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Abstract. Comparing ear photographs is considered to be an important
aspect of victim identification. In this paper we study how automated
ear comparison can be improved with soft computing techniques. More
specifically we describe and illustrate how bipolar data modelling tech-
niques can be used for handling data imperfections more adequately. In
order to minimise rescaling and reorientation problems, we start with
3D ear models that are obtained from 2D ear photographs. To com-
pare two 3D models, we compute and aggregate the similarities between
corresponding points. Hereby, a novel bipolar similarity measure is pro-
posed. This measure is based on Euclidian distance, but explicitly deals
with hesitation caused by bad data quality. Comparison results are ex-
pressed using bipolar satisfaction degrees which, compared to traditional
approaches, provide a semantically richer description of the extent to
which two ear photographs match.
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1 Introduction

Ear biometrics are considered to be a reliable source for disaster victim identifi-
cation. Indeed, ears are relatively immune to variation due to ageing [9] and the
external ear anatomy constitutes unique characteristic features [13]. Moreover,
ears are often among the intact parts of found bodies, automated comparison of
photographs is in general faster and cheaper than DNA analysis and collecting
ante mortem photographs is considered to be a humane process for relatives.

Although there is currently no hard evidence that ears are unique, there is
neither evidence that they are not. Experiments comparing over ten thousand
ears revealed that no two ears were indistinguishable [13, 5] and another study
revealed that fraternal and identical twins have a similar but still clearly dis-
tinguishable ear structure. More research is needed to examine the validity of
uniqueness but, despite of that a match or mismatch of ear biometrics can pro-
vide forensic experts with useful information in identification tasks. This makes
research on the comparison of ear photographs relevant and interesting.
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When considering a missing person and the found body of a victim, ear iden-
tification practically boils down to a comparison of a set of ear photographs of
the missing person with a set of ear photographs of the victim. Ear pictures of a
victim are taken in post mortem conditions and hence referred to as post mortem
(PM) pictures. Pictures of a missing person are always taken ante mortem and
therefore called ante mortem (AM) pictures. PM pictures are assumed to be of
good quality because they are usually taken by forensic experts under controlled
conditions: high resolution, correct angle, uniform lighting, with the ear com-
pletely exposed. AM photos are often of lower, unprofessional quality. They are
not taken with the purpose of ear identification and in most cases are provided
by relatives or social media. Because we have no control over the conditions in
which these pictures were taken, we can only hope to retrieve the best we can.
Moreover, parts of the ear might be obscured by hair, headgear or other objects.
The ear can also be deformed by glasses, earrings or piercings. Efficiently coping
with all these aspects that have a negative impact on the data quality and hence
also on the comparison is a research challenge and the subject of this work.

A considerable part of related work focusses on comparisons where an ear
photo from a given set of photos is compared to all photos in this set (e.g,
[25, 12, 21]). This is a simplified case because matches between identical photos
are searched for. The work in this paper is more general because it involves
the matching of identical ears on different photos. An important step of each
automated ear comparison process is the ear recognition step during which cor-
responding extracted features from two ears are compared in order to decide
whether the ears match or not. Related work on ear recognition can be cate-
gorised based on the feature extraction scheme used. Intensity based methods
use techniques like principal component analysis, independent component anal-
ysis and linear discriminant analysis for the comparison (e.g., [26, 22]). Other
categories of methods are based on force field transformations (e.g., [3]), 2D ear
curves geometry (e.g., [8]), Fourier descriptors [1], wavelet transformation (e.g.,
[11]), Gabor filters (e.g., [18]) or scale-invariant feature transformation (e.g.,
[15]). A last category of comparison techniques are based on 3D shape features.
Most approaches use an iterative closest point algorithm for ear recognition (e.g.,
[7, 23, 14, 6]). In [24] both point-to-point and point-to-surface matching schemes
are used, whereas the method in [20] is based on the extraction and comparison
of a compact biometric signature. An elaborate survey on ear recognition is [2].

