in Fig. 3.4(a) may be

contrasted with the resulting bitwise erosion in Fig. 3.4(f).

It is interesting to observe that the resulting union set of all the discrimination cases

returns a bitplane that looks dilated rather than eroded. Once again, this effect is result

of the boolean addition of the precedent bitplanes; nevertheless, we can see some

regions at the right side of the bitplane that were evidently eroded. Note that the

bitplane in Fig, 3.4(e) is almost empty, which means that we are very certain about the

minimum state information of the bitplane derived from the 2nd branch. In other words,

it is very likely that at certain level of processing, some bitplanes of the discrimination

cases will be completely filled with zeros; this implies that the binary search

minimization technique has found the minimum in the entire region of discrimination

and no exhaustive search should be continued.

Identifying when empty bitplanes occur, help to speed the algorithm up and save

resources. Since every bitplane generates two bitplanes in the following levels and

continues successively in this way, empty bitplanes help to improve the execution time

as those appear in the upper levels of the tree. The number of empty bitplanes depends

on the histogram distribution of the image. That is, if the image has a low dynamic

range and the modes of the histogram have low variance, it is very probable that the

number of empty bitplanes will be considerable and the erosion will be achieved faster.

Conversely, if the histogram tends to be uniform distributed along the whole dynamic

range, exhaustive search is required to reach the entire erosion, and it is complexity

might be comparable to the threshold decomposition approach in terms of number of

bitplane erosions.

 Technical University of Catalonia

Results 40

(a) (b) (c)

 (d) (e) (f)

Fig. 3.4 (a) Original 3rd bitplane. Erosion of the (b) MCD region of 1-branch (c) NCD

region of the 1-branch (d) MCD region of 2-branch (e) NCD region of the 2-branch

(f) Bitwise erosion of the 3rd bitplane.

Normally, natural images do exhibit neither a high dynamic range nor a uniform

distribution, which supports the convenience of our approach in relation to TD. In this

sense the present approach reveals some entropic properties, since the computation time

is greater when the entropy is maximum (uniform distributed) than when is tightly

concentrated in some gray-scale range. These properties will be discussed in detail in

the following section.

Finally, the transformation of subsequent bitplanes is performed following the steps

of the bitwise erosion algorithm and the structure of the level tree diagram till reach

the last bitplane.

 Technical University of Catalonia

Results 41

3.2 Entropic Properties of the Bitwise Erosion
Algorithm

As discussed in previous section, the histogram of the image to be processed with the

Bitwise Erosion Algorithm plays a key role in the processing time. Let us introduce

some examples in order to show the performance of the algorithm in two opposed

circumstances.

Fig. 3.5(a) shows an image of the moon with a high dynamic range, while Fig. 3.5(b)

shows a test image with low dynamic range. The respective histograms are depicted in

Fig. 3.6(a) and Fig. 3.6(b).

(a) (b)

Fig. 3.5 (a) High (b) Low dynamic range image.

(a) (b)

Fig. 3.6 Histogram of the (a) Moon (b) Girl.

The algorithm was run in Matlab to test the processing time of these two images

with the same resolution 256x256. In Table 3.1, the processing times of the two images

under the BEA and TD approaches is presented. Note that the processing time under

bitwise erosion algorithm is much lower than threshold decomposition, even though the

algorithms are not implemented in real time. There are several reasons by which BEA

 Technical University of Catalonia

Results 42

outstands: 1. No excessive overhead is introduced when the gray-scale image is

decomposed and recomposed. 2. The algorithm is able to determine when it is not

necessary to carry out exhaustive search, which avoids extra computation in subsequent

decision levels. 3. Bitplanes are packed and processed as a one-dimensional array with

elements that have a 32-bit unsigned integer format. This sort of packing is usually

employed to speed binary morphological operators, and allow manipulation at bitwise

level. This last feature enables us to process the entire algorithm in a packed form and

only unpack the bitplanes resulting of the transformation. This is not possible under a

TD approach given that as a bitplane is transformed it is added to the previous

bitplanes, and such a numeric addition is not supported when the bitplane is packed.

