
QUASAR - A NEW HETEROGENEOUS PROGRAMMING FRAMEWORK FOR IMAGE AND VIDEO

PROCESSING ALGORITHMS ON CPU AND GPU

Bart Goossens, Jonas De Vylder and Wilfried Philips

Ghent University - TELIN - IPI - iMinds

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

bart.goossens@telin.ugent.be

ABSTRACT

In image and video processing research, rapid prototyping and

testing of different variations of an algorithm is quite essential (e.g.,

to find out if a given algorithm can solve a given problem or work

in real-time). In the past decade, the computational performance

of graphical processing units (GPUs) has improved significantly,

where speed-up factors of 10x-50x compared to single-threaded

CPU execution are not uncommon. However, GPU programming

is challenging, requiring a significant programming expertise and

moreover, most existing programming approaches are not well

suited for rapid prototyping.

In this Show & Tell session, we present a new programming

framework, aimed at making the bridge between high-level program

specification and low-level implementation and optimization on het-

erogeneous computation devices. The goal is that the programmer

is relieved from (most) implementation issues and can focus on

the specification and improvement of the algorithms. We present

a new prototype domain-specific programming language (in the

first place aimed at image and video processing) that provides a

uniform programming approach toward different hardware devices,

a run-time environment to manage and communicate with the

heterogeneous devices and an integrated development environment

(IDE). The IDE provides various useful image processing-related

debugging and profiling features.

I. INTRODUCTION

In image processing, rapid prototyping is very important: it

is crucial to quickly verify different approaches for a given

problem, to determine whether certain techniques can work for a

specific problem and/or an a specific computing platform. Recently,

there has been a lot of interest in multi-core Central Processing

Unit (CPU), Graphical Processing Unit (GPU) and many-core

coprocessor (accelerator) programming. In particular, GPUs are

very well suited for algorithms that exhibit massive parallelism

and that have a non-diverging control flow (such as many image

processing algorithms). This often leads to significant speed-

ups compared to single-core CPU implementations. The speed-

up of the computations not only means that certain algorithms

can work in real-time, but also that various modifications (e.g.,

different parameter settings) can easily be tested. Unfortunately,

GPU/accelerator programming comes at a cost: 1) the sophisticated

programming and debugging techniques lead to a steep learning

curve for programmers that are new to these platforms, 2) de-

velopment and optimization often requires huge efforts from the

programmer (e.g., several weeks to months for implementing a

relatively “simple” algorithm on a GPU), 3) often different versions

of the code for different target platforms need to be written, 4) the

resulting code may not be future-proof: it is not guaranteed to work

optimally on future devices. The essential cause of the problem is

that the algorithmic specification and its implementation are not

separated: a programmer spends a huge amount of time focusing

on implementation details rather than on improving the algorithm

itself.

Consequently, the computational power of these platforms is

often restricted to more experienced programmers and is not

in reach of, e.g., starting Ph.D. students (at least, not without

considerable investments).

Nevertheless, in the past decade, there has been a lot of work

on designing new libraries and programming languages to simplify

the programming tasks. A few options are:

1) The use of a low-level programming language (e.g., CUDA

[1], OpenCL [2], DirectCompute [3]) in combination with a

“host” programming language (e.g., C++, FORTRAN, Java,

Ruby, Python, Octave, MATLAB, ...).

2) Modular programming techniques: based on building blocks

in existing libraries (e.g., Array Building blocks, Thrust,

CUSP, MAGMA, FLAME, GPU-accelerated functions in

OpenCV, Armadillo, Blitz++, Eigen, ...)

3) Domain-specific languages and/or parallel extensions directly

embedded into the high-level programming language (e.g.,

Halide [4], KernelGen [5], Rootbeer [6], OpenACC [7], Mi-

crosoft C++ AMP [8], ...). The DSLs and parallel extensions

have the advantage of being easy to learn, while enabling

easy integration in existing code bases.

4) Programming languages with integrated support (e.g.,

Mozilla Rust [9]).

Despite of the efforts, most of these techniques require a fair

amount of programming expertise, a lot of manual work and

often enforce fixed programming patterns (which is less flexible).

Moreover, it is often difficult to share code between different

researchers.

In this Show & Tell session, we present and demonstrate a new

programming framework, called Quasar, that is (in the first place)

aimed at image/video processing. The framework consists of a

prototype of a programming language and an integrated develop-

ment environment (IDE). The main goal is to hide implementation

complexities so that the programmer can focus on the algorithmic

design, while still giving (more experienced) programmers full

control of the underlying implementation. The language itself is

designed to be easy in use and has a syntax that is similar

(but not equal) to the syntax of MATLAB/Octave (see Figure 1).

