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Abstract—Information fusion is a research area that inves-
tigates how to combine information provided by independent
sources into one piece of information. This topic has been studied
for several applications leading to, amongst others, aggregation
operators in bounded lattices and merge functions of proposi-
tional belief bases. In this paper, information fusion is investigated
in the context of coreferent objects, which are objects that refer to
the same real world entity. Some important properties of object
merge functions are pointed out and object merge functions for
both atomic and complex objects are investigated in a possibilistic
framework. It is shown how merge functions for complex objects
can be composed of merge functions for atomic objects, such
that the composite function inherits the properties of the merge
functions from which it is composed.

I. INTRODUCTION

Information fusion is a research area that deals with the
combination of information provided by independent sources
into one piece of information. The challenge hereby is to
resolve inconsistencies between the different sources. An
interesting aspect of information fusion is its applicability
in many different contexts. In a mathematical context, in-
formation fusion has led to the development of numerous
aggregation operators such as triangular norms and conorms
[1], generalized means [2], [3] and uninorms [4]. Aggregation
operators fuse information that is represented as an element of
a complete lattice (L,≤). The information typically expresses
facts, for example the opinion or score of an agent. Next to
aggregation operators, a significant body of research deals with
the case where each source is considered to be a propositional
belief base modeled as a first-order theory [5], [6], [7], [8],
[9], [10]. A typical difference between propositional belief
bases and aggregation operators, is the presence of non-factual
knowledge, such as inference rules and integrity constraints.
As a consequence, the interest here is to combine all infor-
mation in a maximal first-order theory. Such a setting occurs,
amongst others, in heterogeneous databases [11]. A third type
of information fusion deals with the case where each source
provides knowledge by means of a possibility distribution [12],
[13]. In this case, it is assumed that the different sources have
to cope with imprecision and/or incomplete knowledge and
the key question is how uncertainty can be processed when
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dealing with different sources, that can provide conflicting
information.

In this paper, information fusion is investigated in the con-
text of coreferent objects. An object is hereby axiomatically
understood as a piece of data that describes an entity in the
real world. The real world is hereby modeled as a reference
universe E . Two objects that describe the same entity are called
coreferent objects. Detection of such coreferent objects has
many important applications, for example in ETL-processes,
identification tasks, cleansing of file systems and websites,... In
large information systems, the presence of coreferent objects
causes inefficient storage and leads to incorrect statistics upon
querying, which makes the detection of coreferent objects
of utmost importance. It thus comes as no surprise that the
detection of coreferent objects has been the topic of many
research papers (see [14] for an overview). Interestingly, the
problem of processing coreferent objects is not as deeply
investigated as the detection itself. Merging of non-quantitative
objects is not well understood and the properties of good object
merging functions are not yet investigated in the context where
these objects are coreferent. This paper contributes to filling
this gap by investigating a framework for object merging,
that allows processing of coreferent objects. Once such a
framework for object merging is obtained, it can be used in any
of the above mentioned applications of coreference detection.

The remainder of the paper is structured as follows. In Sec-
tion II, some preliminary notations and definitions are given.
In Section III, the properties of merge functions for objects in
general, under the premises that the objects are coreferent, are
studied. Merge functions for both atomic and complex objects
are proposed and the aforementioned properties are evaluated.
Finally, in Section IV, the most important contributions of this
paper are summarized.

II. PRELIMINARIES

A. Objects

A fundamental concept in this paper is that of an object. An
object is axiomatically defined as a piece of data that describes
an entity. A distinction is made between atomic and complex
objects. Atomic objects are objects of which the universe is
non compound, while complex objects belong to a universe
O that is composed of non compound universes, i.e. O =
U1 × ...×Un. The appropriate universe of entities is denoted



as E and the link between objects and entities is formalized
by a surjective function ρ : O → E . Objects that refer to the
same entity in E through ρ are said to be coreferent. Formally:

∀(o1, o1) ∈ O2 : (o1 ↔ o2)⇔ (ρ(o1) = ρ(o2))

