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ABSTRACT

The Dual-Tree complex wavelet transform (DT-CWT) uses
approximate Hilbert transform pairs of wavelet, which re-
quires that the filters of each tree of the dual-tree structure
should be delayed approximately one half sample from each
other. However, the filters of the first (finest) scale of the
transform do not obey this condition, resulting in a poor
directional selectivity for the first scale. In this paper, we
describe a design technique for first-scale infinite impulse
response (IIR) wavelet filters, that solves this problem.
Results demonstrate that a much better directional selectivity
is obtained, which indicates a performance improvement
for many applications that use the DT-CWT where the
preservation of high-frequency information is important.

Index Terms— wavelets, Dual-Tree Complex Wavelet
Transform, directional selectivity

I. INTRODUCTION

Recently, the Dual-Tree complex wavelet transform (DT-
CWT) [1]–[3] has been introduced to overcome certain
disadvantages of the Discrete Wavelet Transform (DWT):
its shift variance and its inability to distinguish features
orientated at+45° from features oriented at−45°. In [4]
it is proposed to achieve shift invariance by removing the
decimation operations of the DWT, using thealgorithme
à trous [4] (often called undecimated DWT). However the
drawback is a huge redundancy factor (forS scales the
redundancy factor is(2n−1)S in n-d). The DT-CWT offers
approximate shift invariance at a much lower redundancy
factor (2n for n-d). The shift invariance is obtained by using
two DWTs (called dual trees) in parallel and by designing
the wavelet filters in each tree such that the corresponding
wavelets form Hilbert transform pairs [2]. This requires that
the filters of each tree of the dual-tree structure should be
delayed approximately one half sample from each other
(known as thehalf-sample delay condition) [2], [5], and
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which also leads to a better directional selectivity: the
DT-CWT has 6 orientation bands instead of 3 and has
separate orientation subbands for+45° and −45°. Shift
invariance and good directional selectivity are importantin
many applications, such as texture analysis and synthesis,
noise suppression, segmentation, watermarking and even in
compression.

However, the half-sample delay conditiononly holds
starting from the second scale [1]–[3], while for the first
scale the wavelet filters in each tree are delayed one sample
(such as in a redundant DWT implemented with cycle-
spinning [6]). As a consequence, the directional selectivity
of the first scale of the DT-CWT is not better than that
of the DWT or undecimated DWT. As far as the authors
are aware of, this deficiency has not been addressed in
literature so far. For many practical applications, such as
image reconstruction, the first scale is by far the most
important, because the performance is usually determined
by the amount of fine details (high frequency content) that
are preserved or reconstructed.

In this paper, we develop a design technique for wavelet
filters for the first scale of the DT-CWT, that fulfill the
half-sample delay condition. To obtain perfect reconstruction
(PR) of the analysis and synthesis filterbanks, the wavelet
filters being constructed are IIR filters. Fortunately, the IIR
filters do not pose any problems in practice, as they can have
a relatively low order and because they are stable.

The remainder of this paper is as follows: in Section II
we introduce concepts that are used in the remainder of this
paper. The problem to solve is explained in Section III. In
Section IV we describe the proposed filter design method.
Results and a discussion are given in Section V. Finally,
Section VI concludes this paper.

II. BACKGROUND INFORMATION

In the DT-CWT framework [1], [2], a complex wavelet
ψc(t) is formed by a Hilbert transform pair of wavelets: a
real-valued waveletψ(t) and its Hilbert transformH{ψ(t)}:

ψc(t) = ψ(t) + jH{ψ(t)} (1)
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with H{·} the Hilbert transform of a function. In the
frequency domain, we have the equivalent expression:

Ψc(ω) = Ψ(ω) (1 + jHhil(ω)) (2)

with H(ω) the frequency response of the Hilbert transform:

Hhil(ω) =











j ω < 0

0 ω = 0

−j ω > 0

(3)

The primary reason for this complex wavelet construction is
that Ψc(ω) is analytic, i.e. the magnitude response|Ψc(ω)|
completely suppresses negative frequencies:|Ψc(ω)| = 0 for
ω < 0, while positive frequencies are completely passed:
|Ψc(ω)| = |Ψ(ω)| for ω > 0. Higher dimensional (n-d)
complex wavelets can be formed as tensor products of 1-d
complex wavelets (or their complex conjugates). Because
every 1-d complex wavelet is analytic in one dimension, the
corresponding (n-d) complex wavelet passes all frequencies
in one hyperoctant of then-d frequency domain. This
property is exploited in the DT-CWT framework to design
oriented filters using separable wavelet filters (for further
reading, see [2]).