Current approaches for ear recognition cannot adequately handle, measure
and reflect data quality issues. Nevertheless, efficiently coping with aspects that
have a negative impact on correct ear detection and ear recognition is recognised
to be an important research challenge. Ear identification methods should not only
support the annotation of areas of bad data quality in an ear photo, but also be
able to quantify these and reflect their impact on the results of ear comparisons.
Indeed, forensic experts would benefit from extra information expressing the
quality of data on which comparisons are based. For example, the case where
AM photo A and PM photo P only partially match, but both having sufficient
quality, clearly differs from the case where A and P partially match but A is of
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low quality. In this work we investigate if and how soft computing techniques
can be used to explicitly cope with AM data of bad quality in ear recognition.
We use a 3D ear model on which we apply a point-to-point comparison method.
Bipolar data modelling techniques are applied to denote and quantify areas of
bad data quality. A novel bipolar similarity measure is proposed and used for
the comparison. Ear comparison results are expressed using bipolar satisfaction
degrees [16] which quantify hesitation about each result caused by bad data
quality of the AM photos.

The remainder of the paper is structured as follows. In Section 2 some pre-
liminaries are given. Some general issues on bipolarity in ear comparison are
explained. Next, some basic concepts and definitions of bipolar satisfaction de-
grees are described. In Section 3, the 3D ear model is described. Section 4 deals
with ear recognition and comprises the main contribution of the paper. It consec-
utively describes how corresponding points in two ear models can be compared,
proposes a novel bipolar similarity measure, describes how this bipolar similarity
measure can be used for the comparison of two 3D ear models and discusses the
interpretation of comparison results in a bipolar setting. Some conclusions and
plans for related research are reported in Section 5.

2 Preliminaries

2.1 Bipolarity Issues in Ear Comparison

In the context of information handling the term bipolarity is, among others, used
to denote that information can be of a positive or negative nature [16]. Positive
information describes what is true, correct, preferred. Oppositely, negative in-
formation describes what is false, incorrect, not preferred. In most situations,
especially in a scientific context, positive and negative information complement
each other. This is called symmetric bipolarity [10]. Boolean logic and probability
theory are examples of mathematical frameworks where symmetric bipolarity is
assumed. So-called dual bipolarity is assumed in possibility theory where posi-
tive and negative information are dually related to each other and measured on
different scales based on the same source of knowledge. The most general form
of bipolarity is heterogeneous bipolarity. Two separate knowledge sources pro-
vide positive and negative information which are independent and hence do not
have to complement each other. In the remainder of the paper, heterogeneous
bipolarity is assumed.

Victim identification by ear biometrics can be seen as a pattern recognition
process where PM ear photos of a victim are reduced to a set of features that
is subsequently compared with the feature sets that are obtained from the AM
photos of missing persons in order to help determine the identity of the victim
on the basis of the best match. The following steps are hereby distinguished:

1. Ear detection. Hereby, ears are positioned and extracted from the photos.
2. Ear normalisation and enhancement. Detected ears are transformed to a

consistent ear model using, e.g., geometrical and photometric corrections.
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3. Feature extraction. Representative features are extracted from the ear model.

4. Ear recognition. Feature sets of AM and PM ears are compared. A matching
score indicating the similarity between the ears is computed.

5. Decision. The matching scores are ranked and used to render an answer that
supports forensic experts in their decision making.

Errors in the first three steps can undermine the utility of the process. So,
features that are obtained from bad quality data should be handled with care.
For that reason, we consider that a feature set provides us with heterogeneous
bipolar information: some features are obtained from reliable data and positively
contribute in the identification process, other features might turn out to be
unreliable and might have a negative impact which should be avoided, while for
still other features there can be hesitation about whether they are useful or not.