The universe of an object is always equipped with a label
function l : O → L, where L represents the appropriate
set of labels. The label of a universe represents the class
of entities that objects in the universe are describing. For
example, consider l(R) =“temperature”, then we know that
objects in R are describing entities of the class “temperature”.
In addition, complex objects are equipped with a tree-structure
in the sense that there exist logical groups of labels that belong
together. For example, in objects that describe persons, the
universes with label “street”, “house number”, “postal code”
form a logical group, i.e. the address. Formally, for a complex
universe O, there exists a function:

λ : P ({l (Ui)}i=1..n)→ {0, 1}

such that λ indicates for each group of labels, whether these
labels form a logical group or not. As the structure that
corresponds to λ must be a tree structure, some constraints
must be satisfied. The labels themselves must represent leaf
nodes and the root node is given by the set of all labels, which
means that:

∀i ∈ {1, ..., n} : λ({l(Ui)}) = 1

λ({l(U1), ..., l(Un)}) = 1

Also, the parent child relation must be respected. In terms of
λ, this means that for two arbitrary sets of labels, the following
constraint must be satisfied:

(λ(A) = λ(B) = 1)⇒ (A ⊆ B ∨B ⊆ A ∨A ∩B = ∅)

which states that two logical groups A and B are either
connected through the ancestor relation or are disjunct.

B. Evaluators

A possibilistic solution for finding coreferent objects con-
sists of finding functions that express uncertainty of corefer-
ence by means of possibilistic truth values [15], [16], [17],
which are possibility distributions over the Boolean domain
B = {T, F}. Thus, for a given Boolean proposition p, the
possibilistic truth value p̃:

p̃ = {(T, µp̃(T )), (F, µp̃(F ))}

expresses the possibility that p is true (T) and the possibility
that p is false (F). The domain of all possibilistic truth values
is denoted F(B), i.e. the power set of normalized fuzzy sets
over B. In what follows, we shall adopt the couple notation
for possibilistic truth values, i.e. p̃ = (µp̃(T ), µp̃(F )). Let us
define the order relation ≤ on the set F(B) as follows:

p̃ ≤ q̃ ⇔

{
µp̃(F ) ≤ µq̃(F ), µp̃(T ) = µq̃(T ) = 1

µq̃(T ) ≤ µp̃(T ), else

An evaluator is a function that estimates a possibilistic truth
value in order to express uncertainty about coreference [18].

Definition 1: Given a universe of objects O, an evaluator
over O is defined as a function EO:

EO : O2 → F(B)

An evaluator compares two objects and yields a possibilistic
truth value that expresses both the possibility that the objects
are coreferent and the possibility that the objects are not
coreferent. An evaluator is reflexive if and only if:

∀(o1, o2) ∈ O2 : (o1 = o2)⇒ (EO(o1, o2) = (1, 0))

strong reflexive if and only if:

∀(o1, o2) ∈ O2 : (o1 = o2)⇔ (EO(o1, o2) = (1, 0))

and commutative if and only if:

∀(o1, o2) ∈ O2 : EO(o1, o2) = EO(o2, o1)

In what follows, evaluators are always assumed to be com-
mutative and at least reflexive. Finally, an evaluator is called
transitive if and only if, for every triplet (o1, o2, o3):

Nec(p(1,3) = T ) ≥ min
(
Nec(p(1,2) = T ),Nec(p(2,3) = T )

)
Nec(p(1,3) = F ) ≥ min

(
Nec(p(1,2) = T ),Nec(p(2,3) = F )

)
Nec(p(1,3) = F ) ≥ min

(
Nec(p(1,2) = F ),Nec(p(2,3) = T )

)
with p(i,j) = EO(oi, oj).

C. Multisets

A multiset M derived from a universe U is characterized
by a counting function ωM : U → N ([19]). For u ∈ U ,
ωM (u) represents the number of times that u appears in M .
The set of all multisets drawn from a universe U is denoted
M(U). The concept of a subset is extended for multisets as
A ⊆ B ⇔ ∀u ∈ U : ωA(u) ≤ ωB(u) and the cardinality of a
multiset M is given by |M | =

∑
u∈U ωM (u). Yager defines

the following operators for multisets in [19]:

∀u ∈ U : ωA∪B(u) = max (ωA(u), ωB(u))

∀u ∈ U : ωA∩B(u) = min (ωA(u), ωB(u))

∀u ∈ U : ωA⊕B(u) = ωA(u) + ωB(u)

The ∈-relation applies for multisets as follows: u ∈ M ⇔
ωM (u) > 0. The k-cut of a multiset M is a regular set Mk =
{u|u ∈ U ∧ ωM (u) ≥ k}.

