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Abstract—This correspondence deals with the problem of the exact
computation of the autocorrelation function of a real or complex dis-
crete wavelet subband of a signal, when the autocorrelation function or
alternatively the power spectral density (PSD) of the signal in the time
domain (or spatial domain) is either known or estimated using a separate
technique. The solution to this problem allows us to couple time domain
noise estimation techniques to wavelet domain denoising algorithms,
which is crucial for the development of “blind” wavelet-based denoising
techniques. Specifically, we investigate the Dual-Tree complex wavelet
transform (DT-CWT), which has a good directional selectivity in 2-D and
3-D, is approximately shift-invariant and yields better denoising results
than a discrete wavelet transform (DWT). The proposed scheme gives an
analytical relationship between the PSD of the input signal/image and the
PSD of each individual real/complex wavelet subband which is very useful
for future developments. We also show that a more general technique,
that relies on Monte Carlo simulations, requires a large number of input
samples for a reliable estimate, while the proposed technique does not
suffer from this problem.

Index Terms—Autocorrelation functions, complex wavelets.

I. INTRODUCTION

Many noise estimation techniques, either designed for white or col-
ored noise (e.g., [1]-[8]), estimate the noise power in the time (or spa-
tial) domain, while this estimate is often used in a transformed domain,
such as the wavelet domain [9]-[12]. An orthonormal linear transform
preserves the noise variance of stationary white Gaussian noise. For
nonorthogonal, overcomplete transforms or for colored noise, the sit-
uation is more complicated. Suppose that the covariance matrix of a
finite length signal is given by C, and the transform matrix is denoted
as W. The covariance matrix of the transformed signal & becomes [13]

C:; = WC,WT, 1)

Even though this relationship is simple, its computation is not, because
the dimensions of the matrices can become very large, e.g., in 2-D
or 3-D, which makes it impractical in realistic situations due to high
memory and computational requirements. Also, if C.. is not known in
advance and has to be estimated, a very large number of observations
is required, which is also not feasible. Instead, it is common to assume
weak-sense stationarity, which states that the correlation between two
samples depends on their difference in position, but not on their ab-
solute positions. This assumption significantly reduces the number of
free parameters in C,. to be estimated, however the memory and com-
putational requirements are still remaining.

For shift invariant transforms, such as the undecimated wavelet
transform [13] or steerable pyramids [14], [15], the task of computing
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autocorrelation functions of subbands can be easily done by filtering
and transforming a Dirac impulse to the transform domain and by
computing the covariance matrix (or autocorrelation function) in each
subband [11]. However, for shift variant transforms (such as the DWT
[16], the DT-CWT [17] and the recently proposed Marr wavelet trans-
form [18]), the obtained covariance matrix would depend on the exact
position of the Dirac impulse, hence, the result would be incorrect.

A general approach would then be to use Monte Carlo simulations:
first generate a noise signal with the known covariance matrix (or auto-
correlation function), transform this noise signal to the wavelet domain
and estimate the autocorrelation functions in each wavelet subband.
This method is easy to implement, but has as major drawback that it
suffers from estimation errors: often many input samples are needed to
have areliable estimate of the autocorrelation in each wavelet subband,
as we will show in Section VI.

Despite the fact that recent efficient wavelet-based denoising tech-
niques (e.g., [11], [19]) entirely rely on knowledge of the correlation
properties of the transform coefficients, the computation and study of
the autocorrelations has only received limited attention compared to
the many papers that appeared on the topic of denoising. Averkamp
and Houdré [20] analyze stationary second-order random processes in
the DWT domain. Fowler [21] studies the variance of additive white
noise, in nontight undecimated DWT frames. Chaux et al. [22], investi-
gate noise covariance properties for dual-tree wavelet decompositions.
Their analysis starts from the (cross)correlation functions between dif-
ferent continuous wavelet basis functions that have a closed form ex-
pression in frequency domain.

