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Chapter 1
Introduction

In this short chapter we describe what is generally undedddy imperfect informa-
tion (section 1.1). After reading, the user should havegimisin the different kinds
of imperfections in information. Furthermore, we explaihatis meant by ‘fuzzy’
databases (section 1.2), flexible querying and ‘fuzzy’ guner(section 1.3). Hereby
we strive for general concept descriptions that are comynacteptable. The last
section 1.4 summarizes the objectives of this book.

1.1 What is meant by imperfect information?

A significant part of all information collected by humansigeérentlyimperfect.
This imperfection follows from the way humans make use ofiratlanguage to
communicate, think, behave and work. The imperfect charagtinformation does
not preclude us from successfully functioning in our sgciebr example, in order
to drive a car, nobody needs perfect information that ‘thet sle-way is exactly
at 214,83 meter’, that ‘we should start using the brakes attéx1 minute and 43
seconds’, etc. It is just the human ability to make abstoastiand to estimate for
example time and distance that allows us perform compléestagch as driving a
car.
Imperfections in information can be classified as follow#]}1

Information isimpreciseif it is not specified as precise as it should be specified.
Information isfuzzyif it is inherently vaguely described.

Information isuncertainif it is not known with certainty.

Information isincompletdf some data are missing.

Information isinconsistentf there are two or more conflicting statements.

1 Motro has presented a similar classification [16] wHaoempletenesis replaced byambiguity
Information is said to bambiguousf its meaning is not completely (clearly) given such thatreno
interpretations and thus misinterpretations are possible
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In order to briefly describe these various forms of imperferit is convenient to
consider the information on the value of an attribute of sofvject. In what follows
we will use the height of a person as an example. It will beté@as a broadly
meant variablé&.

1.1.1 Imprecision and vagueness

The concepts aimprecisionandvaguenesdenote a restriction due to which infor-
mation can only be described approximately. The inabititgitve an exact descrip-
tion can for example be due to round off errors in calculatjon a lack of necessary
knowledge or to limitations of observation or measuremenigment.

If imperfect data are approximately modelled by preciserulauies like accept-
able deviations or fault margins, then one speaks almptecision. In this way
the body length of a person could for example be given as ‘betml75 cm and
180 cm’ and the price of an object could be described as#5500 Euro. Such an
imprecise information may be formally representedX@s"[175,180".

The conceptraguenesss associated with the inability to describe information
approximately within precise boundaries and thereforeasgmts some kind of in-
herent imprecision. To handle vagueness, people will ifyizise linguistic terms
to describe the inherent imprecision. Examples of vaguerig®ns for the height
of a person are the linguistic terms ‘short’, ‘rather shotéll’ and ‘very tall’. Exam-
ple of vague descriptions for price indications are thedistc terms ‘very cheap’,
‘cheap’, ‘expensive’ and ‘unaffordable’. Such a vague infation may be formally
represented asX'Is shorf'.

From a semantic point of view, such linguistic terms haw@ajunctivenature
because they typically represent multiple candidate &alAs such, there are for
example multiple lengths which at the same time correspdatidtive term ‘short’.
Moreover such linguistic terms aneherently vagueoncepts because not all can-
didates correspond to the same extent with the linguistin.t&s such, a height of
‘200 cm’ corresponds to a larger extent with the term ‘tdtlam a height of ‘180

cm.

1.1.2 Uncertainty

Like the concepts afmprecisionandvaguenesghe concept ofincertainty denotes
a deficiency of information. Imprecise and vague informattonot specific enough
but is assumed to be accurate. We will explicitly refer tmmfiation as uncertain if
the confidence in it is limited. An example of uncertain imf@tion is if John tells
us that Jack’s height is 175 cm but we do not fully believe Hirdds telling us the
truth. Such an uncertain information may be formally repréed as X = 175 is
probable”.
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There exists some affinity between the concepts of impi@tand vagueness on
the one hand and the concept of uncertainty on the other adtdeach of them the
exact information is not known. It is also very important teess that imprecision
and vagueness acgthogonal to uncertainty: they can occur independently next to
each other or occur in combination.