 On the other hand, the number of binary erosions is a reliable measure that tells us

how the algorithm performs independently on the computer architecture in which is

implemented. This is measure is based on the fact that the binary erosion of a bitplane

is the main consuming time processing in both approaches. Also, the complexity in

terms of number of erosions is the same when the images have maximum entropy (i.e.

255 erosions for an 8-bit image). Note that the erosion of the girl under BEA approach

was performed faster than the moon image thanks to the entropic properties of the

algorithm. As a result, it was necessary only 155 erosions, while in the image of the

moon 86 extra erosions are required. Moreover, the images treated with the BEA show

some reduction in the number of erosions in comparison to the images eroded with TD.

It is important to remark that in order to speed up the processing time of the TD

approach when the image has low dynamic range (e.g. Image of the girl), it is

mandatory to know the maximum and minimum of the image to reduce the number of

erosions, while in the BEA it is not necessary to know a priori this information.

Finally, in the last column of Table 3.1 the percentage of saved time for each

approach is presented. This percentage is measured in relation to the maximum time

spent to compute the erosion of a uniform distributed image under TD approach.

Observe that BEA leads to significant saving time, which becomes more evident when

the resolution of the image increases.

 Table 3.1 Assessment of the entropic properties of BEA and TD approaches.

 Bitwise Erosion Algorithm Threshold Decomposition

 Girl Moon Girl Moon

Time 0.428s 0.734s 1.422s 2.422s

No. of Erosions 155 241 178 255

% of Saving time 82.33 70 41.3 0

 Technical University of Catalonia

Results 43

3.2.1 Speed and Quantization Tradeoff

As discussed previously, the speed of the BEA strongly depends on the image

distribution. Therefore, it would be interesting to know the performance of the

algorithm when the histogram is manipulated to get better processing times. A logical

next step is to linearly map the image into the dynamic range of b bits. The intention is

to avoid processing bitplanes as the bit quantization decreases, and check the error

produced by such quantization. In Fig. 3.7 we can observe how the quality of the

eroded image degrades as the bit quantization decreases. However, it should be also

mentioned that from the qualitative point of view, the error or distortion produced by

the quantization is not noticeable at first glance for Fig. 3.7(a)-(c). Therefore, if what

matters after performing the erosion is the visual effect produced, it would be

convenient to quantize the image with a lower precision. This approach would be very

helpful when the image has high resolution and the erosion has to be performed in real

time.

Note that this sort of manipulation yields a tradeoff between processing speed and

quality of the eroded image. In some sense, this tradeoff resembles the one existing in

image compression. However, in this case, the aim is not reduce the image data size,

but the processing time.

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Fig. 3.7 Bitwise erosion for several levels of bit quantization.

 Technical University of Catalonia

Results 44

In order to make more evident the tradeoff between the processing speed and

quantization we present in Fig. 3.8 the execution time and the PSNR for several bits of

quantization. In Fig. 3.8(a) we can observe that the execution time decreases

exponentially as the number of quantization levels is reduced. The improvement in the

processing time is very significant even when the precision has been reduced in 1 bit. It

is worth to mention that the timings presented here were obtained considering that the

image has a 512x512 pixel resolution running under Matlab. At the moment, the aim is

only to show the behavior of the algorithm; however, these figures become smaller

either when implemented in a lower level language or under the Eye-RIS architecture.

On the other hand, in Fig. 3.8(b) we can assess the degradation suffered by reducing

the image precision. Fortunately, the loss of the image quality does not decay

exponentially, but nearly in a uniform way. Considering the logarithmic response of the

eye to intensity variations, the behavior of the curve justifies applying some bit

quantization without compromising too much the quality of the image and speeding up

the processing time.

Fig. 3.8 (a) Execution time (b) PSNR, for several levels of bit quantization.