In this correspondence, we present an exact computation method for
the autocorrelation functions in the real or complex wavelet domain,
based on DSP theory, in a recursive manner similar to the Fast DWT
scheme of Mallat based on iterated filter banks [13], with including dec-
imations at every scale. This has the additional advantage that the com-
putation is very fast and memory-friendly. Because our DSP approach
directly uses the wavelet filter coefficients, we can also apply our tech-
nique in case of wavelets that do not have a closed form expression in
frequency domain. We develop the expressions for the Dual-Tree Com-
plex Wavelet transform (DT-CWT) [17], [23]. We have concentrated on
the DT-CWT because of its popularity in signal and image processing.
This transform is two times redundant in 1-D (four times in 2-D) and the
coefficient magnitudes are approximately shift invariant, which yields
significantly better results than a DWT for many real applications, e.g.,
denoising and usually better results than a nondecimated wavelet trans-
form due to a better orientation selectivity. As such the derived expres-
sions are important in a number of denoising methods. The method
can also be easily extended to other types of multiresolution represen-
tations, based on similar derivations.

This correspondence is organized as follows: Section II introduces
general concepts that are used in the remainder of this correspondence.
In Section III the computation method for the 1-D DT-CWT is de-
scribed. Next, extensions to the 2-D and higher dimensional oriented
DT-CWT are presented, respectively, in Sections IV and V. Results and
adiscussion are given in Section VI. Finally, Section VII concludes this
correspondence.

II. PRELIMINARIES

In this section, we introduce some concepts that are used in the re-
mainder of the correspondence. Let F'(z) denote the z-transform of a
zero-mean signal f(n) € 12(Z), ie., F(z) = Zfz f(n)z"". The
discrete autocorrelation function of f(n) is given by

r(n) = E[f(m)f(n+ m)] 2)
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where f(n) denotes the complex conjugate of f(n), and E[-] is the
mathematical expectation operator. In this correspondence, we assume
that the signal is wide-sense stationary, such that r(n) does not depend
on m. The power spectral density (PSD) describes how the signal f(n)
is distributed in frequency. According to the Wiener-Khintchine The-
orem (see, e.g., [24]), the PSD of f(n) can be obtained through the
discrete time Fourier-transform of the autocorrelation function r(n)

oo

Z r(n)e 7" 3)

n=——oo

R(w) =

where w is the frequency variable. To ease the notations, we will use the
name PSD for the z-transform of r(n) in the remainder of this corre-
spondence, by defining R(z) = > .>7 __ r(n)z ™. The PSD in terms
of the frequency variable w can then be found by simply substituting
z = ev,

Decimating the signal f(n) by a factor 2 (without antialiasing fil-
tering) leads to a signal f'(n) with z-transform [25]

FosiEE)er). o

The autocorrelation function of the decimated signal f'(n) is given by
' (n) = E[f (m)f'(n +m)] = r(2n).

Equivalently, in the z-domain, the PSD of the decimated signal f(n)
can be obtained using

R'(z) = %(R (Z%)-i-R(—Z%)) 5)

which means that the autocorrelation function of the decimated signal
is equal to the decimated version of the autocorrelation function of the
nondecimated signal. This is a crucial property for the further devel-
opments, as this will allow for an iterative scheme for computing auto-
correlation functions after subsequent wavelet decompositions.

If we now consider two wide-sense stationary signals f1(n), f2(n)
with z-transforms, respectively, Fi(z) and F»(z), the cross-power
spectrum (CPS) can be found as the z-transform of the corresponding
cross-covariance function

“+ oo

Sia()= 3 Elfi(m)faln +m)=". ©)

n=——o0

If the two signals are equal, F' (z) = F2(z), the cross-power spectrum
reduces to the PSD (3). Cross-power spectra are particularly useful
when investigating the PSD of a signal that is a linear combination
of a number of signals with known PSDs. For example, the signal
fa(n) = afi(n) + bf2(n) has PSD

R3 (Z) = |(l|2R1 (Z) + |b|2R2 (Z) =+ (1551,2(2) + ELbSLz(Z). (7)