An example can clarify this:

e The information on the height of a person can be impreci¥es {175 180"

e The information can be uncertainX"= 175 is probable”.

e The information on the height can also be both imprecise areéniain: X €
[175,18( is probable”

Orthogonality concerns also vagueness and uncertainty:

e The information on the height of a person can be vagieas‘tall”.

e The information can be uncertainX"= 175 is probable”.

e The information on the height can also be both vague and taioetX Is tall is
probable”

Moreover the following relationship between imprecisi@gueness and uncer-
tainty is often considered and is relevant for the topicdtdéth in this book. Learn-
ing an imprecise/vague information on the value of a vaealnle is uncertain as to
its actual value. The more imprecise the information the tEstain one can be as
to this actual value. This is the essence of the relationtsiiyween fuzzy sets theory
and possibility theory which are briefly presented in thetodapter 2.

1.1.3 Incomplete and missing information

With the concept oincompletenesghe missing of (a part of the) information is de-
noted. Information isnissingif for some parts of it, no description is available, even
not an imprecise, vague or uncertain description. Noteithease of imprecision,
vagueness or uncertainty also some information is missiagely the information
that is necessary to give sufficient descriptions. Howewnethe remainder of this
book and in the classification under consideration, the ephtnissing informa-
tion’ is used to denote only those cases where for the sulnjetdr consideration no
information is available at all.

Missing information can be due to different causes. In theSNX3/SPARC ‘In-
terim Report’ [1], fourteen different sources of incompleess have been identified.
In scientific research, these sources are usually redudbe following five:

e Datadoes not exister is not applicable For example, the scores of an examina-
tion do not exist before the evaluation has been finished.

e Unknowndata. The data exists, but is not known to the person who hastess
it.

e Noinformation. Nothing is known. It is possible that the dat&t but it is also
possible that this is not the case.
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e Data is known butan not be entered~or example, due to security reasons.
e Data are onlypartially given The data are completely known, but are only par-
tially entered in the system. For example, ABC codes for ération scores.

The fourth case of data that can not be entered will typidadiyhandled by the
database management system. In the fifth case of data thatlgreartially given,
the data typically result from some aggregation processcandherefore be con-
sidered as derived data. Consequently, no extra modediilities are required for
to deal with these cases. Therefore, in the remainder obthok only the first three
cases are further dealt with.

1.1.4 Inconsistent information

Inconsistency(or ambiguity) describes a situation where two or more dpsons
are conflicting, e.g. ‘John is 1m 72’ and ‘John is larger them80'. In such cases,
there is no possibility to combine the data in such a way thaimapromise arises.
A possible solution is to remove the information of the seutttat is least reliable
(under the assumption that this source is known). Such amsistent information
may be formally represented as, e.¢,= 175 AND X = 185",

1.2 What are fuzzy databases?

When using regular computer software for the processingnaaadagement of in-
formation, users are almost always forced to describe datgerfect way. This is
because data modelling is usually done by means of datdstesand data models
that are developed to model information in a perfect wayin@gknto account the
limitations of the computer system. Which is of course adio®nsequence of the
inherent binary nature of data storage and data processing.

Until some years ago the restrictions that come along witthsan approach
were not worth mentioning. The more because also for exampg&act sciences
like physics, we observe that people strive for certainty preciseness and suc-
cessfully make abstractions of reality to develop theasieigh are based on perfect
information is an ideal world.