In the following we will concentrate on wavelet analysis
in 1-d. Extensions to higher dimensions are trivial because
then-d complex wavelets are formed using tensor products.
Let the filters Gk(z), Hk(z), G̃k(z), H̃k(z), k = 1, 2
represent two real-valued quadrature mirroring filter (QMF)
pairs with z-transforms. The wavelet filters are denoted
asGk(z), G̃k(z), and the scaling filters asHk(z), H̃k(z)
and k represents the tree index of the dual tree. Perfect
reconstruction (PR) is possible if the following equations
hold [7]:

Gk(z)G̃k(z-1) +Hk(z)H̃k(z-1) = 2 (4)

Gk(z)G̃k(-z-1) +Hk(z)H̃k(-z-1) = 0 (5)

In order forψc(t) to be analytic, it was shown in [5] that
the following condition is sufficient:

H2(z) = H1(z)z
-1/2 (6)

or informally,h2(n) ≈ h1(n− 0.5), which means that there
must be a half sample delay between both scaling filters.
Given that the filters form two QMF pairs, an equivalent
condition for the wavelet filters is given by [8]:

G2(e
jω) = G1(e

jω)ejω/2Hhil(ω) (7)

which means thatG2(z) is the Hilbert transform of
G1(z)z

1/2. In practice, a half sample delay and a discrete
Hilbert transform cannot be satisfiedexactly, because the
wavelet filters are restricted to finite supports (resultingin
only approximateanalyticity). In literature, a number of
methods have been described for designing (approximate)
Hilbert pairs of wavelet bases, e.g. [9]–[12].

III. PROBLEM STATEMENT

The above filter design techniques all provide PR and
try to satisfy the half-sample delay condition as closely
as possible. However, wavelet filters designed using these
techniques cannot be used on thefirst scale, because ahalf-
sample delay conditiondoes not exist on the input level,
i.e. the same input signal (or image) is used for every tree.
To work around this issue, it is proposed in [1], [2] to use
wavelet filters for the first scale that are delayed with one
sample (orH2(z) = H1(z)z

-1), such that starting from the
second scale, thehalf-sample delay conditionis fulfilled.
This is in fact equivalent to using a redundant DWT on the
first scale implemented with cycle spinning, but this will
give a poor directional selectivity. One may also consider
invertible (allpass) fractional delay filtering of the firstscale
[13] and using the half-sample-delay pairs of filters starting
from the first scale, but this would have the disadvantage that
fractional delay filters have a relatively long support and this
would reduce the localization properties of the transform
on every scale. Hence we conclude that a specific design
technique for the first scale that yields wavelet filters with
the desired property (7) is needed. This is the topic of the
next Section.

IV. THE WAVELET FILTER DESIGN METHOD

We start from a one sample delay between the scaling
filters and subsequently impose the half-sample delay con-
dition (7) to the wavelet filters. This gives the following
relationship between the scaling filters and between the
wavelet filtersfor the first scale:

H2(z) = H1(z)z
-1 (8)

G2(z) = G1(z)z
-1Q(z) (9)

whereQ(z) is a filter that we will design to satisfy (7). First,
we write the PR conditions for the second QMF pair:

G1(z)G̃1(z
-1)Q(z)Q̃(z-1) +H1(z)H̃1(z

-1) = 2

G1(z)G̃1(-z
-1)Q(z)Q̃(-z-1) +H1(z)H̃1(-z

-1) = 0 (10)

Identification with the PR conditions for the first QMF pair
(4), (5) gives the following design constraints forQ(z):

Q(z)Q̃(z-1) = 1 and Q(-z)Q̃(z-1) = 1 (11)

which is satisfied ifQ(z) = Q(-z) and Q̃(z) = Q-1(z-1).
The former means thatQ(z) only has terms in even powers
of z, the latter implies that eitherQ(z) or Q̃(z) cannot be
a finite impulse response filter (FIR), because the inverse
of a FIR filter is not a FIR filter in general. If we take
Q̃(z-1) = Q-1(z), we can entirely concentrate on the design
of Q(z). To establish the relationship between the wavelet
filters from equation (7), we must have that:

Q(ejω) ≈ e3jω/2Hhil(ω) (12)



Table I. Matlab program for designing the filterQ(z).

b=-1./(1:4:-3+4*M)’;
C=hankel(1./(5:4:-3+8*M));
C=C(1:M,1:M)+pi/2*eye(M);
B=upsample([1; C\b],2);

Table II . Expressions ofB(z) for different ordersM , obtained
using the program in Table I. UseQ(z) = B(z)/B(1/z).