We see that the PSD of f3(n) is influenced by the CPS between fi(n)
and f>(n). This expression can be easily generalized to an arbitrary
number of signals. Now, let F} (=) and F} (=) be decimated versions of
respectively Fi(z) and F>(z). The CPS between the decimated signals
is again the decimated version of the CPS between both signals

S12(2) = %(5172 (3%)-1-51,2 (—Z%)) (8)

Now that we have the relations for the PSD and the CPS before and
after decimation, we can analyze how the autocorrelation of a signal
changes through subsequent wavelet decompositions.
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III. AUTOCORRELATION IN THE 1-D DT-CWT DOMAIN

The task we are facing is the computation of the autocorrelation
functions for each scale of the DT-CWT transform, given an autocor-
relation function of a signal in the time domain. The main idea of the
proposed approach is to compute the autocorrelation iteratively, i.e.,
to express it as a function of the autocorrelation at the previous res-
olution level. Without loss of generality, we develop the expressions
for one decomposition stage of the 1-D DT-CWT. Fig. 1 shows one
stage of the dual tree WT, where two input signals with z-transforms
Fi(z) and Fy(z) (and with PSDs R;(z) = Fi(2)F;(z71),i = 1,2)
are both lowpass and highpass filtered and subsequently subsampled.
In the first stage of the wavelet transform, inputs of both trees are
equal: F1(z) = F,(z). For a multistage decomposition (not shown
here), the process is iterated on the lowpass outputs F3(z) and Fy(z)
(i.e., F3(z) becomes Fi(z) and Fi(z) becomes Fy(z)). The filters
G1(z) and Hq(z) represent z-transforms of a conjugate quadrature
filter (CQF) pair, G'1(z) is an analysis wavelet filter and H; (z) is an
analysis scaling filter. G2 (z) and H>(z) denote the z transforms of a
second CQF pair. Consequently the high pass filtered input signals have
PSDs R;(2)G:(2)G:(27"),i = 1,2. Using (5), decimating the filtered
signals by a factor 2 results in signals with PSDs R;(z), ¢ = 1,2,
with

Ri(%) = %(Ri(;)ai(;)ai(z*1)+ Ri(=2)Gi(=2)Gi(—="1).
©)

Similarly, for the lowpass outputs, we have (i = 1,2)

R2+g(:2) = %(ﬁi(z)Hi(z)H;(271)+ I;’Z'(—:)Hi(—z)H,'(—zfl)).

(10)
Note that on the unit circle the filters are power complementary
|Gi(2))? + |Hi(—2)]? = 2, with z = ¢7* (see e.g., [16] and [25]).
Because higher dimensional! complex wavelets are formed as tensor
products of 1-D complex wavelets, some extra arithmetic is needed to
compute the complex wavelet coefficients [23, eq. (7)]

1 . . Fi(2)
E(l—i—] 1_j)<F2(z)) (11)

which can be equivalently expressed as a linear transform to the vector
(F](Z) FQ(Z))T

(r5)=v i 4) (R6)
ro) =20 -1 ) me )
By applying (7), R} (z) and R (=), denoting, respectively, the PSDs of

the real and imaginary parts of the complex wavelet coefficients F} ()
and F;(z), can be written as

Fl(2)+jF(z) =

(12)

Ri(z) = %(Fl(zm(z*) + B(2)F (2 )+S1a(2)
+ S12(:71)
Ry(2) = %(Fl(z)Fl(fl) FRG)RGY

—S12(2) = Si2(:71) (13)

where S 2(z) is the CPS between F' (z) and F>(z), that can be com-
puted using (8)

. 1, - _
51,2(22) = 5(51,2(2)G1(2)G2(2 1)
+512(—2)Gi(=2)Ga(—=27")) (14)
ITn fact, this operation is not necessary in 1-D, but because it does not affect

the PSDs of the complex wavelet magnitudes and because the phase modulation
is used in higher dimensions, we explain this already for 1-D.