2.2 Bipolar Satisfaction Degrees

To efficiently handle heterogeneous bipolarity in the comparison process, bipolar
satisfaction degrees are used [16]. A bipolar satisfaction degree (BSD) is a couple

(s, d) ∈ [0, 1]2 (1)

where s is the satisfaction degree and d is the dissatisfaction degree. Both s and
d take their values in the unit interval [0, 1] reflecting to what extent the BSD
represents satisfied, resp. dissatisfied. The extreme values are 0 (‘not at all’), and
1 (‘fully’). The values s and d are independent of each other. A BSD can be used
to express the result of a comparison in which case s (resp. d) denotes to which
extent the comparison condition is accomplished (resp. not accomplished).

Three cases are distinguished:

1. If s + d = 1, then the BSD is fully specified. This situation corresponds to
traditional involutive reasoning.

2. If s+ d < 1, then the BSD is underspecified. In this case, the difference h =
1−s−d reflects the hesitation about the accomplishment of the comparison.
This situation corresponds to membership and non-membership degrees in
intuitionistic fuzzy sets [4].

3. If s + d > 1, then the BSD is overspecified. In this case, the difference
c = s+ d− 1 reflects the conflict in the comparison results.

With the understanding that i denotes a t-norm (e.g., min) and u denotes
its associated t-conorm (e.g., max), the basic operations for BSDs (s1, d1) and
(s2, d2) are [16]:

– Conjunction. (s1, d1) ∧ (s2, d2) = (i(s1, s2), u(d1, d2))

– Disjunction. (s1, d1) ∨ (s2, d2) = (u(s1, s2), i(d1, d2))

– Negation. ¬(s1, d1) = (d1, s1).
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3 3D Ear Model

In our previous work, we used 2D ear images for accomplishing ear recognition
[19]. Imperfect geometrical and photometric transformations of 2D AM photos
put a limit on the quality of the results. To improve this approach we now use
a 3D ear model. This 3D ear model is obtained by estimating the parameters
of a mathematical shape function such that the resulting shape optimally fits
the images of the ear. For a PM ear, a 3D camera image can be used, whereas
for an AM ear usually a set of 2D photos is used. The description of this fitting
process is outside the scope of this paper. At this point it is sufficient to assume
that for each ear we obtained a 3D model that captures the three dimensional
details of the ear surface as shown in Fig. 1 (left and middle).

Fig. 1. 3D ear model (with hesitation spheres).

The 3D ear model is normalised for all ears, so all ear models have the same
resolution and scale. However, unclear parts of 2D AM ear photos might decrease
the quality of (parts of) a 3D AM ear model. Indeed, if parts of the 2D ears are
inadequately visible or unreliable then their corresponding parts in the 3D model
will as well be unreliable. To cope with this, unreliable parts of 3D ear models
are indicated by so-called hesitation spheres. As illustrated in Fig. 1 (right),
a hesitation sphere H is defined by two concentric spheres H+ and H−. All
points p inside or on the surface of the inner sphere H+ have a fixed associated
hesitation value hH(p) = vH ∈]0, 1]. For points on the surface or outside the
outer sphere H− the hesitation is 0, whereas for points between both spheres
the hesitation is gradually decreasing from vH to 0, depending on their distance
from H+, i.e.,

hH(p) = vH ·
(
1− d(H+, p)

d(H+,H−)

)
(2)

where d denotes the Euclidean distance. In general, forensic experts can manually
assign as many hesitation spheres as required to indicate unreliable parts in the



6 De Tré et al.

3D model. This assignment process is subject for (semi-)automation in future
work. In the presence of k > 1 hesitation spheres Hk, the overall hesitation about
the quality of a point p is computed by

h(p) = max
k

hHk
(p). (3)

Thus, the maximal hesitation assigned to the point is taken.
Feature extraction boils down to selecting n representative points of the 3D

ear model. The more points that are considered, the better the matching results,
but also the longer the computation time. For normalisation purposes, a fixed
list LS = [pS1 , . . . , p

S
n ] of n points is selected on a standard, reference ear model

S. Ear fitting, i.e., determining the optimal parameters for the shape function,
will transform LS into a list LE = [pE1 , . . . , p

E
n ] of n points of the best fitting 3D

ear model E. Hereby, each point pSi corresponds to the point pEi (i = 1, . . . , n).
Moreover, using the same ear model S and the same list LS for fitting two
different ear models A and P guarantees that each point pAi of LA corresponds
to the point pPi of LP (i = 1, . . . , n).