M B(z)

1 1 − 0.56472z2

2 1 − 0.55947z
2
− 0.08365z

4

3 1 − 0.55785z
2
− 0.08236z

4
− 0.03915z

6

4 1 − 0.55711z2
− 0.081737z4

− 0.03861z6
− 0.02412z8

In order to have identical magnitude responses of the wavelet
basis functions in both trees, we take|G2(z)| = |G1(z)|, or
equivalently,|Q(z)| = 1. This leads us to an allpass filter
design: letQ(z) = B(z)/B(1/z) with

B(z) = 1 +

M
∑

m=1

bmz
2m (13)

with M the filter order. From equation (12) follows that
B(ejω) ≈ B(e−jω)e3jω/2Hhil(ω). Note that exactness of
the approximation is not possible because an exact fractional
delay filtere3jω/2 and a Hilbert transform cannot be realized
using IIR filters. Instead, we opt for an approximate solution,
by defining the error function:

EQ =

ˆ +π

−π

∣

∣

∣
B(ejω) −B(e−jω)e3jω/2Hhil(ω)

∣

∣

∣

2

dω (14)

Minimizing EQ is a least squares problem, which corre-
sponds to solving a linear system. In Table I an efficient
Matlab program is given for computing the polynomial
B(z). In Table II expressions forB(z) for different filter
orders are given. We found that all filters obtained using
this technique are stable.

Interestingly, for allpass filters the propertỹQ(z) =
Q(z) holds, hence for QMF filters we have, apart from
time reversal, identical analysis and reconstruction filters:
G̃2(z) = G2(z). Because the filterz−2MQ(z) is causal,
implementing the anticausal filterz2MQ̃(z−1) can only
be realized by filtering in the time-reversed direction. For
images this does not pose any problems as we can filter
from the right to the left or from the bottom to the top.

Further we remark that the proposed filter design only
modifies the wavelet filters of the first scale (and not the
scaling filters), hence the basis elements of the subsequent
(coarser) scales are not affected.

V. RESULTS AND DISCUSSION

In Fig. 1, we check the accuracy of the approxima-
tion (12), for different filter orders. Fig. 1(a) shows the
magnitude response ofQ(z) + jz. Because of the Hilbert
transform in (12), this filter should be analytic in the ideal
case. It can be seen that there is a good suppression of
the negative frequencies, of approximately 10dB-15dB. In
Fig. 1(b), the group delay ofQ(z) is compared to the
group delay in the ideal case:− 3

2
(see (12)). Seemingly,

the approximation is the best in a mid-frequency passband.

Next, we test the constructed wavelet filters in the task
of estimation of the dominant orientation (DO) of features
in an image. Here, the DO is estimated from the first-scale
of the DT-CWT, based on same principles as used in [14].
In Fig. 2, the result is shown for a sinusoidal zoneplate
image for both the original wavelet filters (Fig. 2(b)) and
the proposed wavelet filters (Fig. 2(c)). Apparently, for the
original wavelet filters, the orientation is misestimated in the
corners of the zoneplate image. For the proposed solution,
this problem is resolved and the transitions in orientationfor
the diagonal lines are much smoother.

Finally, we also analyze the improvement in directional
selectivity in 3-d. In Fig. 3, frequency responses of the
real parts of the complex wavelet basis functions are given
and compared to the original wavelet filters (Fig. 3(d)). In
Fig. 3(d) there is leakage of the filter energy to different
orientations, which results in a poor directional selectivity.
For the proposed filters, the frequency responses are well-
localized and as expected.

VI. CONCLUSION

In this work, we proposed a design technique for IIR
wavelet filters for the first scale of the DT-CWT, in order
to improve the directional selectivity of the first scale. The
main design criterion is that the wavelet filters in both
trees must satisfy the half-sample delay condition while the
corresponding scaling filters are one sample delayed. We
have shown that perfect reconstruction is possible with IIR
wavelet filters. The obtained filters are stable and even the
lowest order filters perform well for this task. The results
show a vast improvement in directional selectivity which is
beneficial in many applications that use this transform.
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Fig. 1. (a) Magnitude response of|Q(z) + jz|, for different orders
M , showing the analyticity ofQ(z)+jz (b) Group delay ofQ(z),
for different ordersM . The thick line signifies the ideal group delay
(− 3

2
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Fig. 2. Results for orientation estimation for a sinusoidal zone-
plate image (a) The zone-plate image (image domain) (b) Dominant
orientation using original wavelet filters (Db2) (c) Dominant
orientation, estimated according using the proposed IIR wavelet
filters (Db2, first order,M = 1).

(a) (b)

(c) (d)

Fig. 3. Iso-energy plot of the frequency responses of the real
parts of the basis functions for the first scale of the 3-d DT-
CWT (different colors signify different orientations), for (a)-
(b) The original wavelet filters (Db8), in one orientationonly
(corresponding to the red surfaces in (c)-(d)). (c)-(d) Theproposed
wavelet filters (Db8), for the first orderM = 1, and in four
orientations. For the original wavelet filters (top row), there is
leakage of the basis function energy to different orientations,
indicating a poor directional selectivity. With the proposed filters
(bottom row), the leakage is well suppressed.