Authorized licensed use limited to: University of Gent. Downloaded on July 05,2010 at 16:43:31 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 7, JULY 2010

Fi(z)

Fy(2)

Computation of
complex coefficients

F4(Z)

Recursive part

. Analysis building block of the 1-D DT-CWT (see text).

Fig. 2. Proposed computation scheme of the autocorrelation functions in the
1-D DT-CWT domain (one stage only). For multlple stages, this scheme is iter-
ated on the outputs R3(z), R4(z) and S5 4(z). “z — z~1” denotes the oper-
ation that transforms F(z) into F(z~!) (i.e., time reversal).

with S 2(z) the CPS between F' (=) and F5( z). The proposed scheme
is summarized in Fig. 2.

In some applications, it may be necessary to have autocorrelation
functions of the complex wavelet coefficients, instead of their real and
imaginary parts. This can be achieved as follows.

RCP]X(,Z)
= (F{(2)+ () (F1(=7") = jF3(=71)) (15)
= Ri(2) + Ry(2) — jS1 2(2) +jS1 (27" (16)

with the CPS between the real and imaginary parts of the coefficients
given by

S0 2(2) = Z(Ri(2) = Ra(2) = S12(2) + Si2(z7 1) (A7)

l\)l»—t

In case one is only interested in the autocorrelation functions of the
DWT (and not the DT-CWT), one can simply skip the computation of
the complex coefficients in Fig. 1 and use R (z) or R2(z) directly.

In a practical implementation, we wish to work directly with
the wavelet filter coefficients instead of z-transfer functions, which
relieves us from using symbolic algebra packages. First, we ex-
pand the input PSD and wavelet filters into polynomials in z:

3909

Cf’i(z) = Z:S_HG gi(n)z"", Hi(z) = .2 hi(n)z"",
Ri(2) = S0E_ #i(n)z"" where gi(n), hi(n) and 7;(n) denote
the wavelet highpass filter coefficients, the lowpass coefficients and
the autocorrelation function of the input signal, respectively, for tree
i. Next, (9) and (10) are evaluated in the time domain by replacing
the products by convolutions, based on the following z-transform

properties:

( b b

(—2) = (-

(—n)
1)"hi(n)
( 1) = (=1)"hi(=n).

Subsequently, the cross-power spectrum between Fi(z) and Fi(z)
(14) is computed using the same technique, in order to obtain the au-
tocorrelation functions of the lowpass output signals r;(n), ¢ = 1,2,
with r;(n) defined by Ri(z) = Y0 E_ | ri(n)=""

IV. AUTOCORRELATION IN THE 2-D DT-CWT DOMAIN

The reasoning from the previous section can be extended to the 2-D
DT-CWT as follows: let . ;(z1, z2) the z-transform of the input image
of each tree (i = 1,...,4) and let H; ,,,(z1, 22) denote the corre-
sponding separable wavelet filter where m = 1,...,4 respectively
correspond to LL, LH, HL, and HH. Then the filtered and decimated
subbands are given by

1
F; .. (z%,zg) = i Z Hi . ((—1)"”217(—1)14“2)

k,1=0

Fi((=DF21,(=1)'2)  (18)

where the sum over &k and ! is due to the presence of aliasing terms
by horizontal and vertical decimation. Equation (18) is in fact a 2-D
extension of (4). The PSDs of these subbands are

R‘i,nﬂ( 17/-2)— 7777</1 42)F7 m (21_1-,22_1) (19)
and the cross-power spectra are computed as (rm = 2, 3,4)

St,m(z1,22) = Fi m (21, 22) Fa (fl,zgl)

52,771(;’ ,~2)—F2 777(71~72)F'% m (,Z ! 22_1)' (20)

By substituting (18) in (19) and (20), the PSDs R; m(z1,22), ¢ =
1,....4,m = 1,....4,and Sy ;m(z1,22), b = 1,2,m = 1,...,4
can be directly written in terms of the PSDs of the input images of each
tree (R; m(z1,22) = E m (21, /,Z)Fl m (2] 1,:2_1)) and the cross-
power spectra between the input bands S1 (21, 22), S2.m (21, 22),
with (m = 1,...,4)

51,7n(215 22)
52,7n(21 5 22)

= Fl,m(zlﬁ 32)F4,m (21_1 . 32_1 )
= Fo (21, @1)
Because of the linear phase modulation, the PSDs of the complex
wavelet subbands are not equal to R; m(z1,22), but can be easily
derived from the PSDs R; . (21, z2) by applying (13)

1~ 1~
Ry (21, 22) = §R1,m(21,22) + 51?4,771(21-/22)
1. 1. .,
+ 551,171,(21732) + 551,771(31 1322 !

