
Demo: Quasar - a New Programming Framework for
Real-Time Image/Video Processing on GPU and CPU

Bart Goossens, Jonas De Vylder, Simon Donné and Wilfried Philips
Ghent University - TELIN/IPI/iMinds

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
bart.goossens@telin.ugent.be

ABSTRACT
In this demonstration, we present a new programming
framework, Quasar, for heterogeneous programming on
CPU and single/multi-GPU. Our programming framework
consists of a high-level language that is aimed at relieving the
programmer from hardware-related implementation issues
that commonly occur in CPU/GPU programming, allowing
the programmer to focus on the specification, the design,
testing and the improvement of the algorithms. We will
demonstrate a real-time multi-camera processing application
using our integrated development environment (IDE). The
IDE offers various image/video processing-related debugging
functions and performance profiling features.

Keywords
GPU programming, Real-time video processing.

1. INTRODUCTION
Recently, graphical processing units (GPUs) are increas-

ingly being used to complement CPUs in computationally
intensive calculation tasks with large amounts of data, such
as in image and video processing. This is due to the
excellent performance of GPUs for parallel processing, often
yielding speed-up factors of 10x-50x for image and video
operations, compared to a single-threaded CPU execution.
Recently, there is also a trend toward the use of GPUs
in embedded devices, such as the NVidia Tegra system.
Combining GPU programming with different sensors and
platforms/devices is very challenging, requiring special-
ized programming expertise. Furthermore, the resulting
programs are not well amenable to algorithmic changes,
which often require rewriting a large part of the code. In
practice, a typical programming workflow therefore consists
in first implementing and testing the algorithm in a rapid-
prototyping language (such as Octave/Matlab) and later
porting the algorithm to a native environment such as
C++ with CUDA [1]/OpenCL [2], which is generally time-
consuming.

For a researcher, GPU programming has several dis-
advantages: 1) there is a steep learning curve, 2) the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICDSC ’15 September 08-11, 2015, Seville, Spain
© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3681-9/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2789116.2802654

Q
ua

sa
r

co
m

pi
le

r

CUDA/C++
back-end

LLVM
back-end

NVidia PTX back-end

NVidia OpenCL back-end

Generic OpenCL back-end

NVCC

GCC/G++

Intel C/C++

x86 / x64 back-end

OpenCL
back-end

Q
ua

sa
r

ru
n-

tim
e

CUDA

OpenCL

Multi-core
CPU

Memory manager

Scheduling and
load balancing

CPU/GPU
Device manager

Binary code (.ptx, .so)
Intermediate code ��������	
������

���������	
������

Figure 1: Overview of the Quasar architecture:
compiler and run-time back-ends.

implementation and optimization time can take several
weeks to months even for a simple algorithm, 3) often
different code paths must be written for different target
platforms, or even different generations of GPUs, 4) the
testing and debugging of the code is not always trivial and
5) the programming code is not future-proof in general: it
is not guaranteed to work optimally on future CPU/GPU
devices. A major issue is that the algorithmic specification
and its implementation are not separated: a programmer
spends a lot of time on implementation details rather than
improving the algorithm.

2. RELATED WORK
To improve the programmability of multi-core CPUs and

GPUs recently several efforts have been made. These in-
clude 1) modular programming techniques (existing software
libraries such as Intel Array Building Blocks, NVidia Thrust,
GPU-accelerated functions in OpenCV, Blitz++, Eigen,
Armadillo, ...), 2) domain-specific languages or parallel
extensions integrated in C/C++ (e.g., Halide [3], OpenACC
[4], Microsoft C++ AMP [5], ...) and 4) programming
languages with integrated GPU support (e.g., Mozilla Rust
[6]). In general, many of these approaches require a
substantial effort from the programmer and often fixed
programming patterns are enforced. Moreover, it is difficult
to share programming code between different researchers.

3. OVERVIEW OF QUASAR
Quasar is a high-level programming language with a

syntax that similar to Octave/MATLAB (see Figure 3), so
that it is easy to learn. The framework also contains a
compiler and a run-time system. The compiler extracts cer-
tain code regions (e.g., loops via automatic parallelization,
kernel functions, ...) and it automatically generates target-
dependent code that is then compiled using one of the back-

������

��� ��������	�
���
�	���� ���������

�����

��	���

������ 	�
�������

�

Figure 2: Demo setup: input/output chain of the
Quasar program.

end compilers. An overview of the Quasar architecture is
shown in Figure 1. A back-end compiler can be an existing
C/C++ compiler (such as GCC, MSVC, Clang, ICC, ...),
the NVidia compiler (for CUDA) or an OpenCL compiler.
Alternatively, there is an LLVM [7] back-end that allows
to directly emit target-dependent binary code via the LLVM
intermediate representation. The generated binary code and
also the Quasar intermediate code is passed to the run-time
system, which consists of a memory manager (performing
automatic memory management), a scheduler and load-
balancer (which makes dynamic run-time decisions on what
device to use for which task), and a device manager (which
communicates with the underlying hardware through CUDA

or OpenCL). Each extract code fragment is for example
compiled for each target device. At run-time, the load-
balancer then decides which version (e.g., CPU or GPU)
of the code to run, depending on the current state.

