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ABSTRACT which also leads to a better directional selectivity: the

The Dual-Tree complex wavelet transform (DT-CWT) usesD T-CWT has 6 orientation bands i?stead of 03 and has
approximate Hilbert transform pairs of wavelet, which re-Separate orientation subbands fer5° and —45°. Shift
quires that the filters of each tree of the dual-tree strectur’nvariance and good directional selectivity are important

should be delayed approximately one half sample from eadfi@ny applications, such as texture analysis and synthesis,
other. However, the filters of the first (finest) scale of theN0iSe suppression, segmentation, watermarking and even in

transform do not obey this condition, resulting in a poorcOMpression.
directional selectivity for the first scale. In this papee w  However, thehalf-sample delay conditioronly holds
describe a design technique for first-scale infinite impulsestarting from the second scale [1]-[3], while for the first
response (IIR) wavelet filters, that solves this problemscale the wavelet filters in each tree are delayed one sample
Results demonstrate that a much better directional seilgcti (such as in a redundant DWT implemented with cycle-
is obtained, which indicates a performance improvemenrgpinning [6]). As a consequence, the directional selégtivi
for many applications that use the DT-CWT where theof the first scale of the DT-CWT is not better than that
preservation of high-frequency information is important. ~ of the DWT or undecimated DWT. As far as the authors
are aware of, this deficiency has not been addressed in
Index Terms—wavelets, Dual-Tree Complex Wavelet jiterature so far. For many practical applications, such as

Transform, directional selectivity image reconstruction, the first scale is by far the most
important, because the performance is usually determined
. INTRODUCTION by the amount of fine details (high frequency content) that

are preserved or reconstructed.
Recently, the Dual-Tree complex wavelet transform (DT- In thi devel desian techni ¢ let
CWT) [1]-[3] has been introduced to overcome certain n thiS paper, we develop a design technique for wavele

disadvantages of the Discrete Wavelet Transform (DWT)E“T;{S for Ithg f'IrSt sca(;i_o;_theb?T-CW;r, tthat fulfltll trl.e
its shift variance and its inability to distinguish featsrre at-sample delay conditiorio obtain pertect reconstruction

orientated at+45° from features oriented at45°. In [4] (PR) of the analysis and synthesis filterbanks, the wavelet

it is proposed to achieve shift invariance by removing thefllters being constructed are IIR filters. Fortunately, the |

decimation operations of the DWT, using tiaégorithme filters QO not pose any problems in practice, as they can have
a trous [4] (often called undecimated DWTHowever the a relatively low order and because they are stable.
drawback is a huge redundancy factor (t@rsca'es the The remainder of this paper is as follows: in Section Il
redundancy factor i€2" —1)S in n-d). The DT-CWT offers We introduce concepts that are used in the remainder of this
approximate shift invariance at a much lower redundancfaper. The problem to solve is explained in Section III. In
factor " for n-d). The shift invariance is obtained by using Section IV we describe the proposed filter design method.
two DWTs (called dual trees) in parallel and by designingReSU“S and a discussion are given in Section V. Finally,
the wavelet filters in each tree such that the correspondingection VI concludes this paper.

wavelets form Hilbert transform pairs [2]. This requireatth

the filters of each tree of the dual-tree structure should be 1. BACKGROUND INFORMATION

delayed approximately one half sample from each other

(known as thehalf-sample delay conditin[2], [5], and In the DT-CWT framework [1], [2], a complex wavelet

1(t) is formed by a Hilbert transform pair of wavelets: a
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with H {-} the Hilbert transform of a function. In the lll. PROBLEM STATEMENT

frequency domain, we have the equivalent expression: . . . .
quency n. W v quiv P ! The above filter design techniques all provide PR and

V. (w) = ¥(w) (14 jHni(w)) (2) try to satisfy the half-sample delay condition as closely
_ ) as possible. However, wavelet filters designed using these
with H(w) the frequency response of the Hilbert transform:techniOlues cannot be used on fhist scale, because flf-
i w<o sample delay conditiomloes not exist on the input level,
i.e. the same input signal (or image) is used for every tree.
Hya(w) =40 w=0 (3 7o work around this issue, it is proposed in [1], [2] to use
—-j w>0 wavelet filters for the first scale that are delayed with one