Rl?,?n(;/laZZ) = 51?2,
-1 -1

1, &
+ 552,171,(217;/2) + 552’"1(31 e

1~
m(ZhZZ) + §R3,m(21722)
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Fig. 3. Computed PSDs (top row) and autocorrelation functions (bottom row) for different subbands of the 1-D DT-CWT. The covariance function of the input
signal is here a Dirac impulse. Dotted line (top row): estimated PSDs and autocorrelation functions using Monte Carlo simulations (see text), thick line: estimated

PSDs and autocorrelation functions using the proposed scheme.

1- 1-
Rg,m(zla 22) = §R2,m(217 22) + §R3,m(‘31a22)
1~ 15 IR
- §Sz,m(:1722) - §Sz,m (31 1:\'22 1)
/ 1~ 1~
Ry, (21,22) = §Rl,m(zl-, z9) + §R4,m(21,22)
1~ 15 IR
— 551‘771(141532) — §Sl,m (Zl 1,32 1) (22)

with m = 2,3, 4. Practically, the implementation does not pose any
problems, because the wavelet filters in each tree of the transform are
separable, which results in separability of the PSDs Ri ., (z1, z2). Due
to the linear phase modulations, the final PSDs R! ,,(z1, z2) are not
separable, however they are a linear combination of separable func-
tions.

V. HIGHER DIMENSIONAL EXTENSIONS

In the previous section, the computation scheme for the 2-D
DT-CWT has been shown. For some applications (e.g., [26]), higher
dimensional extensions are required. These extensions are straightfor-
ward, but quickly become very elaborate. For the sake of completeness
we now present the extension to 3-D. We will consider one subband
oftreei = 1,2,....8 and orientation m = 2, 3,4 (LH, HL, and HH),
with the corresponding separable wavelet filter H; ,,(z1, 22, z3). Cal-
culations for the other subbands are analogous. Let F,;,m(m , %2, 23)
be the z-transform of the input wavelet band of each tree. The filtered
and decimated subband is given by

Fim(=1)F 21, (=1)' 22, (=1)" 23).
The PSD of this band is
(23)

‘ B T
Ri,777,(21az27z3):Fi,7n(z1732733)F7‘,‘777 (31 s 22 4 %23 )-

We want to know the PSDs of the real and imaginary parts of the com-
plex coefficients of the DT-CWT, which involves linear transforms

with transform matrix A

Ff 1 (2)
P .(2)
Fi,.(2)
Fi.(z)
FS,(2)
i (2)
()
Fl(2)
1 0 0o -1 0 -1 -1 0 Iy (2)
0 1 1 0 1 O 0o -1 Fy m(z)
1 0 0 1 0 1 -1 0 F5 ,n(2)
110 -1 1 0 1 0 0 1 Fy,n(2)
“2]1 0 0 1 0 -1 1 0 Fs o (z)
01 -1 0 1 0 0 1 Fsm(z)
1 0 0 -1 0 1 1 0 F7 o (2)
0 -1 -1 0 1 O -1 F3 om(z)
A
(24)
with Z = [z1, 22, z3]. We also need the cross-power spectra
Sim(21,22,28) = Fim(21,22,2) Fim (5752271, 251) (29)
in order to calculate the PSDs R} ,,(z1, 22, z3)
B! ) Ly A A
i m (215 22, 23) 41';17;[ liin [Al 0,
Fi',m(ZuZz,Zz)Fi”,m(51_1732_1723_1)-

These expressions contain 64 terms, of which 16 are nonzero. 4 of these
16 terms are the PSDs from (23), the other 12 terms are the cross-power
spectra from (25).