4 Ear Recognition

A basic step in ear recognition is the comparison of two left (or two right) ears. As
such, in victim identification a set of AM photos of one ear have to be compared
with a set of PM photos of the other ear. Using the 3D ear modelling technique
explained in the previous section, the feature list LA of the ear model A of the
AM photos has to be compared with the feature list LP of the ear model P of
the PM photos. To reflect data quality issues, the hesitation h(p) of each point
in the lists LA and LP has to be taken into account.

4.1 Similarity of Corresponding Features

A commonly used comparison technique for corresponding points of two feature
lists is to use the Euclidean distance. In the 3D space defined by the three
orthogonal X, Y and Z-axes, the Euclidean distance between a point pA of LA

and its corresponding point pP in LP is given by:

d(pA, pP ) =
√
((pA)x − (pP )x)2 + ((pA)y − (pP )y)2 + ((pA)z − (pP )z)2 (4)

where (.)x, (.)y and (.)z denote the x, y and z coordinates of the point.
The similarity between the points is then obtained by applying a similarity

function to their distance. This similarity function µSim can generally be defined
by a fuzzy set Sim over the domain of distances, e.g.,

µSim : [0,+∞[ → [0, 1] (5)

d 7→ 1, iff d ≤ ϵ1

d 7→ 0, iff d ≥ ϵ0

d 7→ 1− d− ϵ1
ϵ0 − ϵ1

, iff ϵ1 < d < ϵ0



Bipolar Comparison of 3D Ear Models 7

where 0 ≤ ϵ1 ≤ ϵ0. Hence, if the distance d < ϵ1 then the similarity between the
points is considered to be 1, if d > ϵ0, the similarity is 0, and for distances d
between ϵ1 and ϵ0 the similarity is gradually decreasing from 1 to 0.

Hence the similarity between two points pA and pP yields

µSim(d(pA, pP )) ∈ [0, 1]. (6)

4.2 Bipolar Similarity

The similarity function µSim is not taking into account any hesitation that might
exist about the points pA and pP . For that reason, the following novel similar-
ity measure, based on both µSim and the overall hesitation h (cf. Eq. (3)), is
proposed.

fBsim : P× P → [0, 1]2 (7)

(pA, pP ) 7→ (s, d)

where P ⊆ R3 denotes the 3D space in which the ear model is defined and (s, d)
is the BSD expressing the result of comparing pA and pP as described in the
preliminaries. The BSD (s, d) is defined by

s = (1−max(h(pA), h(pP ))) · µSim(d(pA, pP )) (8)

and
d = (1−max(h(pA), h(pP ))) · (1− µSim(d(pA, pP ))). (9)

Herewith it is reflected that we consider a consistent situation where h = 1−s−d
and we consider s (resp. d) to be the proportion of 1− h that corresponds with
the similarity (resp. dissimilarity) between pA and pB .

Remark that, with the former equations, the hesitation h represented by the
BSD (s, d) becomes h = 1 − s − d = max(h(pA), h(pP )) ∈ [0, 1]. Also s + d =
1 − h ≤ 1, such that the resulting BSD can either be fully specified, or be
underspecified. So, Eq. 7 is consistent with the semantics of BSDs.