The primary reason for this complex wavelet construction jample (ort(z) = H, (z)z ), such that starting frqm the
that W, (w) is analytic, i.e. the magnitude resporide.(w)| se(_:or_1d_scale, thb_alf—sample (_jelay conditiomms fulfilled.
completely suppresses negative frequendigstiw)| = 0 for Thls is in fa_ct equivalent tq using a redundant DWT on the
w < 0, while positive frequencies are completely passed‘f'rst scale |mplem_ented with _cycle spinning, but this V.V'”
W.(w)| = |¥(w)| for @ > 0. Higher dimensionalr(-d) give a poor dlrect|0nal_select|V|ty. _Ong may also_ consider
complex wavelets can be formed as tensor products of 1_|5|vert|ble (allpass) fractional delay filtering of the firstale

complex wavelets (or their complex conjugates). Becaus 3] aﬂd fgsmg thle P;)alf-igmple-ltéljerllay parllrsdqf flgers mt'h
every 1-d complex wavelet is analytic in one dimension, tha'™M the first scale, but this would have the disadvantage tha

correspondingr(-d) complex wavelet passes all frequenciesfracuona' delay filters have a relatively long support ahid t

in one hyperoctant of thei-d frequency domain. This would reduce the localization properties of the transform

property is exploited in the DT-CWT framework to design 9" €VerY scale. He_znce we conclu_de that a spe(_:ific de_sign
oriented filters using separable wavelet filters (for fuwthetEChn'O“,Je for the first scgle that y|elds_ w_avelet f||t§rs with
reading, see [2]). the desired property (7) is needed. This is the topic of the

) i . next Section.
In the following we will concentrate on wavelet analysis

in 1-d. Extensions to higher dimensions are trivial because
the n-d complex wavelets are formed using tensor products. V. THE WAVELET FILTER DESIGN METHOD

Let the filters Gy (2), Hy(2), Gu(2), Hy(2), kb = 1,2 We start from a one sample delay between the scaling
represent two real-valued quadrature mirroring filter (QMF filters and subsequently impose the half-sample delay con-

pairs with z-transforms. The wavelet filters are denote ition (7) to the wavelet filters. This gives the following

as Gi(z), Gk(2), and the s<_:a|ing filters a#ly(z), Hy(z) relationship between the scaling filters and between the
and k represents the tree index of the dual tree. Perfecf, o alet filtersfor the first scale

reconstruction (PR) is possible if the following equations

hold [7]: Hy(z) = Hi(z)z™ (8)
GGG + HEGET) = 2 @) Ga(2) = Gi2)7Q0k) ©
Gr(2)Gr(-2"Y) + Hy(2)Hp(-21) = 0 (5) whereQ(z) is a filter that we will design to satisfy (7). First,

o . we write the PR conditions for the second QMF pair:
In order fort.(t) to be analytic, it was shown in [5] that

the following condition is sufficient: G1(2)G1(zMQ(2)Q(z") + Hi(2)Hi(z™") =2
G1(2)G1(-2)Q(2)Q(-=") + Hi(2)Hi(-2"") =0 (10)

Identification with the PR conditions for the first QMF pair

or informally, h2(n) = hq(n —0.5), which means that there } . . : )
must be a half sample delay between both scaling filters(.4)’ (5) gives the following design constraints fQx():

Given that the filters form two QMF pairs, an equivalent RQ)Q:YH =1 and Q(-2)Q(:zYH=1 (11)
condition for the wavelet filters is given by [8]:

Hy(z) = Hy(2)z™/? (6)

_ o which is satisfied ifQ(z) = Q(-z) andQ(z) = Q'(z™).
Go(e?) = G1(e7)e?/? Hyy (w) (7)  The former means tha(z) only has terms in even powers
of z, the latter implies that eitheR(z) or Q(z) cannot be

which means thatGy(z) is the Hilbert transform of o . ;
) ) a finite impulse response filter (FIR), because the inverse
G1(z)z'/2. In practice, a half sample delay and a discrete b b (FIR)

. o of a FIR filter is not a FIR filter in general. If we take
Hilbert transform cannot be satisfiegkactly because the J(>"1) = Q"1(z), we can entirely concentrate on the design

wavelet filters are restricted to finite supports (resultimg of Q(z). To establish the relationship between the wavelet
only approximateanalyticity). In literature, a number of fi

t f ti 7), t h that:
methods have been described for designing (approximateg ers from equa |0n‘( ) We‘mus ave tha
Hilbert pairs of wavelet bases, e.g. [9]-[12]. Q(e7*) ~ €37/ Hyy (w) (12)