In Fig. 3.7 we observed in some cases that even with 5-bit quantization, the erode

image seem to be free of the visual quantization effects, which tell us that the erosion

could be carried out in 0.36s rather than 0.859s. In several tests, we have found that

usually 5 or 6 bit quantization is enough to get the erosion of an image without

compromising too much its quality. This would imply a saving time of around 50% of

the total time required to process the image with 8-bit quantization.

 A non-linear mapping applied to the histogram that intends to improve the

processing speed might yield very bad results in terms of the image quality. This means

that, in addition to the quantization effects, some errors are introduced due to the

alteration of the rank order in the neighborhood of the structuring element, which leads

us to get some parts of the image that are eroded incorrectly. As a result, the PSNR

might decay exponentially rather than uniformly.

 Technical University of Catalonia

Results 45

The entropic properties of the bitwise erosion algorithm presented in this section

might have significant repercussions in applications such as visual prosthetics where

morphological operators are largely employed to extract edges and shapes. Actual

algorithms to compute morphological operations are rather complicated to be embedded

in a visual implant given the reduced chip area and might not perform in real time.

Recently, a somewhat similar approach to the BEA was proposed by Jabakhanji and

Shams [18] to be used for detecting edges in visual implants. However, their proposal

stands on performing the straight erosion of the binary planes decomposed in a bitwise

fashion. As we know, strictly speaking such treatment does not yield the correct

erosion, since the bitwise decomposition is not monotone increasing. Therefore, applying

this approach might yield inaccurate results. Conversely, in the previous chapter we

proved that bitwise erosion algorithm leads to formal erosion, and along this section we

have shown that the algorithm can tradeoff its complexity with some loss in the image

quality, which can be estimated. As a result, the BEA provides a solid framework that

can be used to deal with morphological operators in reduced chip areas such as visual

implants. Finally, we may conclude that the image distribution is an important feature

that determines the performance of the BEA. The entropic properties envision several

applications in which the algorithm can be very suitable. On the other hand, we show

that the threshold decomposition approach demands computation requirements that

overpass the complexity of diverse embedded applications and introduces considerable

overhead when the image is being decomposed and recomposed.

3.3 Morphological Rank Spectrum

 In this section will be presented some features of the bitwise erosion algorithm that

are generated thanks to flexibility of the algorithm. A wide range of morphological

operators are possible to be implemented by slightly modifying the BEA. As we know,

the bitwise erosion algorithm is based on the binary search minimization, which is not

only able to find the minimum value in a finite sequence, but also regard any element

of such sequence. Minimum changes have to be done to the BEA to perform such a

rank searching as we did in section 2.2, but for a bitplane level. That is, we have to set

the Max or Min operator on each bitplane to regard the desired value. In our case, we

are interested in investigating the effect produced when the bitplanes are neither eroded

nor dilated in all the bitplanes. Recall that in order to obtain an erosion, the

combination of rank operators that yield such morphological filter is (Min-Min-Min-

Min-Min-Min-Min-Min) for an image with a bitdepth of 8. This means that in all the

bitplanes in which the image is splitted, a minimization is carried out. Moreover, the

position of every operator is linked to the hierarchical order of each bitplane.

Conversely, for a dilation the combination is (Max-Max-Max-Max-Max-Max-Max-Max).

 Technical University of Catalonia

Results 46

As a result, there exist 256 different combinations that can be used. As a matter of

general interest, it would be convenient to look for a set of combinations that might

lead us from an erosion to a dilation. In other words, the spectrum of morphological

transformations that lies in between. In order to analyze such effect, we decided to

progressively change the Min to Max operator from the least to most significant

bitplane. To simplify the addressing of each combination, we established the following

convention n Min - m Max, where n is the number of the most significant bitplanes

whose operator is a minimum, whereas m is the number of the remaining bitplanes

whose operator is a maximum. Note that the order of the Max/Min operators in this

notation can be switched accordingly in order to get another set of rank combinations.