4.3 Comparing 3D Ear Models

The comparison of an AM ear model A and a PM ear model P is based on the
comparison of all features pAi and pPi in their respective feature lists LA and LP

(i = 1, . . . , n). More specifically, the comparison results of all n corresponding
AM and PM points should be aggregated to an overall similarity and hesitation
indication. Because these overall similarity and hesitation have to reflect the
global similarity and hesitation of all points under consideration, the arithmetic
mean can be used as an aggregator for the n similarities of the corresponding
points in the feature lists. Therefore we propose the following similarity measure
for feature lists of 3D ear models.

f∗
bsim : Pn × Pn → [0, 1]2 (10)

([pA1 , . . . , p
A
n ], [p

P
1 , . . . , p

P
n ]) 7→ (s, d)
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where Pn denotes the set of all feature lists consisting of n points of P and
(s, d) expresses the result of comparing the feature lists LA = [pA1 , . . . , p

A
n ] and

LP = [pP1 , . . . , p
P
n ]. The BSD (s, d) is defined by

s =

(
1−

∑n
i=1 max(h(pAi ), h(p

P
i ))

n

)
·
∑n

i=1 µSim(d(pAi , p
P
i ))

n
(11)

and

d =

(
1−

∑n
i=1 max(h(pAi ), h(p

P
i ))

n

)
·
(
1−

∑n
i=1 µSim(d(pAi , p

P
i ))

n

)
. (12)

The hesitation h in the BSD (s, d) is h = 1−s−d =
∑n

i=1 max(h(pA
i ),h(pP

i ))

n ∈ [0, 1]
and again s+ d = 1− h ≤ 1.

4.4 Interpreting the Results

In a typical victim identification search, a PM 3D ear model is compared with
a set of m AM 3D ear models taken from a database with missing persons.
Each of these comparisons results in a BSD (si, di), i = 1, . . . ,m, from which
the hesitation hi = 1 − si − di about the result can be derived. Hence, the
information provided from the comparison is the following:

1. si (∈ [0, 1]): denotes how satisfied/convinced the method is about the match-
ing of both ear models.

2. di (∈ [0, 1]): denotes how dissatisfied/unconvinced the method is.
3. hi (∈ [0, 1]): expresses the overall hesitation about the comparison results

(due to inadequate data quality).

In practice, forensic experts will be interested in the top-k matches for a given
PM 3D ear model. For that purpose, the resulting BSDs (si, di), i = 1, . . . ,m,
have to be ranked. In the given context, the best ear matches are those where
si is as high as possible and hi is as low as possible. Therefore, considering that
hi = 1− si − di, the ranking function

r : [0, 1]2 → [0, 1] (13)

(s, d) 7→ s+ (1− d)

2

can be used. This function computes a single ranking value r((si, di)) for each
BSD (si, di), which can then be used to rank order the comparison results and
select the top-k among them. Other ranking functions are possible and discussed
in [17].

Another option is to work with two threshold values δs, δh ∈ [0, 1]. In such
a case, only ear models for which the resulting BSD (s, d) satisfies s ≥ δs and
h ≤ δh (or 1− s− d ≤ δh) are kept in the comparison result.
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5 Conclusions and Future Work

In this paper, we described some theoretical aspects of a novel, bipolar approach
for comparing 3D ear models. Soft computing techniques based on heterogeneous
bipolar satisfaction degrees (BSDs) support explicitly coping with the hesitation
that occurs when low(er) quality ear photos have to be compared with other ear
photos (taken in different position, on a different time, . . . ). The use of BSDs
allows to provide user with extra quantitative information about the overall
hesitation on the comparison results (due to inadequate data quality).

The focus in the paper is on the ear recognition and decision processes of
an ear identification approach. The presented technique departs from a 3D ear
model that is obtained from ear detection, normalisation and enhancement pro-
cesses. On this model, parts of low quality are annotated using a set of so-called
hesitation spheres. From each 3D ear model a feature list is extracted. Feature
lists are compared with each other by using a novel bipolar similarity measure,
which provides quantitative information on the similarity of two ears and on the
overall hesitation about (the quality of) the data involved in the comparison.

Up to now the method has only been tested on synthetically modified ear
models. Experiments with models of real ears are necessary for parameter fine-
tuning and validation purposes and are planned in the near future.
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