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Abstract

In this paper, comparison of strings is tackled from a possibilistic point of view. Instead of using

the concept of similarity between strings, co-reference between strings is adopted. The possibility of

co-reference is estimated by means of a possibilistic comparison operator. In literature, two important

classes of comparison methods for strings have been distinguished: character based methods and token

based methods. The first class treats a string as a sequence of characters, while the second class treats

a string as a vector of substrings. The first contribution of this paper is to propose a new character

based method that is able to detect typographical errors and abbreviations. The main advantage of our

technique is the very low complexity in comparison with existing character based techniques. In a

second contribution, two-level systems are investigated and a new approach is described. The novelty

of the proposed two-level system is the use of multiset comparison rather than vector comparison. It

is shown how an ordered weighted conjunctive operator that uses a parameterized fuzzy quantifier to

deliver weights, is competitive with frequency based weights. In addition, the use of a quantifier is

significantly faster than the use of existing weight techniques. In a third contribution, a novel class of

hybrid techniques is proposed that combines the advantages of several methods. Finally, comparative

tests regarding accuracy and execution time are performed and reported.

Index Terms

String matching, Possibility theory, Algorithms, Operators (mathematics), Fuzzy logic

I. INTRODUCTION

Comparison of strings is a widely studied area, with many useful applications in, amongst

others, information retrieval, data cleansing and duplicate detection. In general, two important

classes of methods can be distinguished: character based methods and token based methods. The

fundamentals of character based methods are due to Levenstein in 1966 [1], who defined the

edit distance (or Levenstein distance) between two strings s and t as the minimal number of edit

operations required to transform s into t, where the allowed operations are character insertion,

character deletion and character substitution. Damerau considered transposition as an additional

edit operation in [2]. He stated that these operations correspond to more than 80% of all human

misspellings. Needleman and Wunsch [3] defined a similarity measure for protein sequences

based on the longest common subsequence (LCS). Smith and Waterman modified this measure

to local alignments in [4] and Monge and Elkan were the first to recognize the importance
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of the previous works in word comparison in [5], by proposing an affine gap extension of

edit distance that copes with abbreviations. Next to these methods, another important character

based method is the Jaro measure ([6]), which is a heuristic method that is suitable for short

strings and is significantly faster than the methods already mentioned. Winkler extended this

method based on the observation that the probability of an error in the beginning of a string

is relatively low. A comparative study of these metrics and measures was performered in [7]

(using the implementation in [8]). The Monge-Elkan approach showed the best overall accuracy

(on average), followed closely by the Jaro measure. The same study also showed that Monge-

Elkan is an order of magnitude slower that Jaro and that Monge-Elkan tends not to be very

robust. Hence, Jaro seems to combine a relative high accuracy with a relative high performance.

This paper adopts the idea of combining high accuracy with high performance. Therefore we

start by formalizing some operators on strings that are used in the affine gap strategy. Next,

some important properties of these operators are given, leading to the idea that we can provide

low complexity approximations of these operators. Applying these approximations results in a

very fast operator. The assumptions under which the approximations are equal to the affine gap

strategy are given and it is shown that these assumptions are more likely to be violated if longer

strings are used. Therefor, the proposed character based method is best used in a two-level

system.

Next to the character based methods, token based methods are an important second class of

comparison methods. Hereby, a string is first tokenized and the problem translates to vector

comparison. An example of such a method is the cosine similarity with TFIDF weighting

scheme ([9]). While character based methods are suitable for errors on character level such

as typographical errors or abbreviations, token based methods are capable of detecting errors

on word level. In addition, the study in [7] showed that token based methods are an order

of magnitude faster than the fastest character based method (Jaro). In comparison to the Jaro

measure other character based methods are typically an order of magnitude slower. Therefor,

to combine the best of two worlds, recent studies proposed the combination of character based

and token based methods, leading to two-level systems([5], [10], [11]), where the first step

performs comparison on the character level and the second step performs comparison on the

word level. The study in [7] recognized SoftTFIDF with Jaro-Winkler as low level similarity

measure, as the best method with respect to average accuracy and stated that the execution
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time of two-level systems depends strongly on the used low level method. Therefor, a two-level

system is constructed that uses the novel and fast character based operator for strings as a low

level method. Instead of using vector comparison (as with SoftTFIDF), multiset comparison is

proposed, consisting of two major steps: an injective mapping and an aggregation operator. An

algorithm for the mapping construction has been provided in [12]. As an aggregation operator,

the use of ordered weighted conjunction is proposed, where the weight vector is delivered by a

parameterized fuzzy quantifier. Using such a quantifier has two major benefits: the construction

of the weight vector is much faster than with TFIDF weights and the quantifier approach has

higher accuracy than SoftTFIDF on several tested datasets. After construction of the new two-

level system, a hybrid approach is investigated that combines both evidence delivered by the

character based approach and the two-level approach. It is shown how weighted disjunction can

be used as combinatory function.

As a comparative model for strings, the notion of co-reference of two strings is preferred over

the notion of similarity, due to t-transitivity (where t is a t-norm) as an axiomatical requirement

of similarity. Having two strings s and t, a proposition ps,t=“s and t are co-referent” signifies

that s and t describe the same real world entity. Clearly, such relations do not satisfy transitivity

at all. Instead of estimating the similarity between s and t, we estimate the uncertainty that is

related to the boolean value of ps,t and express this as a possibilistic truth value. Possibilistic

truth values are chosen here due to their intuitive modeling of uncertainty. An operator that

provides such a possibilistic truth value is called a possibilistic comparative evaluation operator

or evaluator for short. The concept of evaluators is introduced in [12], where an evaluator for

sets is designed. The comparison methods proposed in this paper are all evaluators. More on

possibility theory and possibilistic truth values can be found in [13],[14] ,[15] and [16].

The remainder of this paper is structured as follows. In Section II basic notations and defini-

tions on strings are provided and some important properties are given. Based on these properties,

a character based evaluator (also called one-level evaluator in the following) for strings is given in

Section III. Next, in Section IV a novel two-level system approach is defined and a description of

hybrid systems is given. Section V compares the accuracy of the two-level system and the hybrid

system with SoftTFIDF and reports on the performance of the introduced methods. Section VI

provides a brief overview of future work. Finally, Section VII summarizes the most important

contributions of this paper.
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II. STRINGS AND n-LANGUAGES

In this Section, basic operators for string manipulation are formally defined and properties

of these operators are investigated. Within the scope of this paper, the term ‘string’ indicates

an instance of a data type to represent words of a natural language. Such a natural language is

always based on an alphabet A. The elements of this alphabet A are called characters. On data

type level, a string is nothing more than a list of characters:

Definition 1 (String of length n)

A string s of length n drawn from an alphabet A is specified by a mapping function ιs:

ιs : In → A

where In = {1, 2, .., n}. A string with length 0 is called an empty string and is denoted by σ. The

set of all strings of length n is denoted Sn and the set of all strings is denoted S.