VI. RESULTS AND DISCUSSION

To compare our recursive scheme to general Monte Carlo (MC) sim-
ulations, we generate 256 input signals of length 4096 with a flat spec-
trum (i.e., the autocorrelation function in time domain is a Dirac pulse).
For the MC simulations, the input signal is transformed to the complex
wavelet domain, using the nearly symmetric Farras filters for 2-channel
perfect reconstruction [27] in the first scale and the 6-tap Q-shift filters
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Fig. 4. Estimated (top row) and computed (bottom row) au-
tocorrelation  functions  for  different subbands (at  orientation
—45°) of the 2-D DT-CWT. The PSD of the input image is

Fi(z1,22) = 213,71:715 223 exp(—(4/15)(m? 4 n?)) cos(x(m + n)).
Gray corresponds to 0, white to positive correlations and black to negative
correlations.

for the other scales [28]. Subsequently the autocorrelation functions are
estimated in every wavelet subband. Finally, the estimated autocorre-
lation functions are averaged over all 256 signals to suppress the influ-
ence of estimation errors. For a fair comparison of our recursive scheme
to the MC simulations, the same input samples and wavelet filters are
used, without knowledge of the time-domain PSD. For the recursive
scheme, we estimate the autocorrelation function of the input signal
in time domain, using maximum likelihood estimation. Next, we com-
pute the PSDs of the wavelet subbands using the recursive formulas
presented in the previous Sections. In Fig. 3 the results are depicted
for five scales of the DT-CWT. Only the autocorrelation functions and
PSDs of the real parts of the complex wavelet coefficients are shown.
For the technique employing MC simulations, statistical estimation er-
rors are still significant (see the dashed lines in Fig. 3), while the pro-
posed recursive scheme only starts from the time-domain estimation of
the autocorrelation function of the input signal.

The reason for this difference in accuracy between both approaches
lies in the decimation step in the DT-CWT procedure: this step makes
the DT-CWT attractive for practical applications, as it greatly reduces
memory and computational requirements by reducing redundancy. On
the other hand, the decimation step reduces the number of available
samples, which significantly lessens the estimation accuracy of the
PSD as one progresses through different DT-CWT scales in the MC
simulations. This seems to indicate loss of data, which is indeed the
case if one looks at the DT-CWT bands separately. The loss of data
is associated with subband aliasing (as all wavelet subbands suffer
aliasing due to nonideal wavelet filters), which is nullified in the full
DT-CWT framework, but not when operating on the subband sepa-
rately. Our proposed method does not suffer the same ailment, as it is
a closed form calculation from the autocorrelation function estimated
in time domain.

The result also shows the nonorthogonality of the DT-CWT, as the
input signal has a flat PSD while in the transform domain, the PSDs
are not flat. Hence, a denoising algorithm that deals with white noise
can not rely on the whiteness of the noise in the wavelet subbands.
Some denoising algorithms in literature use the whiteness assumption:
in this case the noise PSD in each complex wavelet subband is either
over- or underestimated, resulting in oversmoothing and artifacts in the
denoised images.

In Fig. 4, the experiment is repeated for the 2-D DT-CWT but for
an oriented input autocorrelation function (for the exact definition see
the caption of Fig. 4), again with an equal number of input samples for
both methods. In the top row, the estimated autocorrelation functions
using the general technique for one orientation of the 2-D DT-CWT
are shown. For this task, a colored Gaussian noise image of size
1024 x 1024 was generated, according to the input autocorrelation
function. In the bottom row, we show the autocorrelation functions
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computed using the proposed scheme. From Fig. 4 (top row), it
can be seen that the autocorrelation functions estimated using the
general Monte Carlo technique are quite noisy, especially for larger
(coarse) scales. Obviously this is because the number of samples in
each subband is too low to have a reliable estimation: in scale & this
number given by 1024%/4%, for the fifth scale this is 1024. As in
1-D, the influence of the noise can be reduced by generating multiple
noise images and by averaging the estimated autocorrelation functions
afterward.