Moreover, the language provides a uniform programming approach

toward CPUs and GPUs and is largely hardware-agnostic. Hence,

programmers do not need to learn GPU concepts in order to take

advantage of the acceleration.

Thanks to type inference, data type specifications can be omitted

and can be inferred from the context. The language supports both

dynamic and static typing. The development environment provides

an interactive execution, integrated CPU/GPU debugger, advanced

code profiling tools and documentation tools.

In summary, compared to existing frameworks, our approach

provides both 1) fast hybrid execution on CPU/GPU, 2) fast

rapid-prototyping with simplified debugging and 3) a future-proof

methodology (multiple GPU technologies are supported). The

innovative aspect is that image and video processing algorithms

can be designed and developed in novel ways (e.g., with a lot of

user interaction and visualization, tooltips specific to image/video

processing, video probing debugging functions, ...). During the

demonstrations, we will show these aspects in great detail. We

aim for a lot of interaction with the audience: we will discuss

the limiting factors in the design and development efforts of

image/video processing algorithms, the approaches that they use

to solve these problems, our solution. Finally, we hope to obtain

feedback from the audience in order to further improve and extend

our research platform.

In the following sections, we will discuss the different elements

of our solution in more detail.

II. THE QUASAR PROGRAMMING FRAMEWORK

The Quasar framework consists of a compiler system, a runtime

library and an IDE. The compiler system itself contains a front-end

compiler and several back-end compilers. The front-end compiler

translates high-level constructs in low(er)-level constructs that can

be handled by the back-end compilers. The front-end compilation

automatically detects and extracts serial and parallel loops that can

be executed on the target device (e.g., CPU or GPU). In the front-

end, also device-independent “host code” is generated to invoke

the extracted parallel loops on the target device. The obtained

intermediate Quasar representation is then either compiled to byte-

code, or interpreted directly. The back-end compilers generate

C++/CUDA or LLVM code and invoke existing native compilers

(e.g. GCC, Clang, ...), to generate a device-dependent binary.

The Quasar runtime system consists of four major components:

1) a memory manager (that performs automatic memory allo-

cation/deallocation/transfer between devices), 2) a scheduler (for

deciding on which device a certain loop is executed), 3) a load-

balancer (for making sure that each GPU/CPU thread has sufficient

work) and 4) a device back-end (which communicates with the

underlying hardware through CUDA or OpenCL). Finally, the results

can be visualized via OpenGL (possibly via user interaction) or

written to disk.

By default, code is generated for both CPU and GPU, so that the

run-time system can dynamically switch between CPU and GPU,

depending on the current load (load balancer), the complexity of

the task (e.g. a 1D loop that iterates over 5 elements versus a 3D

loop that iterates over all pixels of a volumetric image) and the

memory transfer costs. This is all done fully automatically. The

num_i t = 1024
im = zeros (7 6 8 , 7 6 8)

% A u t o m a t i c a l l y p a r a l l e l i z e d l oop (dim =2)
for m= 0 . . s i z e (im , 0)−1

for n = 0 . . s i z e (im , 1)−1
p = ([m, n] . / s i z e (im , 0 . . 1)) −0.5
c = −1.42 + complex (p [1] , p [0])
z = 0 i
N = 2 . 0
for u = 1 . . num_i t

i f abs (z) > N
break

e n d i f
z = z * z + c

end
im [m, n] = u−l og2 (l og (abs (z)) / l og (N))

end
end

imshow (im , [])

Fig. 1. Example Quasar code - calculation of the Mandelbrot

fractal.

run-time system currently supports both CUDA and OpenCL back-

ends and can even use multiple CUDA and/or CUDA devices at the

same time. This way, the programmer is relieved from complicated

implementation issues (e.g., memory allocation, memory transfer,

structure alignment and packing, device selection, scheduling, ...).

Instead, these issues are handled transparently by the compiler and

runtime systems. Several special CUDA features are supported and

do not require special intervention of the programmer: hardware

texturing units, asynchronous streaming interface, shared memory

and dynamic parallelism.

A simple example Quasar program that calculates a Mandelbrot

fractal and that displays the result, is given in Figure 1. A few

simple programming language features can be noted: 1) built-in

support of complex number arithmetic, 2) vector/matrix operations

(./), 3) sequences a..b. These features are automatically mapped

by the compiler onto equivalent low-level constructs: the complex

number arithmetic and fixed-length vectors (e.g. [m,n]) are

translated in single instruction/multiple data (SIMD) instructions

by the back-end compiler (e.g. GCC, LLVM, ...).