The length of a string s is denoted |s|, which is by definition equal to |In|. Two strings s and t

are equal if both the index sets and the images of ι are equal:

s = t⇔ I|s| = I|t| ∧ ∀i ∈ I|s| : ιs(i) = ιt(i)

The transformation operator for strings [.] is formally defined by:

Definition 2 (Transformation operator)

Given a string s ∈ Sn with index set In. Assume q = (q1, ..., qk) with k ≤ n. For all i and j,

qi ∈ In ∧ i 6= j ⇒ qi 6= qj . The transformation of s under q is a string s[q] ∈ Sk with:

∀i ∈ {1, 2, ..., k} : ιs[q](i) = ιs(qi)

The transformation operator [.] has some interesting special cases. If qi+1−qi = 1, the transformed

string is called a substring of s.

Definition 3 (Substring)

Assume two strings s, t ∈ S , then t is a substring of s, denoted t @ s if:

t = s[q]

with qi+1 − qi = 1
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Weakening the constraint on elements of the transformation vector from monotonic with increase

1 to just monotonic, implies a weakening of the definition of substring:

Definition 4 (Weak substring)

Assume two strings s, t ∈ S , then t is a weak substring of s, denoted t @w s if:

t = s[q]

with qi < qi+1

From a theoretical point of view, (weak) substrings of s are projections on the index set of s.

Using the term weak substring is justified by noting that the definition of a weak substring is a

generalization of the definition of substring:

s @ t⇒ s @w t

Next, string concatenation is defined.

Definition 5 (String concatenation)

Assume two string s, t ∈ S. The concatenation of s and t, denoted as s⊕ t, is a string r ∈ S|s|+|t|
with ιr:

∀i ∈ I|s|+|t| : ιr(i) =

 ιs(i), i ≤ |s|

ιt(i− |s|), i > |s|

The following properties are satisfied:

(s⊕ t)⊕ r = s⊕ (t⊕ r)

s⊕ σ =s = σ ⊕ s

After introducing the relevant operators for string manipulation, a more general concept is

introduced. The definition of an n-language is given, providing an elegant model for reasoning

with strings. Formally:

Definition 6 (n-language)

A language of length n, also called an n-language, drawn from an alphabet A is a set of strings s

with length n. The set of all languages of length n is denoted Ln and the set of all languages is

denoted L.
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Definition 6 implies that any n-language L ⊂ Sn, which means that sublanguages, language

union and language intersection are unambiguously defined in terms of set operations. The

definition of n-languages provided here is a special case of formal languages. Defining them

has, from our point of view, a major benefit. Reasoning with strings frequently has to cope with

uncertainty. Definition 6 offers an elegant framework to model this uncertainty. When dealing

with n-languages, two important concepts are cardinality and characteristic length.

Definition 7 (Cardinality and characteristic length)

The cardinality of an n-language L is denoted |L| and is equal to the number of strings in the

language, i.e. the set cardinality. The characteristic length of an n-language L is denoted cl(L) and

is equal to n.

A language L that contains a string s is denoted s ∈ L. Clearly, a string is a special case of an

n-language:

∀s ∈ S : s ≡ L⇔ L ∈ Ln ∧ s ∈ L ∧ |L| = 1

Definition 8 (Language concatenation)

Assume L ∈ Ln and K ∈ Lm. The concatenation of L and K, denoted as L⊕K, is an (n + m)-

language P specified as:

∀(s, t) ∈ (L×K) : (s⊕ t) ∈ P

We use ⊕ both to denote string concatenation and language concatenation, which is no problem

as concatenation of languages is a generalization of concatenation of strings. It should always be

clear from the premises which operator is used. As mentioned before, the main reason to define

n-languages is to allow elegant reasoning with strings. Therefore, it is of interest to know the

relationships between the strings in an n-language. For that purpose, the concept of character

sets is defined.

Definition 9 (Character set)

Given an n-language L, the ith character set of L is the subset of the alphabet containing possible

elements of A that occur on the ith index position of the strings in the language. Formally:

CL,i = {c|∃s ∈ L : ιs(i) = c}
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The global character set of L is denoted CL with:

CL =

cl(L)⋃
i=1

CL,i

The use of n-languages can be further exploited by using them to define the intersection of two

strings.

Definition 10 (String intersection)

Assume k strings si ∈ S. The intersection of strings si, i = 1, ..., k, denoted as s1 u ... u sk, is an

n-language L for which:

(∀r ∈ L : ∀i ∈ {1, ..., k} : r @ si) ∧ (∀u ∈ S\L ∧ |u| ≥ n : ∃i ∈ {1, ..., k} : ¬(u @ si))

In words, the intersection of two strings s and t is the language containing all longest strings

that are substring of both s and t. The rationale to call this an intersection stems from the fact

that the intersection of two sets A and B is the largest set (in terms of set cardinality) that is a

subset of both A and B. The same principle is also used by Zadeh to define the generalization

of ∩ for fuzzy sets in [17]. From Definition 10, it can be seen that the following properties are

satisfied:

s u t = t u s (Commutativity)

s u s = {s} (Idempotency)

s u σ = {σ} (Absorbing element)

cl(s u t) ≤ min (|s|, |t|) (n-limit)

Definition 10 implies also the definition of s-intersection of languages (the term s-intersection

is used because language intersection is actually set intersection). Having k + 1 strings, the

intersection of the k first strings is an n-language, say L, by definition. Also, the intersection

of all k + 1 strings is an n-language, say K, which means that the intersection of L with the

(k + 1)st string is unambiguously defined. From this point of view, it makes sense to state that:

(s u t) u r = s u (t u r) (Associativity)

s1 u ... u sk+1 ∈ Ln≤cl(s1u...usk) (n-monoticity)
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Based on intersection of two strings, it is possible to define string difference formally:

Definition 11 (String difference)

Assume two strings s, t ∈ S. The string difference s 	 t, is an (|s| − cl(s u t))-language L with

|L| = |s u t| for which:

∀r ∈ L : ∃u ∈ (s u t) : u = s[q] ∧ r = s[q′]

with q′ the complementary index vector of q with respect to (1, 2, ..., |s|) and q′i < q′i+1.

Clearly, string difference does not satisfy the property of commutativity, which is why n-ary string

difference is not further investigated here. The concepts introduced so far can be weakened by

replacing @ with @w, which leads to the following important definitions:

Definition 12 (Weak string intersection)

Assume k strings si ∈ S . The weak intersection of strings si, i = 1, ..., k, denoted as s1uw ...uw sk,

is an n-language L for which:

(∀r ∈ L : ∀i ∈ {1, ..., k} : r @w si) ∧ (∀u ∈ S\L ∧ |u| ≥ n : ∃i ∈ {1, ..., k} : ¬(u @w si))

As the concept of weak substring is a generalization of the concept of substring, all remarks on

string intersection so far, are valid for weak string intersection. In addition, weak intersection

has two important properties that are not satisfied for regular string intersection. These properties

are left and right distributivity of ⊕ over uw:

t⊕ (s1 uw ... uw sk) = (t⊕ s1) uw ... uw (t⊕ sk) (Left distributivity of ⊕ over uw)

(s1 uw ... uw sk)⊕ t = (s1 ⊕ t) uw ... uw (sk ⊕ t) (Right distributivity of ⊕ over uw)

Definition 13 (Weak string difference)

Assume two strings s, t ∈ S. The weak string difference s	w t, is an (|s| − cl(s uw t))-language

L with |L| = |s u t| for which:

∀r ∈ L : ∃u ∈ (s uw t) : u = s[q] ∧ r = s[q′]

with q′ the complementary index vector of q with respect to (1, 2, ..., |s|) and q′i < q′i+1.