III. OBJECT MERGING

A. Definition and properties

In this Section, the concept of a merge function for arbitrary
objects is given and relevant properties in the context of
coreferent objects are proposed. A merge function for objects
is defined as follows.

Definition 2 (Merge function): For a universe O, a merge
function over O is a function:

$O :M(O)→ O



A merge function thus takes a multiset of objects and produces
a single object as a result. It can be seen that this very general
definition allows the construction of many irrelevant merge
functions. Therefor, the properties that make up a good merge
function are investigated in the following. The first property
that is proposed here, is idempotency.

Property 1 (Idempotency): A merge function $O is idem-
potent if and only if:

∀o ∈ O : $O ({o, o, ..., o}) = o

The idempotency property reflects that, in case of total agree-
ment, the resulting object should be the one that all sources
agree upon. Idempotency is a very natural property and should
always be satisfied. The second property, monotonicity, is
borrowed from the axioms of aggregation operators.

Property 2 (Monotonicity): Consider two arbitrary multi-
sets M1 and M2 drawn from a universe O. A merge function
$O is monotone if and only if, for any one-to-one mapping
f between M1 and M2 such that:

∀(o1, o2) ∈ f : o1 ≤ o2

it holds that:
$O(M1) ≤ $O(M2)

Monotonicity, although quite natural and useful, is not easy
to satisfy in the general case. It is for example not always
clear which order function ≤ should be used to compare
objects. As an example, consider the case of strings. The
natural order of strings is the alphabetical order. However, next
to this total order, there exist other partial orders, such as the
orders induced by the substring relation and the subsequence
relation. Considering the fact that the alphabetical order and
the substring order are not equivalent, it can be questioned
which of these orders should be taken into account. Also, the
construction of an order relation for complex objects is not
always clear. A third property is called preservation.

Property 3 (Preservation): Given a universe O and a merge
function $O, then $O is preservative if and only if:

∀M ∈M(O) : $O(M) ∈M

In words, a preservative merge function chooses one of the
objects. Preservation of a merge function can be an interesting
property in the context of coreferent objects for several rea-
sons. Firstly, preservation ensures traceability, which means
that a merged object can be traced back to the original
source(s). In many practical environments, such traceability is
of crucial importance. Secondly, when dealing with complex
objects, an arbitrary mix of sub-objects might not always make
sense. For example, when merging two different addresses, it
does not make sense to choose the street of the first address
and the house number of the second address, because there
is no verification at all whether the resulting address exists.
In this case, non-preservative merging can result in an object
that does not at all refers to the entity that was referred to by
the set of input objects. In order to better explain the context
in which preservation is a useful property, consider the object

Fig. 1. The object creation process

creation process, as illustrated in Figure 1. This Figure shows
that an object o is created when it needs to be inserted into a
data source D. Therefor, an entity e is measured by a process
M . In the general case of complex objects, measurement of
an entity implies measurement of several attributes of the
entity, where each attribute is denoted by the label of a sub-
universe Ui. The relevance of M with respect to merging, is
that we can distinguish between the case where M measures
precisely and the case where M does not measure precisely.
More specific, whenever M can precisely measure objects,
then coreferent objects that are not equal differ because of a
reason other than imprecision. As such, it can be argued that
any inconsistency upon merging time is due to heterogeneity
in the representation of the entity that was measured. Thus, as
the measurements at hand are known to be precise measures,
it is acceptable to choose one of the objects, i.e. by choosing
the one that is known as the most common representation.
Hence, when dealing with precise measurements, preservation
is a desired property. In the other case, where M is not able
to measure entities with full precision, none of the coreferent
objects under consideration might be a common description
of the entity. To better understand the difference between
both situations, consider the following example. Suppose a
company manages a website with a geographical information
system (GIS) where website visitors can search for interesting
locations, i.e. points of interest, within a certain region. A
problem hereby is the discovery of interesting locations.
Therefor, the company adopts a community-driven model,
where website visitors can enter their own points of interest.
To do so, they need to pinpoint a location on a map, which
is stored in two attributes called latitude and longitude. Next,
they can attach a name to this location. In this setting, it is
clear that the measurement of attributes latitude and longitude
suffers from imprecision for several reasons. It is perhaps not
possible to describe the location in one point because it is
an area or the exact location can be unknown to the users.
Yet in another scenario, the physical properties of the input
device can put a constraint on the precision of measurement.
However, measurement of the name attribute can be done



precisely. A fourth property, that is mentioned in many works
dealing with merging of propositional belief bases, is called
the majority rule [8], [10].