 In Fig. 3.9 we can observe the result of applying several combinations that go from

the erosion to dilation. Note that the bit planes are regarded in the form n Min — m

Max, which means that a minimization is performed in the most significant bitplanes,

and thus an erosion effect will be produced in the resulting image. When the less

significative bitplanes are set to a maximum operator (i.e. Figs. 3.9 (b)-(c)) there is not

significant changes respect to Fig. 3.9(a), which represents full erosion. On the other

hand, in Figs. 3.9(d)-(f) we can start to see some variations that suggest that white

(maxima) areas are being enhanced. Finally, in Fig. 3.9(g)-(h) show that they are more

related to Fig. 3.9(i), which represents the combination that yields a full dilation. Note

also, that in these last cases most of the bitplanes are set to Max.

 (a) (b) (c)

 (d) (e) (f)

 Technical University of Catalonia

Results 47

 (g) (h) (i)

Fig. 3.9 Morphological transformations by using several Min/Max bitplane combinations.

On the other hand, it would be also interesting to know how we can reach

progressively an erosion from a dilation. In this case, we tried the combinations where

the maximum is applied on the most significant bitplanes, that is, we are considering

the notation m Max - n Min. As a result, most of the resulting images will be more

alike to a dilation as you can see in Figs. 3.10(b)-(c). Note that in Figs. 3.10(d)-(f) dark

areas tend to be enhanced progressively, which proves that the sequence combinations

tend from dilation to erosion as expected. Finally, in Figs. 3.10(g)-(i) we can observe

that the combinations in which most of the bitplanes are set to a minimum operator,

the erosion effect was more noticeable. Most of the changes become more evident in

the hat, feathers, and background of the image.

(a) (b) (c)

 Technical University of Catalonia

Results 48

 (d) (e) (f)

 (g) (h) (i)

Fig. 3.10 Morphological transformations by using several Max-Min bitplane combinations.

 In Fig. 3.9 and 3.10 we have seen the morphological transformations that exist

between an erosion and dilation when the transformation is performed at a bitplane

level. We have noted that the combinations that lead us from an erosion to dilation and

vice versa depend strongly on the operator applied to the most significant bitplanes.

This fact explains why the transition is performed in a logarithm fashion.

It is worth to remark that the bitwise erosion algorithm provides significant

versatility in terms of the number of applications in which can be used. Also, note that

the overhead introduced to obtain such a morphological spectrum is minimum, since

the duality property enables us to perform erosion and dilation with the same BEA

implementation.

Finally, ongoing research on such morphological transformation is being performed to

unveil the relationship with other well-known non-linear filters such as the median and

range filters, while some attempts to establish a formal mathematical framework are

also being developed.

 Technical University of Catalonia

Results 49

3.4 Algorithm Complexity

 As mentioned previously, one of the main advantages of the bitwise erosion

algorithm over threshold decomposition is the low overhead introduced when the

multilevel image is decomposed and recomposed. This assertion can be supported by a

complexity analysis as the one provided below. Such analysis is performed considering

that the image occupies the full dynamic range, 8 bit depth, and n x n pixel resolution.

 Firstly, let us derive the complexity of performing an image erosion by using the

threshold decomposition approach. As we know, the algorithm is described in three

steps:

1. Decomposition of the gray-scale into bitplanes by using TD property. This step

requires an array of n x n digital comparators of 8 bits. According to the logic

diagram of a typical comparator such as sn74ls518 [19], each device is composed

in terms of logic gates as stated in (93).

 ௖ܰ௢௠௣ ൌ 8 ܱܴܺܰ ൅ (93) ܦܰܣ7

Also, we know that 1 XNOR = 4 NAND, and n2 comparators are necessary to

derive in parallel one bitplane. Therefore, the total hardware required is

presented in (94).

 ௖ܰ௢௠௣ ൌ 39 ݊ଶ ݏ݁ݐܽ݃
(94)

2. The erosion is applied to each bitplane that results from the threshold

decomposition. Since we are assuming that the image is full in range, 28-1

bitplanes will be generated from the decomposition and thus the number of

binary erosions. Given that there exist several methods to implement binary

erosion and it is hard to say how many logic gates are necessary for each

approach. Therefore, it is more convenient keep our analysis simple by only

considering the number of erosions required. As a result in (94) we state that we

need 255 bitplane erosions.