Weak intersection has important properties with respect to the edit operations defined by Lev-

enstein and Damerau. Assume strings s, t, a, b ∈ S and c, d ∈ S1, then the following properties
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are satisfied:

(s = a⊕ c⊕ b) ∧ (t = a⊕ b)⇒ (s uw t = {a⊕ b})

(s = a⊕ c⊕ d⊕ b) ∧ (t = a⊕ d⊕ c⊕ b)⇒ (s uw t = {a⊕ c⊕ b, a⊕ d⊕ b})

which are corollaries of the distributive laws of ⊕ over uw. If the intersection of two strings is

an n-language with n− 1 singleton character sets, the n-language is unambiguously determined

as the cross product of the character sets. Formally, assume without loss of generalization that

the first n− 1 character sets are singleton sets:

∀i ∈ {1, ..., cl(s uw t)− 1} : |Csuwt,i| = 1⇒ s uw t = Csuwt,1 × ...× Csuwt,n

It follows that in this case, we can put a moving window over the strings to construct the

intersection. More specific, we start at the beginning of both strings and move a window over

them. While doing so, common characters under the window in both strings are added to the

intersection. For example, assume s=“john B” and t=“jon B”. The construction of s uw t is

illustrated in Figure II. In step (a) and (b), the window indicates respectively characters ‘j’ and

Fig. 1. Linear construction of weak intersection

‘o’ in both strings. Hence, both characters are added to the intersection. In step (c), the window

indicates substrings in s and t that do not have any character in common. Hence, the window

size is increased with 1. In step (d), the window indicates substrings in s and t that have one

character (‘n’) in common, which is added to the intersection. This causes the window to shrink

and move in step (e), so that the window indicates in both strings the substring ‘ ’, which is

added to the intersection. Finally, in step (f) character ‘B’ is added to the intersection. This

construction leads to s uw t = {“jon B”}, which satisfies the definition of weak intersection.
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It is emphasized that without the above mentioned assumption, the intersection constructed in

such a moving window approach can be incorrect. The left and right distributivity of ⊕ over uw

can be used to determine the cases in which such an approach provides the correct solution. An

example of such cases are the corollaries of the distributivity laws with respect to edit operations.

Further on, assume three strings s, t and r, then we have:

(Cr ∩ (Cs ∪ Ct)) = ∅ ⇒ (s⊕ t) uw (s⊕ r ⊕ t) = {s⊕ t}

which implies that in this case the linear approximation provides the correct result.

III. ONE-LEVEL STRING COMPARISON

In this section, a new one-level comparison model for strings is discussed, based on the

operators and their properties discussed in the previous Section. Unlike all existing techniques,

our model does not adopt the notion of similarity or distance to express results. Instead, we

measure possibility of object co-reference. Co-referent objects are descriptions of a real world

entity that are not necessarily equal, but describe the same entity. The difference between

co-reference and similarity is subtle, but existent. Theoretically, a similarity relation satisfies

reflexivity, symmetry and t-transitivity (with t an arbitrary t-norm) and is therefor a t-transitive

proximity relation ([18]). However, in recent work, it is shown that the co-reference relation

does not satisfy transitivity [12]. This work defines evaluators as a machinery to measure the

possibility that two arbitrary objects are (not) co-referent. More specific, for arbitrary objects

a and b, it assumes p to be an affirmative proposition that states ‘a and b are co-referent’ and

measures the possibility that p evaluates to T (true) and the possibility that p evaluates to F

(false). The result of such an evaluator is thus a possibilistic truth value, reflecting uncertainty

about the co-reference of two objects. Such an evaluator can be defined in case the objects are

strings:

Definition 14 (One-level string evaluator)

Given the set of all strings S, for each couple of strings (s, t) ∈ S2, an affirmative proposition can

be stated:

p = “s and t are co-referent”
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The knowledge about this proposition is given by the evaluator function:

ES : S2 → ℘̃(I) : (s, t) 7→ ES(s, t)

where I = {T, F} and ℘̃(I) is the set of all fuzzy sets that can be defined over I . Further on:

ES(s, t) = p̃ = {(T, µp̃(T )), (F, µp̃(F ))}

where µp̃(T ) is the possibility that p is true and µp̃(F ) is the possibility that p is false and ES must

satisfy:

ES(s, t) = ES(t, s)

We will formulate the measurement of the possibilities in the following, thereby explicitly

stating that abbreviations and misspellings can cause non-equality of co-referent descriptions.

For example: “Main Street” and “Main Str” are not equal, but the uncertainty about their co-

reference is rather low. Unless stated otherwise, it is assumed in the following that evaluators

are strong reflexive:

ES(s, t) = {(T, 1)} ⇔ s = t

A. Estimating ES(s, t)

From a study of literature, we found that Monge and Elkan have defined a metric for strings

(in the context of natural languages) that adopts the idea of evaluating both the longest common

subsequence and the differences between the strings. More specific, they are able to recognize

abbreviations. As mentioned before, studies have shown that this metric is actually rather slow

in execution time. More specific, the dynamical programming algorithm to compute the Monge-

Elkan distance has quadratic complexity. In addition, the algorithm uses a similarity measure

on character level (instead of character equality) which increases the complexity. Therefor, a

new one-level comparison method that satisfies Definition 14 is proposed that allows to take

into account misspellings and abbreviations, but has low complexity. The estimation of the

possibilities is based on an approximation of weak intersection, which is mentioned briefly in

the previous Section. The method puts a moving window over both strings at the same time

and computes the possibilities increasingly. For each string, a buffer is used, say bs and bt for

strings s and t. These buffers are filled up as the window advances. As long as the character
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Algorithm 1 String Evaluator
Require: (s, t) ∈ S2

Ensure: (µp̃(T ), µp̃(F )) represents co-referential uncertainty of s and t
1: (next, ps, pt, w, flag1, f lag2)← (true, 0, 0, 0, false, false)
2: repeat
3: if ps + w ≤ |s| then
4: a← ιs(ps + w)
5: else
6: (flag1, f lag2)← (true, f lag2 ∨ (ps = |s|))
7: end if
8: if pt + w ≤ |t| then
9: b← ιt(pt + w)