III. THE INTEGRATED DEVELOPMENT

ENVIRONMENT (IDE)

To simplify the development of new image and video processing

algorithm, an IDE (called Quasar Redshift) has been designed

(see Figure 2). The IDE has a classical (i.e., Eclipse/Scilab-

like) layout and features a definition window (for inspecting

variables and definitions), a data window (data visualization), a

code editor, an interactive window, various debugging windows

and a profiler with a timeline view. Several facilities are available

for image/video processing, including debug tool-tip windows with

image visualization, GPU windows, image and video probes, ...

The user can choose the target device(s) to run the code, the

desired numerical precision (e.g. 32-bit or 64-bit floating point).

Debugging functionality includes starting and pausing programs,

Fig. 2. Screenshot of Quasar Redshift (host OS: Ubuntu 12.4) -

MRI reconstruction demo.

Fig. 3. Screenshot of Quasar Redshift (host OS: Ubuntu 13.4) - 3D

video processing demo.

stepping through code, breakpoints, parallel debugging through

GPU emulation. We will demonstrate these features through an

interactive 2D+depth image reconstruction and visualization demo

program. This program, completely written in Quasar, demonstrates

real-time video processing and visualization through OpenGL trian-

gle mesh rendering. Various sliders allow the user to interactively

change parameters of the depth reconstruction algorithm and the

results are seen immediately (see Figure 3).

IV. NOVEL RESEARCH OPPORTUNITIES

Our solution offers a number of novel research opportunities

for the image and video processing community, that are difficult

to accomplish with other techniques: 1) computer-aided design

space exploration: it is not only possible to quickly verify the

performance of the algorithm on various platforms and hardware,

but the compiler system can also give feedback to the user

about certain design choices (e.g. dimensioning, memory usage,

memory transfer bandwidth etc.), 2) integration of domain-

specific optimization techniques: often different calculation paths

may lead to the same result; the compiler can inform the user about

possible algorithmic design decisions. 3) distributed image/video

processing algorithms. With the current programming framework,

this is rather trivial to accomplish. However, improved planning

and scheduling systems, taking several video streams into account,

may be employed.

V. CONCLUSION AND FUTURE DEVELOPMENTS

The Quasar framework is aimed at supporting and extending the

research in the domain of image and video processing. The domain-

specific language allows researchers to focus on design aspects of

the algorithms, rather than on implementation issues. The design

methodology has successfully been used within several projects

of the IPI research group of Ghent University, including iMinds

ASPRO+, GIPA, MMIQQA projects, the IWT SBO Chameleon

project and the European Catrene ICAF project. In one of our

projects, we have implemented the same algorithm using both

Quasar and CUDA (by a different researcher), and even though the

computational time was nearly identical in both cases, the Quasar

version was obtained within one week, compared to three months

of development time for CUDA.

Currently, the framework is in a research phase, in which

several Ph.D. students and postdocs at Ghent University are testing

the tools in different image processing application domains (e.g.

3D reconstruction, registration, computer vision, medical image

reconstruction). Screenshots and videos are available at http://telin.

ugent.be/~bgoossen/quasar/icip2014.

VI. ACKNOWLEDGMENTS

Bart Goossens acknowledges support by a postdoctoral fellow-

ship of the Research Foundation – Flanders (FWO, Belgium).

VII. REFERENCES

[1] NVidia, “NVidia CUDA Compute Unified Device

Architecture,” 2007. [Online]. Available: http://www.nvidia.

com

[2] The OpenCL Specification 1.2, Khronos OpenCL working

group Std., 2011. [Online]. Available: http://www.khronos.org/

registry/cl

[3] Microsoft, “DirectCompute,” 2009. [Online]. Available: http:

//msdn.com/directx

[4] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amaras-

inghe, and F. Durand, “Decoupling Algorithms from Schedules

for Easy Optimization of Image Processing Pipelines,” in ACM

Transactions on Graphics, vol. 31, no. 4, 2012.

[5] D. Mikushin and N. Likhogrud, “KernelGen - A Toolchain for

Automatic GPU-centric Applications Porting,” in Supercomput-

ing Conference, Salt Lake City, Utah, USA, Nov. 10-16 2012.

[6] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch, “Rootbeer:

Seamlessly using GPUs from Java,” in 14th IEEE Int. Conf on

High Performance Computing and Communications (HPCC-

2012), Liverpool, UK, June 25-27 2012, pp. 375–380.

[7] OpenACC - Directives for Accelerators, Std. [Online].

Available: http://www.openacc.org

[8] Microsoft, “C++ AMP.” [Online]. Available: http://msdn.

microsoft.com/en-us/library/hh265137.aspx

[9] “Mozilla Rust.” [Online]. Available: http://www.rust-lang.org