With the introduction of many-valued logics [2] (and latés@[19]) a paradigm
shift happened, which among others constitutes the onsttdso-calleduzzy sets
theory[21], possibility theonf23, 9] andfuzzy logid22]. These theories are nowa-
days sufficiently advanced to provide a very convenient atetjaate framework
for the formal handling ofmprecise vagueand uncertaininformation. With the
introduction of ‘computing with words’ [24, 26], the ‘thepof fuzzy information
granulation’ [25] and the ‘computational theory of peréeps” [27] the foundations
are set to generalize all these theories into one singlesénti
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Fuzzy sets theorg well suited for the modelling ampreciseandvagueinfor-
mation, whilepossibility theorycan be used for the handling oficertaininforma-
tion andincompletdanformation. The basic concepts of these theories areftirere
described in the next chapter 2. At the end of that chapterseehaiefly introduce
the basic ideas behind ‘computing with words’, ‘fuzzy infation granulation’ and
the ‘theory of perceptions’.

Databases are a very important component of computer sysisithese are the
(structured) information sources for many applicationsditional database man-
agement systems only allow to efficiently model and managegteinformation.
The developments in fuzzy sets theory, possibility theoy fuzzy logic have also
triggered research for advanced database models and satatzagement tech-
niques that additionally can deal with imperfect inforrati This results in the so-
calledfuzzy databaseswvhich intend to grasp imperfect information about a mod-
elled part of the world and represent it directly in a databaseferably as natural
as possible and preserving its semantics [4, 18, 7, 20, §,&]1

Without fuzzy database techniques, one has to model imgarfermation —
which is a significant part of all available information— apgimately in a crisp
way. This very often goes hand in hand with simplification efmsintics and thus
a loss of information, which may be critical in some situaioFinding adequate
solutions to the problem of imperfect information managetinas been identified
by database researchers as one of the challenges for thizhear{13].

1.3 What are flexible querying and fuzzy querying?

A widespread use of technologies for dealing with multinaeaind large data col-
lections (e.g., GIS databases and biological databasaes)elsalted in very large
databases. Moreover, new developments in network anchitterchnology demand
for distributed databases that are connected with each atitebuild up larger log-
ical data sources. Because of the increasing number ancheadfidatabases, good
and accurate accessibility to a database becomes evenmuooetant. A lot of re-
search has already been done to improve database accelss lesearch, many
aspects have been dealt with, among which we mention filenargéon, indexing,
querying techniques, query languages and other data aecbssques.

Techniques that are meant to make database querying moitddlexusers are
generally calledlexible querying techniques. These techniques include among oth-
ers:

e Self-correcting querying systems that can correct syigtactd semantic errors
in query formulations.

e Navigational querying systems that allow intelligent mgtion through the
database.

e Cooperative querying systems that support ‘indirect’ aarswike summaries,
conditional answers and contextual background informdioo (empty) results
[10].
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A specific kind of flexible querying techniques are based azyusets theory
[21] and its related possibility theory [23, 9] and can tliere be calledfuzzy
guerying techniques. In general fuzzy querying techniques aim taeod database
access by introducing fuzzy preferences in query formutat{6]. The introduction
of fuzzy preferences in queries can be done at two levelgierguery conditions
and between query conditions. Fuzzy preferences are intsatlinside query con-
ditions via flexible search criteria and allow to expresg #wane values are more
desirable than others in a gradual way. Fuzzy preferendesba query conditions
are expressed via grades of importance assigned to partiguéry conditions in-
dicating that the satisfaction of some query conditions @gerdesirable than the
satisfaction of others.

The research on fuzzy querying has already a long histohadtbeen inspired
by the success of fuzzy logic in modelling natural languag@gsitions. The use of
such propositionsin queries, in turn, seems to be very afturhuman users of any
information system, notably database management systater. &n, the interest in
fuzzy querying has been reinforced by the omnipresencetofank based applica-
tions, related to buzzwords of modern information techgglsuch as e-commerce,
e-government, etc. These applications evidently call fitexable querying capabil-
ity when users are looking for some goods, hotel accommaustietc., that may
be best described using natural language terms like chaay®, Iclose to the air-
port, etc. Another amplification of the interest in fuzzy guieg comes from de-
velopments in the area of data warehousing and data minlatgdeapplications.
For example, a combination of fuzzy querying and data miimterfaces [11, 12]
or fuzzy logic and the OLAP (Online Analytical Processinggtinology [14] may
lead to new, effective and more efficient solutions in thessar