10: else
11: (flag1, f lag2)← (flag1 ∨ (pt = |t|), true)
12: end if
13: if flag1 ∧ flag2 then
14: (next, y)← (false, y+cost(|s| − ps + w, |t| − pt + w))
15: else
16: (sind, tind)← (index(s[ps, ..., min(|s|, ps + w)], b),index(t[pt, ..., min(|t|, pt + w)], a)
17: if sind = −1 ∧ tind = −1 then
18: w ← w + 1
19: else if (min(sind, tind) > −1 ∧ sind < tind) ∨ tind = −1 then
20: (x, y, ps, pt, w)← (x + 1, y+cost(sind, w), sind + 1, w + 1, 0)
21: else if (min(sind, tind) > −1 ∧ tind < sind) ∨ sind = −1 then
22: (x, y, ps, pt, w)← (x + 1, y+cost(w, tind), w + 1, tind + 1, 0)
23: else
24: (x, y, ps, pt, w)← (x + 1, y+cost(w, w), w + 1, w + 1, 0)
25: end if
26: end if
27: until next = false
28: x← x

max(|s|,|t|)
29: (µp̃(T ), µp̃(F ))← ( x

max(x,y)
, y

max(x,y)
)

sets of the buffers are disjunct, the character indicated by the window size and a pointer is

concatenated to the buffers. As soon as the buffers share one character c, the algorithm adds c

to the approximate weak intersection. Assume that c has index is > 1 in bs and index it > 1

in bt, then bs[(1, ..., is − 1)] is added to s 	w,a t and bt[(1, ..., it − 1)] to t 	w,a s, where a

signifies that we construct an approximation. If is = 1 nothing is added to the difference. The

same is true for it. Instead of constructing the approximation completely, we directly calculate

the required estimations. Algorithm 1 shows our method. The sub procedure index(s, c), with
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s ∈ S, c ∈ A gives the smallest i ∈ Is for which ιs(i) = c. If no such index can be found, the

result of index(s, c) is −1. Sub procedure cost is responsible for assigning a cost based on the

length of the prefixes of the shared character in the buffers. In x, the characteristic length of

the approximated weak intersection is stored, while y holds the accumulated cost for differences

found during windowing over the strings. Due to the windowing process, Algorithm 1 has low

complexity at the cost of having an approximation of the intersection and differences. Clearly,

Algorithm 2 Cost
Require: a, b, |s|, |t| ∈ IN ∧ b1, b2 boundary characters
Ensure: c represents cost

1: if a + b = 0 then
2: c← 0
3: else if a · b = 0 then
4: if max(a, b) = 1 then
5: c← 1

f(|s|,|t|)
6: else
7: if b1 ∈ V ∨ b2 ∈ V then
8: c← p·max(a,b)

f(|s|,|t|)·λ
9: else

10: c← max(a,b)
f(|s|,|t|)λ

11: end if
12: end if
13: λ← λ

cooling
14: else
15: c← max(a,b)

f(|s|,|t|)
16: end if

the construction of the cost model is of crucial importance to the accuracy of the technique.

Algorithm 2 provides a possible cost calculation method, which is very simple and will be used

for testing. The model uses a parameter vector (λ, cooling, p) where λ is a factor that lowers

the cost of finding a gap and cooling lowers λ as more gaps are found. The term ‘gap’ signifies

two characters that have subsequent indexes in one string but not in the other string, and that

are subsequently added to the intersection. The gap size is defined as the absolute difference

between the two non-subsequent indexes minus 1. For example, consider s=“Main Street” and

t=“Mn Street”, then ‘M’ and ‘n’ are subsequently added to the intersection. They have subsequent

indexes in t (1 and 2), but not in s (1 and 4). The gap size is equal to |1− 4|− 1 = 2. Although

the values of λ are only restricted by the condition λ > 0, we consider the strong constraint
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that λ ∈ {1, 2}, which implies that either the gap cost is seen as a regular error (in case

abbreviations are not tolerated) or the gap cost increases logarithmic in function of the gap size.

Parameter cooling ≥ 1 reflects the rate at which λ decreases, thereby reflecting the impact of the

number of gaps on the possibility that the strings are not co-referent. Concerning the detection of

abbreviations, literature considers the existence of a gap to be a satisfying criterion. However, the

syntactic structure of words seems to satisfy more stringent criteria. Therefore, the boundary rule

is introduced. Informally, this heuristic rule indicates whether a gap is actually an abbreviation

by checking the boundary characters of the gap, which are the characters directly left and right

of the gap. For example, assume s=“Main Street” and t=“Mn Street”, then ‘a gap between “M”

and “n” is present. The boundary characters of this gap are ‘M’ and ‘n’. It is noted that when a

gap occurs at the beginning or the end of a string, one of both boundary characters is the null

character ε. The basic boundary rule proposed here states that if both boundary characters are

not equal to ε and one of them is a vowel, then the possibility that the gap is caused by an

abbreviation is low. This rule is implemented by use of a boundary penalty p > 1 as follows. If

the antecedent of the rule is satisfied, then λ = λ
p
, i.e., the cost assigned to this part of the string

difference is increased, reflecting the belief that this gap is not caused by an abbreviation.

B. Complexity analysis

A major benefit of the approximated weak intersection is that it is fast in comparison with

existing character based methods. To prove this statement, a detailed complexity analysis is

performed. Looking at Algorithm 1, there are two major factors that determine the complexity

of the algorithm: (i) the number of iterations and (ii) the number of character comparisons to be

performed. The number of iterations is studied first. In our analysis it is assumed, without loss

of generalization, that |s| ≤ |t|, to simplify our notations. In the best case, s is a prefix of t and

|s| iterations are required, where each iteration increases ps and pt by one. In the worst case, the

number of iterations is O(|s|+ |t|) because in each iteration either w increases with one or one

of the pointers is incremented with w + 1. However, if the window for |t| reaches |t| − 1, it is

possible that the window size shrinks back to zero with ps increased with one. Then, in addition

|s| − 1 iterations are required in the worst case to rewindow over s. By conclusion, the number

of loops or iterations is linear in function of the string lengths. However, an important issue is

the complexity of each iteration, which depends on |s| and |t| only in the calculation of sind
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and tind (line 16 of Algorithm 1). If in iteration i both sind and tind equal −1, the window size

increases with one, while the pointers ps and pt remain the same. Consequently, both windows

in iteration i+1 are one character larger than in iteration i. Note that both windows have always

the same size w. The window indicates substrings in s and t, say bs and bt (see line 16 of

Algorithm 1), with the following property:

Cbs[(1,...,bs−1)] ∩ Cbt[(1,...,bt−1)] = ∅

Hence, in each iteration, the algorithm takes the last character of bs and bt, resp. variables a

and b in the algorithm, and searches a in bt and b in bs. Consequently, the number of character

comparisons required in iteration i can be expressed in terms of the window size w. If w < |s|

then:

compw =

 1 w = 0

2(w + 1) w > 0

Else, |s| ≤ w < |t|, then the number of comparisons in an iteration is |s| − ps − 1. Through

consecutive iterations, the window size can grow linearly and the bigger the window size, the

more comparisons need to be done. Based on the above formula, in case w < |s|, the number

of character comparisons performed since the last time the window size was reset to 0, is given

by:
w∑

i=0

compi = 1 + 2
w∑

i=1

i + 1 = 1 +
w(w + 1)

2
+ 2w = w2 + 3w + 1

from which it follows that the number of comparisons needed to find a new intersection character,

is O(w2). Hence, the strength of the algorithm lies in the fact that a small window size implies

lower complexity. The observation that smaller window sizes are more frequently is supported

by a test performed on the streets dataset. Figure 2 shows the frequency of the ratios of

maximum window size within one comparison over the max(|s|, |t|), rounded up to 5%. From this

illustrative test on a representative dataset (1458*585=852930 comparisons) it can be concluded

that the average maximum window size is about 30% of the length of the longer string. Based

on these observations, the conclusion is that the presented technique tries to identify several

types of string differences with respect to string co-reference, while preserving low complexity.