4. DESCRIPTION OF THE DEMO
In this demo, we will illustrate the advantages of using

Quasar for designing camera-processing algorithms. We will
focus on real-time processing of multi-camera images (see
Figure 2), in which a 3D version of the scene is constructed
based on a program written in Quasar. The 3D repre-
sentation is rendered via OpenGL (through CUDA/OpenGL
interoperability that is integrated in Quasar). Spectators
will be able to watch the 3D reconstruction algorithm in
real-time. Next, also different aspects of the IDE will be
demonstrated (the code editor, various debugging windows
and tooltips and performance profiler with a timeline view).

Example Quasar programming code is given in Figure
3. The illustrated code calculates a z-buffer based on a
disparity map (used for view interpolation). Noteworthy
is the parallel_do function, which is used for launching
the kernel function generate_zbuffers in parallel (either
on CPU or GPU, a dynamic load-balancing decision done
by the run-time). The code uses atomic minimum and
maximum operators, which are hardware-accelerated.

Within the IDE (see Figure 4), the user can choose
the device to run the code (e.g., the CPU/GPU) and
various run-time settings. User programs can be started
and paused, allowing the user to step through the code,
place breakpoints, visualize intermediate images and values.
There is also the possibility of parallel debugging through a
software-based GPU emulation.

5. CONCLUSION
In the domain of image/video/multi-camera processing,

Quasar allows researchers to focus on design aspects of
the algorithms rather than implementation aspects. Our
approach enables 1) fast hybrid execution on CPU/GPU,
2) fast rapid-prototyping with simplified debugging in a
specialized IDE and 3) a future-proof methodology (multiple
GPU technologies are supported). Our methodology has

function [zbuffer_high, zbuffer_low] = calc_zbuffer(
disparity:mat , location:scalar)

[M,N] = size(disparity,0..1)
zbuffer_high:mat = zeros(M,N)
zbuffer_low:mat = zeros(M,N)+1e9

function [] = __kernel__ generate_zbuffers(pos:ivec2)
[y,x] = pos
if disparity[y,x] > 0 % disparity image
x_virt = int(x - location*disparity[y,x])
if x_virt >= 0 && x_virt < N
atomic_max(zbuffer_high[y,x_virt],disparity[y,x])
atomic_min(zbuffer_low [y,x_virt],disparity[y,x])

endif
endif

end
parallel_do ([M,N],generate_zbuffers)
end

Figure 3: Example Quasar code - calculation of low
and high z-buffers for view interpolation.

Figure 4: Screenshot of Quasar Redshift IDE -
demonstrating a real-time 3D rendering of a video
sequence.

successfully been used within several projects of the IPI
research group, including 4 iMinds ICON projects, an IWT
SBO project and 2 European projects.

Currently, the framework is in a prototype phase at
UGent/iMinds, in which about 35 Ph.D. students and
postdocs (from 4 universities) are testing the tools in
different image processing application domains (e.g. 3D
reconstruction, registration, computer vision, medical image
reconstruction). More information is available at http:
//quasar.ugent.be.

6. ACKNOWLEDGMENTS
Bart Goossens acknowledges support by a postdoctoral

fellowship of the Research Foundation–Flanders (FWO,
Belgium).

7. REFERENCES
[1] NVidia, “NVidia CUDA Compute Unified Device

Architecture,” 2007, online: http://www.nvidia.com.
[2] The OpenCL Specification 1.2, Khronos OpenCL working

group Std., 2011, online: http://www.khronos.org.
[3] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy,

S. Amarasinghe, and F. Durand, “Decoupling Algorithms
from Schedules for Easy Optimization of Image Processing
Pipelines,” in ACM Trans. Graphics, vol. 31, no. 4, 2012.

[4] OpenACC - Directives for Accelerators, Std., online:
http://www.openacc.org.

[5] Microsoft, “C++ AMP,” online:
http://msdn.microsoft.com/en-us/library/hh265137.aspx.

[6] “Mozilla Rust,” online: http://www.rust-lang.org.
[7] C. Lattner and V. Adve, “LLVM: A compilation framework

for lifelong program analysis and transformation,” San Jose,
CA, USA, Mar 2004, pp. 75–88, online: http://llvm.org.