 ௘ܰ௥௢௦௜௢௡ ൌ 255 (95)

3. The recomposition of the eroded image is obtained by stacking. That is, the

numeric addition of all the bitplanes is performed. Consequently, n2 full adders

of 8 bits are necessary to perform the stacking in parallel at a bitplane level.

Normally, a full adder of 8 bits is composed in terms of logic gates as presented

in (96).

 ௔ܰௗௗ ൌ 16 ܱܴܺ ൅ 16 ܦܰܣ ൅ 8 ܱܴ ൌ 88 (96) ݏ݁ݐܽ݃

 Technical University of Catalonia

Results 50

Recall that 1 XNOR = 4 NAND and the complexity of a OR gate is equal to a

AND gate. Finally, the numbers of adders depend on the resolution of the image,

which lead us to (97).

 ௦ܰ௧௔௖௞ ൌ 88 ݊ଶ (97) ݏ݁ݐܽ݃

Now, we will focus on analyze the complexity of the bitwise erosion algorithm. Unlike

to the TD approach, in the bitwise erosion algorithm no further processing is required

than reading/writing on the data of the bit fields when the image is decomposed and

recomposed. However, the algorithm requires some bitwise manipulation at a bitplane

level to carry out an erosion. In past chapters we have described the BEA through the

equations (37) - (47). We can easily realize that steps 1, 3, 4, 5 only require two kind of

operators, OR and AND gates, which replace the union (׫) and intersection (ת)

operators, respectively. As a result, the hardware required to accomplish such

operations at bitplane level is presented in (98).

 ௦ܰ௘௧ ൌ 2݊ଶ (98) ݏ݁ݐܽ݃

On the other hand, in step 2 of the algorithm is shown that single erosion is

performed by each region of the discriminative cases established by the level decision

tree. The number of regions grows by a factor of 2 from one level to other. Based on

this, we can say that the complexity in terms of binary erosions of the BEA is the same

as the TD, as demonstrated in (99).

 ௘ܰ௥௢௦௜௢௡ ൌ ෍ 2௜
଻

௜ୀ଴

ൌ 2଼ െ 1 ൌ 255 (99)

It is important to remark that this figure only takes place when the histogram is

roughly uniform distributed along the whole dynamic range. Otherwise, this number

may be significant reduced given the entropic properties of the BEA.

Assessing the hardware complexity of the two erosion approaches, we can readily

conclude that BEA reduces significantly the hardware requirements and that the

bitplane decomposition and stacking represent a serious burden for the TD approach as

exposed previously.

A summary of the complexity of the TD and BEA algorithm is presented in Table

3.2. The hardware complexity was computed based on the basic building blocks that

construct the algorithm. However, the complexity also depends on the number of times

in which such blocks have been called. As a result, it is convenient to analyze how the

number of calls to functions might affect the time processing of every approach.

 Technical University of Catalonia

Results 51

The last column of Table 3.2 reveals important information about the performance of

every approach. On the one hand, for the TD we can see that number of calls for the

decomposition and stacking agrees with the number of bitplanes, which implies that

these variables are linearly related at a cost of bulky hardware. On the other hand, the

BEA seems to behave exponentially in relation to the number of bitplanes, but the

elemental building block is simpler in terms of hardware, which suggests a faster

execution and no latencies. Finally, we may confirm that BEA leads to a faster and

chip-area-efficient algorithm to carry out basic morphological filters.

 Table 3.2 Comparison of the complexity of TD and BEA algorithm.

 TD BEA

 Decomp. Erosion Stacking Sets Erosion

No. Gates 39 n2 N.A. 88 n2 2 n2 N.A.

Calls 255 255 255 1024 255

3.5 Performance of the BEA in the Eye-RIS
vision system.

 As pointed out in Chapter 1, an important characteristic of the Eye-RIS vision

system is that all the pixels on the image are processed in parallel and in real time.