In Section V, performance and accuracy tests are reported that support this conclusion. In the
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Fig. 2. Frequencies of max. window ratios in streets-dataset

following, the presented technique will be deployed in a pure possibilistic two-level system.

IV. TWO-LEVEL STRING COMPARISON

After discussing character based methods to detect string co-reference in the previous Section,

this Section focuses on the definition and use of two-level systems. These systems use a tokeniza-

tion step to transform a string s into a multiset of substrings, which are in most cases separate

words. The usefulness of these systems is caused by the fact that character based methods are

typically not well suited for longer strings. Comparing multisets of substrings instead of large

strings has been proven to be a better strategy. The elements of the multisets are compared

with a low level method. Hence, both string comparison (first level) and multiset comparison

(second level) are performed, which explains the name two-level systems. Such an approach

has the clear advantage over character based approaches that substrings are not obliged to be

in a specific order. The study of systems where the lower level technique is not based on the

equality of strings, is relatively new. The first of these methods are described in [10] and [11],

both extending the TFIDF method and thus performing vector comparison, rather than multiset

comparison. According to the TFIDF weighting scheme, the weight of a string a @ s is given
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by:

w(a) = log(tfa + 1) · log(idfa)

with tfa the number of times a occurs in s, idfa = |DB|
|na| , |DB| the size of the database and

na = |{t ∈ DB|a @ t}|. The idea behind idfa is that tokens that occur often, have lower weight.

For example, the token “Mr.” in a database containing employee names can occur often, and is

therefor less informative.

The current section is devoted to an extensive study of the class of two-level methods. We

begin with formally defining a tokenization function:

Definition 15 (Tokenization function TD)

Given an alphabet A, an alphabet subset D ⊂ A called the delimiter set and a string s drawn from

A. The tokenization function TD maps s to the smallest multiset of substrings of s that do not

contain a delimiting character. Formally:

TD : S →M(S) : s 7→ TD(s)

where

TD(s) = min
|X|
{X ∈M(S)|∀x ∈ X : x @ s ∧ ∀i ∈ Ix : ιx(i) /∈ D}

Definition 15 implies that tokenization of a string is equivalent to deleting all delimiting char-

acters in s, which can be done in linear time. An important issue is the problem of under

tokenization, where to few substrings are produced due to the fact that a delimiter simply can’t

be found. For example: s=“Elm Street” and t=“Elmstreet”. Such a problem can be solved by

concatenating two substrings and verify whether this concatenated string is more useful during

comparison. More specific, having two strings s and t and their tokenizations TD(s) and TD(t),

with a, b ∈ TD(s) (assume a 6= b) and c ∈ TD(t), if ES(a⊕ b, c) >̃ ˜thr with ˜thr a possibilistic

truth value serving as threshold, a and b can be removed from TD(s) and a⊕ b can be inserted.

In addition it is required that a⊕x⊕b @ s with Cx ⊂ D. Checking for all combinations (in both

directions) has complexity O (|TD(s)||TD(t)| − |TD(s)| − |TD(t)|), which is quadratic. Given the

tokenization function TD, it is possible to formally define a two-level string evaluator.

Definition 16 (Two-level string evaluator)

Given an alphabet A and the corresponding universe of strings S. A two-level string evaluator in
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S, with respect to the delimiting set D ⊂ A is defined formally as:

E∗
S : S2 → ℘̃(I) : (s, t) 7→ E∗

S(s, t)

where

E∗
S(s, t) = EM(S)(TD(s), TD(t))

As mentioned before, the main advantage of two-level approaches is the high accuracy on longer

strings, relative to the accuracy of character based methods. For an extensive study of (multi)set

co-reference, we refer to previous work ([12]). However, a short overview is given in order to

understand the rationale. The evaluators for (multi)sets can be classified in two main classes: hard

evaluators and soft evaluators. Hard evaluators evaluate derived (multi)sets such as intersection,

symmetrical difference and union, thereby using fuzzy measures to model preferences on element

level. As hard evaluators are based on element equality, soft evaluators consider co-reference of

elements, thereby using an evaluator on element level. Here, the elements are strings, so this

evaluator is ES . The comparison is a two step process. In the first step, an injective element

mapping ι is constructed. Hereby, elements of the smallest multiset are mapped to elements of the

largest multiset. This mapping implies a sequence of possibilistic truth values, generated by using

ES . The second step aggregates the generated PTVs to a final result that states the uncertainty

about the co-reference of both (multi)sets. Employing hard evaluators results in systems like

WHIRL [9]. Soft evaluators on the other hand result in so called pure two-level systems and

therefore, in the remainder of this paper we focus on soft evaluators. The first step (mapping)

is done by an algorithm which does not require any modification for use in the current problem

([12]). In the second step, the aggregation operator used is left unspecified. Clearly, a conjunctive

operator is needed as it is required in general that a sufficient number of elements occur in both

multisets to support the decision of multiset co-reference. The framework of PTVs provides a

generalization of Boolean conjunction:

∧̃ : ℘̃(I)2 → ℘̃(I) : p̃∧̃q̃ 7→ {(T, t (µp̃(T ), µq̃(T ))) , (F, u(µp̃(F ), µq̃(F )))}

where t and u are a pair of t-norm/t-conorm. More on the allowed pairs of norms in a given

situation can be found in [16]. Within the context of comparing multisets of strings, such a

regular conjunction is clearly to strict. This is caused by the fact that cardinality of co-referent
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multisets can easily differ, implying the presence of {(F, 1)} in the generated sequence due to

the injective mapping ι. As a consequence, using ∧̃ means that co-reference of two multisets

with a different cardinality is always {(F, 1)}. In [19], a method to model the impact of [0, 1]-

valued weights is given and a definition of (ordered) weighted conjunction is provided. To briefly

summarize this work, a function Tc models the impact of a [0, 1]-valued weight w as a linear

PTV-transformation. Hence:

Tc : [0, 1]× ℘̃(I)→ ℘̃(I) : (w, p̃) 7→ Tc(w, p̃)

Using this transformation, extensions of ∧̃ can be provided. A first approach would be to apply

∧̃ on transformed PTVs. However, a serious problem is then the determination of the weights.

The TFIDF approach is probabilistic in nature as it derives weights from frequencies, while the

class of two-level systems introduced here is possibilistic. It can be illustrated with a simple

example why such an initial possibilistic approach will not work. Assume strings s=“Mr John

Lennon” and t=“Lennon John” and the delimiting set containing only the whitespace character.