Property 4 (Majority rule): Let O be a universe and let $O

be a merge function, then $O satisfies the majority rule if and
only if:

∀M ∈M(O) : ∃o ∈ O : ωM (o) >
|M |
2
⇒ ($O(M) = o)

The majority rule is an interesting property in the context of
coreference as it implies that a majority of sources postulates
that a certain object is the correct representation of the
entity. However, the majority of sources might not always
know the most common representation of an entity. Therefor,
a contradictory but interesting property is called majority
independence. To formulate this property, we first define the
suppression operator for multisets.

Definition 3: Let M be a multiset drawn from the universe
O. The k-suppression of M is a multiset 〈M〉k such that

ω〈M〉k(o) =

{
1 , 0 < ωM (o) < k

ωM (o) , else

Property 5 (Majority independence): Given a universe O
and a merge function $O, then $O is k-majority independent
if and only if:

∀M ∈M(O) : $O(M) = $O(〈M〉k)

B. Merging of atomic objects

We now focus on merge functions $U where U is an
atomic universe. Recall that the context in which $U is to
be used, is that of coreference. As such, we can assume
that upon merging time, an evaluator EU is available. Let
M be a multiset of coreferent objects that are identified by
a coreference detection framework. Then, for each object
u ∈ M , |M | possibilistic truth values can be calculated by
comparing u with all objects in M . Due to reflexivity of EU ,
the possibilistic truth value (1, 0) occurs at least ωM (u) times.
As such, a collection of possibilistic truth values is obtained
where each p̃ indicates the uncertainty about the proposition
that two objects are coreferent. In [20], a method is proposed
to construct a possibility distribution πN (a fuzzy integer) from
a collection of possibilistic truth values P̃ . Hereby, πN(k)
indicates the possibility that k propositions in P are true. The
method explained in [20] is the following.

Definition 4: Let P be a set of independent Boolean propo-
sitions and let P̃ be the set of corresponding possibilistic truth
values. The quantity of true propositions in P is given by the
possibility distribution πN such that:

πN(k) = min ( sup {α ∈ [0, 1]||{p ∈ P |µp̃(T ) ≥ α}| ≥ k} ,
sup {α ∈ [0, 1]||{p ∈ P |µp̃(F ) < α}| ≥ k})

Definition 4 states that the possibility πN(k) is the minimum
of the possibility that at least k propositions are true and
the possibility that at most |P | − k propositions are false.
From this point of view, πN(k) can be calculated by adopting

Fig. 2. Fuzzy integers derived from possibilistic truth values

the following notations. For a set P̃ , let p̃(i)T denote the
ith largest possibilistic truth value with respect to the order
relation defined in Section II. The following then holds:

πN(k) =


µp̃(k)T

(F ) , k = 0

µp̃(k)T
(T ) , k = |M |

min
(
µp̃(k)T

(T ), µp̃(k+1)T
(F )
)

, else

Figure 2 shows two example sets of possibilistic truth values,
where ◦ denotes the possibility of T and × denotes the
possibility of F . The derived possibility distributions πN are
shown below the possibilistic truth values. Note that the
membership functions of the derived fuzzy integers πN are
always convex.

Applying this method allows us to express the number
of coreferent objects, according to the evaluator EU . Hence,
although we already know that objects in M are coreferent, the
distributions πN express the uncertainty about this statement,
at least, according to the evaluator EU . In light of this, the
result of $U (M) should be the object which has the highest
number of coreferent objects according to EU . We then obtain
a method where the uncertainty model of EU is used to
choose the best representative. For this purpose, a method for
comparison of fuzzy integers is required. Many methods have
been proposed. The most common technique is to defuzzify
the fuzzy integer, for example by means of the center of
gravity [1]. Fuzzy integers are then compared by comparing
the results of defuzzification. The method that we shall adopt
here, is not based on defuzzification, but is rather possibilistic
in nature. We propose two order relations for fuzzy integers,
one constructed from the viewpoint of possibility and one
constructed from the viewpoint of necessity.