Such parallelism is fully exploited by the BEA since binary erosions and bitwise

manipulation are carried out by the Q-Eye (analog processor), which performs far

better than any digital counterpart. Despite of the outstanding features of the analog

processor, the BEA cannot be implemented thoroughly in the Q-Eye given the limited

precision when a gray-scale image is being manipulated. Particularly, in the

decomposition/recomposition of the gray-scale image it is necessary manipulate the

image with an accuracy of 1 LSB, which becomes an issue for the Q-Eye due to the

noise introduced. Furthermore, the decomposition and recomposition of an image seems

to be a task more suitable for the digital processor, since the actual pixel data is stored

in a bitwise fashion. By appointing each task of the algorithm to the corresponding

processor, we guarantee that our approach is implemented efficiently and in accordance

with architecture available.

 In previous sections we have defined that the BEA as an entropic-based erosion

algorithm, which means that the processing time depends strongly on the histogram

distribution of the image. As a result, the performance of the algorithm might be tested

under several light conditions yielding a range of processing times in which the

algorithm might perform. Table 3.3 shows the processing times for three cases of

entropy. The timing elapsed in every step of the algorithm is presented in order to

contrast the performance of the analog and digital processor. Recall that the

decomposition and recomposition is performed by the digital processor, while most of

 Technical University of Catalonia

Results 52

the BEA processing is appointed to the analog one. The total processing time on each

case highlight the entropic properties of our approach, in the sense that the processing

time is greater as the dynamic range increases and the image tends to be uniform

distributed. The equivalent frame rate is also presented to evaluate the capabilities of

the approach to perform in real time. Note that such rates are good enough comparing

to the implementation in Matlab. However, these figures can be improved significantly

if the decomposing and recomposing timings were also improved, which represent

together nearly half of the total processing time.

It is worth to remark that the NIOS processor is a 32-bit general purpose DSP at

200 MHz, which means that its processing power is not comparable to either common

PC processors or the Q-Eye. As a result, the decomposition and recomposition

represent a bottleneck for the algorithm. In fact, some data moving and control on the

BEA are also performed by the NIOS. In order to overcome this problem, two solutions

have been envisioned. First, Altera, the designer of NIOS II, has launched in past years

a compiler called C2H, which accelerates the performance in 10 to 45 times the

processing time by converting ANSI C functions into its corresponding VHDL

description to be embedded in the FPGA. This solution suggests a great improvement

in the total processing even in the most conservative case (i.e. 10x). On the other hand,

the second solution would be changing the actual processor for another more powerful

with image processing support. This is a logical next step already considered by

Anafocus for the Eye-Ris vision system 2.0.

 Table 3.3 Processing times of the BEA under different entropic conditions.

 Lap Timings

Entropy Decomposition BEA Recomposition Total Frame Rate

High 14 ms 64.86 ms 25 ms 103.86 ms 9.62 fps

Medium 14 ms 37.33 ms 25 ms 76.33 ms 13.1 fps

Low 14 ms 20.5 ms 25 ms 59.5 ms 16.8 fps

An important restriction of the binary erosion function provided by Q-Eye is that

the structuring element cannot be defined by the user. At the moment, only a square or

cross shaped structuring elements with a 3x3 neighborhood are defined. Therefore, if we

want to emulate the effect of a bigger structuring element, we need to apply multiple

erosions. Fortunately, this option is supported by the Q-Eye, which is performed in real

time rather than in tandem, as commonly implemented in digital processors. Table 3.4

shows the processing times when multiple erosions are applied to an image with

medium entropy. Note that the timings decrease as the number of erosions increases;

this is an interesting result since normally in a digital processor the timing increases as

the number of erosions does. This effect is caused by the fact that multiple erosions are

performed at once, in real time, and given the processing of the upper bitplanes reduces

the discriminative regions and thus the binary search in lower bitplanes.

 Technical University of Catalonia

Results 53

From another point of view, we can explain this effect in the following way. Consider

that the multiple erosions are performed in tandem; this means that the dynamic range

of the image will decrease progressively moving the data to the lower part of the

histogram. As a result, this fact is fully exploited by the BEA given its entropic

properties.