The constructed injection is then as follows:

ι(“John”) = “John”

ι(“Lennon”) = “Lennon”

which leads to the following sequence of PTVs:

({(T, 1)}, {(T, 1)}, {(F, 1)})

The term frequencies are all 1. Now assume that |D| = 100, n“Mr” = 30, n“John” = 10 and

n“Lennon” = 2. These assumptions lead to the following normalized weights:

w“John” = 0.589

w“Lennon” = 1

w“Mr” = 0.308

Applying these weights only changes the last PTV in the sequence to {(T, 1), (F, 0.616)}. If it

is assumed that the propositions are combined by ∧̃ based on (min, max), then the conjunction
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of the transformed PTVs is equal to {(T, 1), (F, 0.616)}. As a result this method indicates that it

is quite uncertain whether s and t are co-referent, while it seems obvious they are. Therefore, a

second pure possibilistic approach is proposed by using an ordered weighted conjunction (OWC).

The ordering of PTVs is done by generalized order relations:

p̃1 R̃ p̃2 ⇔

 µp̃2(F ) R µp̃1(F ), µp̃2(T ) = µp̃1(T ) = 1

µp̃1(T ) R µp̃2(T ), otherwise

so that a formal definition of ordered weighted conjunction is given by:

Definition 17 (Ordered weighted conjunction)

Given a vector p̃ of PTVs and a vector w of [0, 1]-values weights with maxi wi = 1 and |p̃| = |w|,

the ordered weighted conjunction is given by:∧̃
ow

: ([0, 1])n × (℘̃(I))n → ℘̃(I) : (w, p̃) 7→
∧̃

ow
(w, p̃)

where ∧̃
ow

(w, p̃) = Tc(w1, p̃
s
1)∧̃...∧̃Tc(wn, p̃

s
n)

Hereby, p̃s is a vector containing all elements of p̃ but with

∀i, j ∈ {1, ..., |p̃|} : i < j ⇒ p̃s
i ≥̃ p̃s

j

The weight vector w used by such an OWC can be derived from a parameterized fuzzy quantifier

that represents the required quantity of co-referent elements in order to decide that the both

multisets are co-referent. There is an important semantical difference between TFIDF weights

and the weights used here. Instead of calculating the importance of each word (i.e. a substring),

the quantifier provides for each quantity of co-referent words, the relevance of this quantity with

respect to the decision of multiset co-reference. Clearly, this quantity should be expressed relative

to the multiset cardinalities. Therefor, if we assume two multisets X and Y , with |X| ≤ |Y |,

the following quantifier q is proposed:

qα,β,l(x, |X|, |Y |) =


1, x < α|X|

1 + (l−1)(x−α|X|)
(1−α−β)|X|+β|Y | , α|X| ≤ x ≤ |X|+ β(|Y | − |X|)

l, x > |X|+ β (|Y | − |X|)
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Vector w is then derived from q as follows:

∀i ∈ {1, .., |Y |} : wi = qα,β,l(i, |X|, |Y |)

Figure IV shows a visual representation of the proposed quantifier q in general and the special

case where α = 1 and β = 0. The fuzzy quantifier q will be interpreted here as a possibility

Fig. 3. Parameterized fuzzy quantifiers: vague (left panel) and sharp (right panel)

distribution over IN . Parameter α expresses the relative portion of co-reference elements that are

minimally required in order to conclude that the multisets are co-referent. In case the multiset

cardinalities are not equal, parameter β specifies the portion of elements (relative to the difference

in cardinality) that have a minimal impact on the decision of multiset co-reference. The proportion

of this impact is determined by parameter l, which is typically chosen close to 0. It should be

emphasized that if l = 0, strong reflexivity of the multiset evaluator can not be guaranteed

anymore, i.e. it is possible that E∗
S(s, t) = {(T, 1)} with s 6= t. The parameters of q can be

learned on a (relative small) training set by using a search algorithm like steepest descent. After

training, the parameterized quantifier contains the knowledge to estimate uncertainty about the

co-reference of two strings. A strong benefit regarding performance is that the weight vector does

not depend on the strings, but only on the multiset cardinalities. With SoftTFIDF, the weight

for each string has to be calculated separately, by look up in a frequency table. On the other

hand, SoftTFIDF does not construct an element mapping, which results in performance benefit

for SoftTFIDF. Performance tests (Section V) show that the proposed method works faster than

SoftTFIDF.

So far, we have presented a study of possibilistic two-level comparison methods for strings
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due to their benefit for longer strings. However, when doing accuracy tests (Section V) it

becomes clear that the benefit of one-level systems is not limited to just detection of errors and

abbreviations. More specific, they have the advantage that the order of substrings is respected,

which is not the case when comparing multisets of words (this is actually their benefit). Further

on, comparing sets is a far more complex operation than comparing strings with an evaluator

as defined in Definition 14. These considerations point out that it is useful to combine both ES

and E∗
S into a hybrid evaluator.

Definition 18 (Hybrid string evaluator)

Given an alphabet A and the corresponding universe of strings S. A hybrid string evaluator in S is

defined as:

E+
S : S2 → ℘̃(I) : (s, t) 7→ E+

S (s, t)

where

E+
S (s, t) = f(ES,1(s, t), ..., ES,n(s, t))

with f a monotonic ascending function for PTVs and ES,i is an arbitrary evaluator for strings.

In the following we assume a hybrid evaluator based on ES(s, t) and E∗
S(s, t). To combine both

evaluators, we propose generalized disjunction for PTVs defined as:

∨̃ : ℘̃(I)2 → ℘̃(I) : p̃∨̃q̃ 7→ {(T, u (µp̃(T ), µq̃(T ))) , (F, t(µp̃(F ), µq̃(F )))}

where t and u are a pair of t-norm/t-conorm. In [19], disjunctive transformations for PTVs that

model the impact of [0, 1]-valued weights are defined, which makes it possible to use a weighted

disjunction for f . Doing so has the benefit that the hybrid evaluator can be learned to use a

weighted mixture of both evaluators. Such a weighted approach is not further investigated here

and is nominated as future work. Instead, a pure disjunctive approach is proposed to study the

class of hybrid techniques.

V. RESULTS

A. Test procedure

After introducing evaluators to estimate the uncertainty about the co-reference of strings,

accuracy and performance tests are executed in which we compare our techniques with baselines
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from literature. The performance test measures the execution time of the different methods 20

times and calculates the average execution time. It was found that 20 times was sufficient to

provide accurate data. The variance in the measurements is equal for the different methods and

an independent samples t-test was used to check whether there is a significant difference between

the two fastest methods. The accuracy test procedure assumes two lists L1 and L2 containing

< key, value >-tuples, where the values are the strings to be compared and the keys serve as

ground truth. More specific, two tuples with the same key contain co-referent values (strings).

Then, for each tuple of L1, the value is compared with every tuple value in L2 by using a

similarity measure or an evaluator. Hence, for a comparison technique CT , we get a set of

3-tuples < t1,t2,CT (v1, v2) > where t1 and t2 are tuples from L1 and L2 and vi is the value of

ti. From this set, an ordered list K can be derived, sorted by CT (v1, v2) in descending order.

In case CT (v1, v2) = CT (v′1, v
′
2), tuples with non-identical keys are ordered first. Next, let dup

be the number of duplicates. More specific, dup equals the number of pairs (t1, t2) ∈ L1 × L2

for which the keys are identical. We then take the top element of K. If the keys are identical,

both the number of correct pairs and the number of found pairs is incremented with one. If the

keys are different, only the number of found pairs is incremented. This process is repeated for

each element of K, from top to bottom. We then consider the following measures:

precision =
correct

found

recall =
correct

dup

F − value =
2 · precision · recall

precision + recall

The results presented in the following, report the precision at standard recall ratios 1
10

, 2
10

, ..., 1.