1.4 What is this book about?

This book is meant as an introduction to the theory and mract fuzzy querying
and fuzzy databases. The book is intended for everybody wha basic knowledge
on database systems and can be used by master and PhD saslerdh as by
researchers who want to become familiar with the use of {fuerhniques within
information systems. The book is organized in such a wayttiefocus is on the
techniques. As such, readers do not only learn about adgdatatabase modelling
and database access techniques, but also become familiatheidifferent ways
how these techniques could be applied in other contexts.
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Chapter 2
Preliminaries

In this chapter we give an overview of the basic concepts afiditlons of fuzzy set
theory (section 2.1), possibility theory (section 2.2)d dnzzy logic (section 2.3).
This overview should allow the user to understand the madtiesithat are behind
the ‘fuzzy’ database concepts that are described in thik.bas this book deals
mainly with the application of ‘fuzzy’ techniques, a lot dfention is paid to prac-
tical aspects of dealing with these theories. In section&4resent the basics of
a possibilistic logic that works with so-called possiliitstruth values and can be
used as a logical framework for ‘fuzzy’ databases. Appi@# of this logic are
presented throughout the remainder of the book. The chapterwith an overview
of some novel developments in fuzzy set theory which mightideful for the de-
velopment of future ‘fuzzy’ database modelling and ‘fuzgyierying techniques
(section 2.5).

2.1 Fuzzy set theory

Fuzzy set theory(also called the theory of fuzzy sets) is a generalizatiaiassical
set theory and was introduced in 1965 by L.A. Zadeh [22]. Sit& introduction,
this theory has been steadily developed and nowadays adpiptitations of it exist
in several domains as for example informatics (logic prograng, databases, data
mining, artificial intelligence, knowledge-based systeimsage processing, ...),
linguistics, medicine, sociology, psychology, geographysicology, economics,
etc. Fuzzy set theory is also at the basis of all the advanatabdse techniques
described in this book.

In what follows some basic concepts and definitions of fuztytiseory are pre-
sented. More detailed reference works are among otherd [9]1
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2.1.1 Definitions and notations

Central in fuzzy set theory is the concdprzy setA fuzzy set is a generalization
of the mathematical concept set.

To start with, we consider a universe of discoutseEach mathematical s¥t
of elements otJ is fully characterized by its so-calleadembership function gy,
which associates the value 1 with each elemeit ahd the value 0 with each other
elementol, i.e.

v U — {0,1}
x— 1iff xeV
X— 0iff xgV

Hereby, 1 is given the meaning ‘belongs to the set’, wherestards for ‘does not
belong to the set at all'.

For the definition of the concept fuzzy set, the discretg gt} of the previous
mapping is extended to the unit intery@l1]. The meaning of the value 0 remains
the same, the value 1 is interpretedfadly belongs to the fuzzy set’ and an interme-
diate valuex €]0, 1| stands for ‘only partially belongs (to an exteqtto the fuzzy
set’. The closer the valueis to 0, the smaller the extent to which the associated
element belongs to the fuzzy set.

Eachfuzzy setis characterized by a (generalized) membership functibis is
done as follows:

Definition 2.1 (Fuzzy set) A fuzzy seV over a universe of discourse U is defined
by means of a (generalized) membership functigrwhich associates with each
element x of U a membership gragg(x) € [0,1]. This is done as follows:

e [i;(X) = Lrepresents that x fully belongs ¥ (with membership grade 1),

e [i;(x) = Orepresents that x does not belongttat all (and thus has a member-
ship grade 0), and

e Liy(x) €]0,1] represents that x only partially belongs ¥ (with membership
gradey (x)).