Table 1. Matlab program for designing the filtep(z). V. RESULTS AND DISCUSSION

b=-1./(1: 4: - 3+4+\) " : In Fig. 1, we check the accuracy of the approxima-
C=hankel (1./(5: 4:-3+8+M) tion (_12), for different filter orders. Fig. 1(a) shovys the
C=C(1: M 1: M +pi / 2xeye(M : magnltude_ response (@_(z) + jz. Because of the H|Ib_ert
B=upsanpl e([1; C\b],2): transform in (12), this filter should be analytic in the ideal
case. It can be seen that there is a good suppression of
the negative frequencies, of approximately 10dB-15dB. In
Fig. 1(b), the group delay of)(z) is compared to the

Table IlI. Expressions ofB(z) for different orders)M, obtained group delay in the ideal case:3 (see (12)). Seemingly,

using the program in Table |. Us@(z) = B(z)/B(1/z).

M B(z) the approximation is the best in a mid-frequency passband.

1 1 —0.5647222 Next, we test the constructed wavelet filters in the task
2 4 . . . . .

2 — 515;8252594;208;32-({18362203915 . of estimation of the dominant orientation (DO) of features

s 557_112‘2 — 381_737‘24 — 0Z03_86izb — 0Z02412z8 in an image. Here, the DO is estimated from the first-scale

of the DT-CWT, based on same principles as used in [14].
In Fig. 2, the result is shown for a sinusoidal zoneplate

In order to have identical magnitude responses of the wavel#age for both the original wavelet filters (Fig. 2(b)) and
basis functions in both trees, we ta)&,(z)| = |G1(z)], or the proposed wavelet filters (Fig. 2(c)). Apparently, foe th
equivalently,|Q(z)| = 1. This leads us to an allpass filter original wavelet filters, the orientation is misestimatedhie

design: letQ(z) = B(z)/B(1/z) with corners of the zoneplate image. For the proposed solution,
this problem is resolved and the transitions in orientatton
the diagonal lines are much smoother.

Finally, we also analyze the improvement in directional
selectivity in 3-d. In Fig. 3, frequency responses of the
real parts of the complex wavelet basis functions are given
and compared to the original wavelet filters (Fig. 3(d)). In
Fig. 3(d) there is leakage of the filter energy to different
orientations, which results in a poor directional selettiv
For the proposed filters, the frequency responses are well-
localized and as expected.

M
B(z) = 1+ Z by 2™ (13
m=1

with M the filter order. From equation (12) follows that
B(e*) ~ B(e™*)e*%/2 Hy; (w). Note that exactness of
the approximation is not possible because an exact fraation
delay filtere®/«/2 and a Hilbert transform cannot be realized
using lIR filters. Instead, we opt for an approximate solutio
by defining the error function:

—+7
Fq = /
—r VI. CONCLUSION

Minimizing Eq is a least squares problem, which corre- |y this work, we proposed a design technique for IIR
sponds fo solving a linear system. In Table | an efficien{yayelet filters for the first scale of the DT-CWT, in order
Matlab program is given for computing the polynomialto improve the directional selectivity of the first scale.eTh
B(z). In Table Il expressions foB(z) for different filter  main design criterion is that the wavelet filters in both
orders are given. We found that all filters obtained usingrees must satisfy the half-sample delay condition whie th
this technique are stable. ) corresponding scaling filters are one sample delayed. We
Interestingly, for allpass filters the propert®(z) =  have shown that perfect reconstruction is possible with IR
Q(z) holds, hence for QMF filters we have, apart fromwavelet filters. The obtained filters are stable and even the
time reversal, identical analysis and reconstructionréilte lowest order filters perform well for this task. The results
Ga(z) = Ga(z). Because the filter=2(Q(z) is causal, show a vast improvement in directional selectivity which is
implementing the anticausal filtet?/Q(z~1) can only beneficial in many applications that use this transform.
be realized by filtering in the time-reversed direction. For
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(b) (corresponding to the red surfaces in (c)-(d)). (c)-(d) Pheposed

wavelet filters Db8), for the first orderM = 1, and in four
Fig. 1. (a) Magnitude response ¢f(z) + jz|, for different orders  orientations For the original wavelet filters (top row), there is
M, showing the analyticity o€)(z) + jz (b) Group delay of9(z), leakage of the basis function energy to different orieotes]
for different ordersM . The thick line signifies the ideal group delay indicating a poor directional selectivity. With the propdsfilters
—g). (bottom row), the leakage is well suppressed.