Also, the maximum F-value over all recall ratios is reported. The datasets on which the methods

are tested are summarized in Table I. The Java library SecondString was used [8] as implemen-

tation of the mentioned existing methods. This library is also the one used in [10].

B. Performance test results

To support the statement that ES is a low complexity comparison method, a comparative test

with other character based methods is performed on all datasets, which have varying average

string length. We compared the ES for string evaluation with the following character based

April 21, 2008 DRAFT



IEEE TRANSACTIONS ON FUZZY SYSTEMS 25

TABLE I

DATASETS

Dataset #strings L1 #strings L2 #duplicates
people 45 45 45
bird1 317 20 19
bird2 914 68 66
bird3 15 23 15
bird4 564 155 155
game 109 798 45
park 396 258 250
restaurant (name) 533 331 112
animal 4719 990 229
census 449 392 327
univ 116 116 676
streets5 1458 585 350
cora 1295 1295 35663
biomed 4000 4000 4992

similarity metrics from literature: Jaro, Jaro-Winkler, Levenstein and Monge-Elkan (i.e. an affine

gap method). The reason why these metrics are chosen are because Jaro and Jaro-Winkler are

known as the fastest character based methods according to the study in [10]. Levenstein is chosen

as a reference, due to it’s importance in literature and Monge-Elkan is chosen because our method

is an approximation of affine gap methods on a semantical level. Therefor it is interesting to

investigate how much faster the new presented method is in comparison with a well known

affine gap method. Table II shows the results of our performance test for the character based

methods, executed on a Pentium 4 machine with 2.59 GHz CPU and 512 Mb RAM. The fastest

method is marked in bold font if it is significantly faster that the second best method. The most

important result derived from Table II is the huge difference in speed between the affine gap

method and ES . The new method is clearly a magnitude faster and beats even the Jaro method,

which is known in literature as a baseline to combine high accuracy and high performance. In

order to illustrate how the complexity of ES behaves in function of the average string length,

we calculate:
execution time

|B| · |C|
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TABLE II

RESULTS OF PERFORMANCE TEST ONE-LEVEL METHODS (MS)

Dataset ES Jaro Jaro-Winkler Levenstein Affine Gap
people 11 21 21 186 802
bird1 46 87 87 1054 4565
bird2 256 492 496 4100 8132
bird3 3 4 5 47 193
bird4 846 2117 2151 39275 167500
game 464 687 700 9462 18250
parks 490 739 752 8987 16984
restaurant (name) 604 797 844 8328 16726
animal 18547 29750 30182 349062 1449891
census 1887 6203 6223 100859 372890
univ 126 425 429 6834 29463
streets5 3131 4623 4675 45621 90336
cora 71140 493171 490985 14155438 67516125
biomed 69797 101703 101843 1355625 5546469

for each dataset, which is the average execution time for comparing two strings. The left panel

of Figure 4 shows these numbers for each dataset, plotted against the average string length of

that dataset. For the sake of simplicity, only Jaro and ES are plotted. There is a clear linear trend

in execution time of ES , whereas Jaro follows a quadratic trend in function of average string

length. Hence, although ES has a theoretical quadratic complexity in the worst case, it shows

linear complexity in practical situations, which is due to the approach of a moving window.

Having that the evaluator ES is indeed a low complexity evaluator, an interesting topic is the

complexity of the two-level system E∗
S . In [10] it was noted that the complexity of two-level

systems is strongly related to the complexity of the underlying character based method. However,

the system we introduced is based on multiset comparison instead of vector comparison and uses

a completely different weighting mechanism. Table III shows the results of the performance test

for E∗
S , without correction of under tokenization (Section IV) as this is the basic methods,

compared with SoftTFIDF. Again, the fastest method that is significantly faster the second best

method, is depicted in bold font. In all cases, E∗
S is the fastest method and in most of the cases

this difference is significant. However, plotting the execution time of one comparison against the

average string length illustrates the quadratic complexity of both two-level method (right panel

of Figure 4). Hence, although a low complexity evaluator to compare multiset elements and an
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Fig. 4. Complexity in function of average string length for one-level methods (left panel) and two-level methods (right panel)

more efficient weighting scheme have a positive effect on the execution time of the two-level

system, the multiset comparison itself remains complex. Therefor, an optimisation of the existing

algorithm to create the element mapping ι is an interesting topic for further research. We did

not perform accuracy tests for the hybrid method for two reasons. Firstly, the complexity of the

hybrid method is clearly the sum of the complexities of the evaluators it uses. The computational

effort to calculate the disjunction can hereby be neglected in comparison with the complexity of

the evaluators. Secondly, Definition 18 considers that, in general, the number of evaluators used

can vary. Therefor, the complexity of a hybrid evaluator is also a matter of how many evaluators

are considered.

C. Accuracy test results

In what follows, we study the accuracy of the proposed two-level string evaluator E∗
S and

the hybrid evaluator E+
S . Note that ES by itself is not the subject of any accuracy test here,

because the main topic of interest is creating fast and accurate two-level systems. Of course

this requires a fast and accurate character based method. However, we are only interested here

in the accuracy of the more advanced systems (E∗
S and E+

S ). As SoftTFIDF is identified as

the most accurate method in [7], it is chosen as a baseline method. The low level similarity

measure is Jaro-Winkler and the selection threshold is 0.9, which is a commonly used value

for this parameter (see [10]). We tested two versions of our two-level technique: (i) OWC with
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TABLE III

RESULTS OF PERFORMANCE TEST TWO-LEVEL METHODS (MS)

Dataset SoftTFIDF E∗
S

people 128 92
bird1 490 318
bird2 2325 1825
bird3 31 26
bird4 13609 8354
game 5257 3850
park 4723 4006
restaurant (name) 6292 4839
animal 215046 154172
census 15410 11895
univ 1734 1164
streets5 17528 16165
cora 2480344 1527172
biomed 774094 568328

q1,0,0.1 and (ii) OWC with qα,β,l to be trained. Also the hybrid evaluator ES+ is tested, using a

disjunction based on min/max. The low level evaluator ES used by ES∗ has parameter vector

(1, 2, 3), while evaluator ES used by ES+ uses parameter vector (1, 1, 1) (see Section III). The

E∗
S used by E+

S uses a naive quantifier, i.e. q1,0,0.1. The conjunction operator used during testing

is based on the Lucasiewics t-norm and t-conorm which is given by [18]:

tluca(x, y) = max(x + y − 1, 0)

uluca(x, y) = min(x + y, 1)

In the case where the parameters are trained, cross validation is performed by randomly selecting

30% of the samples as training set. The remaining 70% of the samples is used as test set. The

cross validation is then performed 30 times. In each iteration the maximum F-value is selected.