 Table 3.4 Timings for several numbers of erosions.

No. of Erosions Timing Frame Rate

1 76.33 ms 13.10 fps

3 73.00 ms 13.69 fps

5 65.46 ms 15.27 fps

Other basic morphological operators can be easily derived as a consequence of the

BEA such as dilation, opening and closing. As discussed before, the dilation can be

easily obtained by using the duality property, which yields the same processing times as

the ones presented for the erosion. On the other hand, opening and closing operators

can be derived by applying erosion and dilation operators in tandem. Unfortunately,

under this scheme the BEA has to be applied two times, which increases the processing

time. Table 3.5 shows the opening for different radius of a disk-shape structuring

element.

Given that binary opening and closing are available in the Q-Eye, and thanks to the

theoretical insight developed for the BEA, we have envisioned that it would be possible

to develop an algorithm capable to perform gray-scale closing, opening and other rank

filtering more efficiently. That is, each bitplane could be processed straightforward

rather in tandem. This approach would yield a unified method based on bitwise

processing improving the current timings. However, such approach requires further

research since at the moment it is not possible to implement it in an iterative way to

make it feasible to the Eye-RIS system.

 Table 3.5 Opening timings for several neighborhood radiuses.

Radius of the SE Timing Frame Rate

1 124.87 ms 8.00 fps

2 125.03 ms 7.99 fps

3 123.2 ms 8.11 fps

54

Chapter 4

Conclusions

" When I examine myself and my methods of thought, I come to the conclusion that the gift of fantasy
has meant more to me than any talent for abstract, positive thinking. "

-Albert Einstein-

4.1 Conclusions

 A novel approach to compute basic morphological operators based on bitwise

decomposition was presented in this work. Previous works related to the design and

implementation of rank filters have been restricted by the conditions imposed by the

threshold decomposition and stacking techniques. The major constrain says that the

decomposition of a multilevel signal can only be manipulated with rank filters if the

transformation that yields such decomposition is monotone increasing, which bitwise

decomposition fails to fulfill. As a result, there exists very little literature related to

morphological treatment of images under a bitwise manipulation given to this

restriction.

 The algorithm proposed exhibits diverse features and advantages that contrast to the

approach based on threshold decomposition. For instance, the bitwise decomposition is

a logarithmic representation of the gray-scale image, whereas the threshold

decomposition depends linearly on the range of the image. Consequently, the number of

bitplanes generated from the bitwise decomposition is considerable lower than threshold

decomposition. This sole fact reduces significantly the complexity of the algorithm,

since the decomposition and recomposition is performed in a natural fashion, whereas in

TD bulky hardware and long time latencies are introduced. However, it should be also

fair to mention that some overhead is introduced to transform the image through the

binary search method, which consists on basic logic transformations.

Technical University of Catalonia

Conclusions 55

 Another important conclusion may be drawn from the analysis of complexity of both

approaches. The number of bitplane erosions is the main time consuming process on

each algorithm and the number of calls necessary to reach multilevel erosion is the

same if the images are full in range. When an image is neither full in range nor uniform

distributed, the bitwise erosion algorithm exploits its entropic properties reducing the

number of bitplane erosions and thus the time processing.

 The extension of the binary search method to images yields a very versatile

algorithm, which not only can be used to derive erosion and dilation, but also it is able

to generate a large spectrum of morphological transformations that lie in between at a

minimum overhead cost. As a result, significant time processing and hardware can be

reduced. We have also envisioned that the algorithm may be a strong prospect to be

used in applications where the chip area is very constrained such as visual implants.

This is achieved thanks to the extra time and hardware reduction obtained by applying

linear quantization mapping, which generate some errors on the transformed image that

are not visually perceptible.