Definition 5 (sup-order of fuzzy integers): For two fuzzy
integers, ñ and m̃, the order relation ≺sup is defined as:

ñ ≺sup m̃⇔ sup ñα < sup m̃α

Hereby, ñα is the α-cut of ñ where α is chosen such that:

α = sup{x| sup ñx 6= sup m̃x}



Definition 6 (inf-order of fuzzy integers): For two fuzzy
integers, ñ and m̃, the order relation ≺inf is defined as:

ñ ≺inf m̃⇔ inf ñα < inf m̃α

Hereby, ñα is the α-cut of ñ where α is chosen such that:

α = sup{x| inf ñx 6= inf m̃x}

The sup-order of fuzzy integers searches for the highest α,
such that the α-cuts have a different supremum and then
chooses the fuzzy number for which the α-cut has the higher
supremum. It can be seen that this method is equivalent
to first searching the fuzzy integers that have the maximal
k, say kmax, for which πN(kmax) = 1. If multiple fuzzy
integers exist, the decision is taken by leximax of the sequence
πN(kmax + 1), ..., πN(|M |). The dual is true for ≺inf . Note
that both ≺sup and ≺inf are partial orders. If multiple fuzzy
numbers are equivalent, a random choice is made. Note that
two non-equal convex fuzzy integers are always comparable
by either ≺inf or ≺sup. Consider the fuzzy integers shown
in Figure 2. The order relation ≺sup denotes the leftmost
fuzzy integer as the largest, because 1-cut of the leftmost
fuzzy integer has a higher supremum (4) than the rightmost
(3). However, the order relation ≺inf denotes the rightmost
fuzzy integer as the largest, because the 0.2-cut (denoted by
the dashed line) of the leftmost fuzzy number has a lower
infimum than the 0.2 cut of the rightmost fuzzy integer.

Based on the order of fuzzy integers, it is possible to define
a merge function driven by an evaluator for atomic universes,
denoted $k

U .
Definition 7 (Evaluator driven $k

U ): Let U be a atomic
universe and EU an evaluator over U . A merge function driven
by the evaluator EU of order k is a merge function $k

U such
that:

$k
U (M) = argmax

u∈M
πuN

where πuN is a possibility distribution obtained from the mul-
tiset of possibilistic truth values P̃u where:

∀u′ ∈M : ωP̃u
(EU (u, u

′)) = ω〈M〉k(u
′)

It can now be verified easily that $k
U , is k-majority in-

dependent. Indeed, $k
U suppresses multiplicity below k. In

what follows, we shall study the most interesting case where
k = 1. Therefor, for simplicity of notation, we will drop the
superscript (.)k in the sequel. Considering the other properties
of merge functions, evaluator driven merge functions are
preservative by definition, and thus also idempotent. The
majority rule is not easily satisfied. It can be shown with
simple counter examples that, in the general case, $U does not
satisfy the majority rule, independent of the ordering relation
for fuzzy integers used. However, there exist some cases in
which the majority rule is in fact satisfied.

Theorem 1: A merge function $U , driven by a strong
reflexive and transitive evaluator EU satisfies the majority rule
if it orders fuzzy integers with ≺inf .

Proof: Assume a the element of M , that has the majority.
This means that ωM (a) >

⌊
|M |
2

⌋
. Notice that:

∀u ∈M : |{p̃ ∈ P̃u|µp̃(F ) 6= 1}| = argminπuN(k) = 1

which means that the infimum of the 1-cut of πN(k) = 1
is equal to the number of possibilistic truth values with
possibility for F lower than 1. Thus, if:

∀u ∈M\{a} : µEU (u,a)(T ) < 1

then πaN has the strictly largest infimum of the 1-cut. In the
other case where there exists a multiset C ⊂M such that:

∀u ∈ C : µEU (u,a)(T ) = 1

then we see that ∀u /∈ C : πuN ≺inf π
a
N due to the previous

case. For elements in C we have that:

∀u ∈ C : πuN(|C|) = 1

We thus have to show that for each u ∈ C, πuN dominates πaN
in the index set {1, 2, ..., |C|}. This follows from the fact that,
on the one hand for every b and c in C, different from a, we
have that:

EU (b, c) < EU (a, c)⇒ EU (a, b) = EU (a, c)

due to transitivity and on the other hand that:

∀k ∈ {1, ..., b|M |/2c} : πaN(k) = 0

C. Merging of complex objects

In this Section, merge functions for complex objects o ∈ O
are investigated. A possible strategy in doing so is to consider
an evaluator EO and to construct merge functions for complex
universes as explained in the previous Section. A different
way of defining merge functions for complex objects is to
combine the projection operator on the compound universe
O with merge functions for the atomic universes. Doing so,
yields the following definition of a composite merge function.

Definition 8 (Composite merge function): Consider a com-
plex universe O = U1× ...×Un. A composite merge function
$O over O is defined as:

$O :M(O)→ O

where:

$O(M) = ($U1
(Proj1 (M)) , ..., $Un

(Projn (M)))

and where Proji(M) ∈M(Ui) such that:

ωProji(M)(u) =
∑

o∈M∧oi=u
ωM (o)

In case of a composite merge function it is now investigated
which properties, satisfied by the functions $Ui

, are inherited
by $O. It can be verified that if $O is composed of idempotent
functions $Ui

, then $O is idempotent. If the $Ui
satisfy the

majority rule, then so does $O and if the functions $Ui
are k-

majority independent, then so is $O. A property that requires



more attention, is preservation. Indeed, if all $Ui
are preser-

vative, then a composite $O is not bound to be preservative.
However, due to preservation of the merge functions $Ui ,
the resulting object $O(M) can be projected onto each sub-
universe. As such, we can count the number of times each
input object contributes to the resulting object and we can
find the input object that contributes the most. Formally, it is
possible to define a merge function $∗O : M(O) → O such
that:

$∗O (M) = argmax
o∈M

(ωM (o) · |{i|oi = $O(M)i}|)

where $O is a merge function. Then, $∗O is a preservative
merge function induced by a composite merge function. The
advantage of preservation for complex objects is already
pointed out in the previous Section. However, preservation in
the case of complex objects can have the disadvantage that it is
not robust. Indeed, if the input object that is chosen contains an
error in one sub-universe, but has preferable values in the other
universes, preservation implies that this error is not corrected.
Therefor, in the context of complex objects, a more interesting
property is λ-preservation.

Property 6 (λ-preservation): Assume a complex universe
O = U1 × ... × Un and a merge function $O. Then $O

is λ-preservative with respect to a λ-partition {Pj}j=1..k of
labels, if it is preservative with respect to each Pj . Hereby, a
λ-partition satisfies:

k⋃
j=1

Pj = {l(Ui)}i=1..n

∀j ∈ {1, ..., k} : λ(Pj) = 1

In an extreme case, each sub-universe is preserved inde-
pendently from the others, i.e. in each sub-universe, the
merged object has a value that belongs to one of the input
objects, but for each sub-universe, this object can differ. As
such, with respect to this trivial partition, a composite merge
$O composed from preservative merge functions $Ui is λ-
preservative. The strength of the property depends on the λ-
partition for which preservation holds. When λ-preservation is
obtained with respect to logical, non singleton groups of sub-
universes, the risk of constructing an object of low quality
is lowered. On the other hand, by not selecting an object of
the input set, the merge function has the ability of correcting
errors in the input set.

IV. CONCLUSION

Information fusion is a research area with many applica-
tions, such as heterogeneous databases, multi-agent systems
and group decision making. In this paper, information fusion
is investigated in the context of coreferent objects. We start
with defining merge functions in general. Next, interesting
properties in the context of coreferent objects are given. We
then define merge functions for atomic objects and we show
which properties are satisfied by these merge functions. Next,
it is shown how composite merge functions can be defined
by means of atomic merge functions and it is shown how

properties of the atomic merge functions can be satisfied
for the composite merge functions. The proposed framework
of merge functions contributes to automated processing of
coreferent objects.
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