The mean of the 30 maximum F-values is compared with the maximum F-values of the non-

trained techniques with a one samples t-test. Besides the maximum F-value we also calculated

the average precisions at each recall level in order to construct a precision-recall curve for the

trained method. Table IV shows the maximum F-values of the tested methods. Maximum F-

values of non-trained methods that significantly differ from the mean of maximum F-values of
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Fig. 5. Precision-recall curve for people (upper left), bird1 (upper right), bird2 (bottom left) and bird3 (bottom right)

the trained method (p < 0.05) are depicted in bold font. Figures 5 to 8 show the precision-recall

curves for the performed tests. We start by evaluating the naive approach. Table IV shows that

naive E∗
S is competitive to SoftTFIDF. For two datasets, the maximum F-value is the same, for

six datasets the novel method has a higher maximum F-value and for four datasets, SoftTFIDF

has a higher maximum F-value. There is one dataset (people) where our method is a perfect

co-reference classifier. The fact that the naive quantifier reflects the required quantity of co-

referent substrings well is supported by looking at the learned method. In only two datasets

(bird2 and univ), the learned method finds a significant better quantifier than the naive one. Note

that for dataset bird2, there is no significant difference between the F-values. For dataset univ,

SoftTFIDF is still significantly better, but the learned quantifier is clearly a major improvement in

this case (see Figure 7). In two datasets (bird1 and parks), the learned method finds a quantifier
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TABLE IV

MAXIMUM F-VALUES

Dataset SoftTFIDF Naive E∗
S Learned E∗

S E+
S

people 0,9474 1.0000 0.9975 1.0000
bird1 0.9217 0.9474 0.8833 0.9474
bird2 0.8969 0.8815 0.8987 0.9038
bird3 0.9474 0.9474 - 0.9474
bird4 0.9316 0.9442 0.9356 0.9442
game 0.8276 0.7535 0.7651 0.7535
parks 0.9356 0.8949 0.8847 0.9222
restaurant 0.8276 0.8515 0.8591 0.8235
animal 0.7320 0.8939 0.8946 0.8787
census 0.6857 0.8513 0.8520 0.7350
univ 0.8710 0.7932 0.8593 0.8738
streets5 0.9474 0.9474 0.9491 0.9735
cora 0.8490 0.3318 0.7870 0.6804
biomed 0.9420 0.9425 0.9221 0.9381

that is significantly worser than the naive quantifier, due to overfitting. In other cases, there

is no significant difference between the learned method and the naive method. Note that for

dataset ‘bird3’, the learned method could not be applied because the number of samples is too

small to support training. A better way to improve naive E∗
S is by extending it to the hybrid

method E+
S . For two datasets (bird2 and univ) where E∗

S performed worser than SoftTFIDF, the

hybrid technique performs better than both SoftTFIDF and E∗
S . Also for datasets streets5, where

SoftTFIDF and E∗
S have equal maximum F-value, E+

S does better. For dataset parks, the accuracy

is close to that of SoftTFIDF. A downside is that for three other datasets (restaurant, animal and

census), E+
S performs worse than E∗

S , however still better than SoftTFIDF. This indicates that

extending the used regular disjunction to weighted disjunction is necessary in order to select

the correct evaluator depending on the situation. In all datasets, the tokenization step uses non

alphanumerical characters as delimiters. For dataset ‘biomed’, our method uses correction of

under tokenization by concatenating tokens where needed. The threshold used in this step was

{(T, 1)} (see Section IV). It is noted that SoftTFIDF is competitive with our method without

using such a correction step, which is caused by the fact that SoftTFIDF uses addition to combine

evidence, while the proposed method uses conjunction. An interesting dataset to discuss is the

cora dataset, which is the only dataset where SoftTFIDF has a clear benefit over the novel two-
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Fig. 6. Precision-recall curve for bird4 (upper left), game (upper right), parks (bottom left) and restaurant (bottom right)

level method. This is due to the nature of the data, which are references. High frequent words

(such as “in”, “and”, author names,...) distort the benefit of the quantifier. In this case, it might

be fruitful to think of an approach where the best of two worlds is combined. Although such an

approach is outside the scope of this paper, we will illustrate it briefly. The key point is to drop

the reflexivity of the low level evaluator ES . More specific, two strings that are equal are not

necessarily co-referent. This is due to the uncertainty that is caused by the fact that the strings

are highly frequent throughout the dataset. To model this behavior, assume for a string s that fs

is the frequency of this string in the dataset and let |D| denote the size of the dataset. Define:

us =
fs − 1

|D| − 1
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Fig. 7. Precision-recall curve for animal (upper left), census (upper right), univ (bottom left) and streets5 (bottom right)

This leads to a modification of ES as follows:

Em
S (s, t) =

{(
T, µES(s,t)(T )

)
,
(
F, max

(
µES(s,t)(T ), us, ut

))}
Using such an evaluator takes into account additional uncertainty based on the frequency of

words. In an extreme case, if a string s occurs in each sample of the dataset (e.g.: s=“the”),

then us = 1 and Em
S (s, s) = {(T, 1), (F, 1)} whereas ES(s, s) = {(T, 1)}. A consequence of

this approach would be that the complexity increases significantly because (i) the intersection of

the multisets can no longer be treated separately and (ii) us must be calculated for each token.

Further on, the role of quantifier parameters becomes much more important, due to the increased

uncertainty on the lower level. A further evaluation of this method is therefor outside the scope

of this paper.
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Fig. 8. Precision-recall curve for cora (left panel) and biomed (right panel)

VI. FUTURE WORK

In the previous Section, possibilistic approaches on string comparison are introduced. Section

V showed that these methods are competitive (with respect to accuracy and performance) with

a strong baseline method from literature. However, it showed also that there are some points in

which the proposed ideas can be improved. A first illustration was already given while discussing

the results on the cora dataset, where a modification of Definition 14 (ES) was proposed to deal

with situations like the cora dataset. A second thing learned from discussing the results is the

variating performance of the hybrid evaluator, due to the pure disjunctive combination function.

It is certainly worth while to use a weighted disjunctive function that selects the appropriate

evaluator depending on the application. It follows that a learning algorithm would be necessary

to provide these weights. Third, the proposed quantifier is only one of the possible solutions to

provide a weight vector. Other quantifiers, such as absolute quantifiers defined with respect to a

given number should be investigated. In the same direction, it was shown in [19] that OWC has

interesting properties with respect to optimisation. Using these properties in the current context

can provide a reduction in complexity and hence also in execution time. A last point that requires

future research is the investigation of the cost model used by ES . The model proposed in this

paper is a very simple one and shows good results. However, it is very likely that other models

exists, that perform better than the one introduced here.
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VII. CONCLUSION

A possibilistic view on string comparison is given by proposing operators that provide the pos-

sibility of co-reference of two strings. These possibilities are presented by means of possibilistic

truth values. First, a fast character based method is proposed based on the properties of weak

string intersection. Next, this method is applied in a possibilistic two-level approach on string

comparison. The use of ordered weighted conjunction in combination with a parameterized fuzzy

quantifier is illustrated and it is shown that such an approach is competitive with a strong baseline

method from literature. In addition, hybrid evaluators are proposed that combine character based

and two-level evaluators to infer a final result by use of a monotonic combination function. It is

shown that a pure disjunction results in a variating accuracy, depending on the application. To

solve this problem weighted disjunction is proposed.
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