More interestingly, the proposed scheme gives analytical relation-
ships between the input PSD and the PSD of every complex wavelet
subband. One other application could be to optimize the complex
wavelet filter coefficients in a data-adaptive way, e.g., to enforce or
have approximately white PSDs in the complex wavelet domain.
(Approximate) uncorrelatedness of wavelet coefficients is advanta-
geous for many applications, not only for denoising but also in image
analysis, compression, etc.

VII. CONCLUSION

In this correspondence we have presented a recursive scheme for
the computation of autocorrelation functions of complex wavelet sub-
bands. This scheme is similar to the fast DWT of Mallat, but processes
autocorrelation functions instead of raw signals or images. Using ex-
periments, it is shown that time domain estimation of the autocorrela-
tion function followed by the proposed recursive scheme yields more
accurate results than Monte Carlo methods that directly estimate the au-
tocorrelation functions of the wavelet subbands. The proposed scheme
can be incorporated in recent wavelet denoising techniques (for devel-
oping “blind” restoration methods), moreover it also gives an analytical
relationship between the PSD of the input signal/image and the PSD of
each individual wavelet subband. This can be very useful for further
developments of the DWT or DT-CWT, e.g., to optimize the filters in
a data-adaptive way.
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Linear Summation of Fractional-Order Matrices

Ran Tao, Feng Zhang, and Yue Wang

Abstract—Yeh and Pei presented a computation method for the discrete
fractional Fourier transform (DFRFT) that the DFRFT of any order can be
computed by a linear summation of DFRFTs with special orders. Based on
their work, we investigate linear summation of fractional-order matrices
in a general and comprehensive manner in this paper. We have found that
for any diagonalizable periodic matrices, linear summation of fractional-
order forms with special orders is related to the size and the period of the
fractional-order matrix. Moreover, some properties and generalized results
about linear summation of fractional-order matrices are also presented.

Index Terms—Diagonalizable matrix, discrete fractional Fourier trans-
form, eigendecomposition, fractional-order matrix.

I. INTRODUCTION

Recently, the fractional Fourier transform (FRFT) has found many
applications in signal processing and optics [1]-[3]. Besides being a
generalization of the Fourier transform (FT), the FRFT can be inter-
preted as a rotation in the time-frequency plane and is related to other
time-varying signal analysis tools [4], [S].

In order to digitally compute the FRFT, discrete counterpart of the
FRFT, namely the discrete FRFT (DFRFT) has become an important
issue in recent years. To date, several methods have been proposed for
discretization of the FRFT. Among these methods, the DFRFT based
on eigendecomposition of the DFT matrix F by using F-commuting
matrices has been found useful. Pei et al. first proposed the eigen-
decomposition-based definition of the DFRFT [6], and then Candan
et al. consolidated this definition [7]. Hanna et al. considered gener-
ation eigenvectors of F' by the singular value decomposition method
and direct batch evaluation [8]-[10]. Some new F-commuting ma-
trices whose eigenvectors are better approximate the continuous Her-
mite—Gaussian functions are proposed in [11]-[13], and commuting
matrices for other signal transforms are also investigated [14]-[18].

However, the computation cost of the eigendecomposition-based
DFRFT is O(N?) and the DFRFT kernel needs recomputing while the
order is changed. In [19], a new computation method for the eigende-
composition-based DFRFT is proposed. With this method, the DFRFT
of any order (angle) can be computed by a linear combination of the
DFRFTs with special orders. So, if the order of the DFRFT is changed,
we only need compute the coefficients of the linear combination which
can be obtained from an IDFT operation.

In fact, the new computation method for the DFRFT implies the
idea of linear summation of multiple fractional-order matrices. In this
paper, we investigate linear summation of fractional-order matrices
in a general and comprehensive manner. We show that the result of
linear summation of fractional-order matrices with special orders is
determined by the relationship between the period and the size of the
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