4.2 Future Work

 The bitwise erosion algorithm and its relation to the threshold decomposition

has provided significant theoretical insight that goes beyond to the application of basic

morphological operators such as erosion and dilation, since it can be also extended to

other rank filters. The ability of the BEA to translate numeric addition to logic

functions is a key tool that simplifies enormously the complexity of the algorithm. As a

result, the list of properties that link the two approaches might be also helpful to deal

with several levels of complexity in terms of chip integration. In other words, the

algorithm can be implemented under different block structures in accordance with the

designer's needs.

References 56

References

[1] 'R. Colin, "Vision chips' mimic eye, brain functions", EE Times, June, 2005.

[2] G. Liñan, et al., "A 0.5ˇm CMOS 106transistors analog programmable array

processor for real—time image processing", Proc. of the 25th European Solid-State

Circuits Conference, 21-23, pp. 358-361, 1999.

[3] J. Serra, “Introduction to mathematical morphology,” Comput. Vision, Graphics,

Image Processing, vol. 35, pp. 283-305, Sept. 1986.

[4] L. Abbott, R.M. Haralick and X. Zhuang, "Pipeline architectures for morphological
image analysis," Machine Vision and Application, Vol.1, pp.23-40, 1988.

[5] K.I. Diamantaras, K.H. Zimmermann and S.Y. Kung, "Integrated fast
implementation of mathematical morphology operations in image processing," ZSCAS
1990, pp.1442-1445.

[6] A.C.P. Loui, A.N. Venestsanopoulos, K.C. Smith and B.Benhabib, "Non-linear
pipeline architecture for morphological signal processing," ZSCAS 1990, pp. 1438-1441.

[7] J. P. Fitch, E. J. Coyle, and N. C. Gallagher, “Median filtering by threshold
decomposition,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-31, pp.
1183-1188, Dec. 1984.

[8] F. Y. Shih, O.R. Mitchell. "Threshold decomposition of gray-scale morphology into
binary morphology" IEEE Trans. on Pattern Analysis and Machine Intelligence. 11, no.
1, 31-42, 1989.

[9] C. L. Lee, J. S. Chen, C. H. Jen, "VLSI architecture for gray scale morphological

filtering and its application", IEEE International Symposium on Circuit and Systems,

2100-2103 vol. 4, June, 1991.

[10] Ko, S. J., Morales A., Lee, K. H.: Fast recursive algorithms for morphological
operators based on the basis matrix representation. IEEE Trans. IP 5, No. 6 (1996)
1073-1077

[11] P.Dudek and P.J.Hicks, "A General-Purpose Processor-per-Pixel Analog SIMD

Vision Chip", IEEE Transactions on Circuits and Systems - I, vol. 52, no. 1, pp. 13-20,

January 2005.

References 57

[12] Hardware Description of the Eye-RIS vision system, Anafocus, 2008.

[13] Henk J. A. M. Heijmans, "Mathematical Morphology: A Modern Approach in

Image Processing Based on Algebra and Geometry", SIAM Rev. Volume 37, Issue 1,

pp. 1-36, March 1995.

[14] S. R. Sternberg, “Grayscale morphology,” IEEE Comput. Vision, Graphics, Image

Processing, vol. 35, pp. 333-355, Sept. 1986.

[15] J.P. Fitch, E.J. Coyle, and N.C. Gallaguer, "Median Filtering by Threshold

Decomposition", IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.

ASSP-32, No. 6, Dec. 1984

[16] S.K. Mitra, M.R. Petraglia, and L. Onural, "Median Filtering by a Generalized

Threshold decomposition", European Conference on Circuit Theory and Design, No 5-8,

pp. 349-353, Sept. 1989.

[17] H. Zhang, and B. Yuan, "Generalized Threshold Decomposition", International

Symposium on Speech, Image Processing and Neural Networks, pp. 49-52, April 1994,

Hong Kong.

[18] D. Jabakhanji, and M. Shams, "A CMOS imager with on-pixel gray-scale erosion",

50th Midwest Symposium on Circuits and Systems, 2007. MWSCAS 2007, Volume ,

Issue 5-8, pp. 61 — 64 Aug. 2007.

[19] Datasheet of 8 bit digital comparator SN54ALS520, Texas Instruments, 1995.