O

From the previous definition it follows straightforwardlyat a set is a special
case of a fuzzy set. Indeed, a set is a fuzzy set where eaclkeri¢nat belongs to
the fuzzy set, fully belongs to the fuzzy set (i.e. has an@ased membership grade
1).

A fuzzy setV over a universe of discourdeé will in this work be generally
denoted as

V = {(x g ()[¥ x € U : iy (x) > O}

By convention, elements with membership grade 0 are omiitt¢ke notation. A
fuzzy setV with a finite number of elements will be denoted by
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V= {(X17“\7(X1))v (Xz,[,l\N/(Xz)),...,(Xn,[,l\N/(Xn))},n eN

whereN represents the set of all natural numbers. The empty fuzayielso be
represent by the symbol 0.

Definition 2.2 (Fuzzy powerset](U)) The set of all fuzzy sets that can be defined
over a universe of discourse U is itself defined by:

[J(U) £ {V|V satisfies definition 21
and is called the fuzzy powerset of .

The membership function of a fuzzy set candiscrete or be continuous (cf.
figure 2.1). In the context of ‘fuzzy’ databases, a fuzzy setfien used to model a
linguistic term. As such, the fuzzy set which membershigfion is depicted on the
left of figure 2.1 could be considered as a model for the listimiterm ‘red touch’,
whereas the fuzzy set with the membership function on th nigthe figure could
be considered as a mathematical model for the term ‘yourg)'(efpr such fuzzy
sets, the linguistic term can be used asdemtifier. With other words, in such a case
the linguistic term identifies (the membership functiontbf fuzzy set.

red touch 4 young
1 . . 3 11
.
L]
L3
0 —t —t—t—+ ¢ —t —t—t—t
% ?& %; éﬁ % .%COOUI‘ T}‘ % age
2 R 8 2
© (DG_ % ©

Fig. 2.1 Discrete and continuous membership functions.

2.1.2 Basic concepts

Among the most important concepts of fuzzy set theory aretineepta-level set
(a-cuf) and its varianstrict a-level set(strict a-cuf), that are defined as follows:

Definition 2.3 (a-level set and stricta-level set) If V is a fuzzy set which is de-
fined over a universe of discourse U aads a real number taken from the unit
interval, i.e.a € [0,1], then thea-level seV, is by definition the (regular) set

Vo £ {XxeUApg(x)>a}l
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and the stricta-level seVz is by definition the (regular) set

Va2 {(xxeUAug(x)>a}
O

Two special cases of (striat}-level sets of a fuzzy s&t are thesupport supg V)
of the fuzzy seV which is defined by:

supfV) £ {x|x € U A g (x) > 0}
and thecore corgV) of the fuzzy seV which is defined by:
corgV) £ {xjx € U A kg (x) = 1}

A fuzzy setV is normalized if its core cor¢V) is a non-empty set, i.e. if
corgV) # 0. If the core of fuzzy set is a singleton then the fuzzy setaited to
beunimodal.

Thecardinality of a fuzzy set is defined as follows:

Definition 2.4 (Cardinality) Consider a fuzzy s&t that is defined over a universe
of discourse U. I¥ has a discrete membership function, then the cardineditg(V/ )

ofV is defined by: )
cardV) £ EU K (%)
Xe

If V has a continuous membership function, then the cardineditdV) of V is
defined by:

cardV) £ /u g (x)dx
O

The cardinality of a fuzzy set results in a real number whigftects the global
membership of all elements of the fuzzy set and can thus nobbsidered as an
indication of the number of elements in the fuzzy set.

Thecomplementof a fuzzy set is defined by [22]:

Definition 2.5 (Standard complement) The (standard) complemeﬁt of a fuzzy
setV which is defined over a universe of discourse U is defined by:

V2 {(x1-py(X)|VxeU:1-pug(x) >0}
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2.1.3 Fuzzy relations

A concept that is closely related to the concept fuzzy sétesconcept fuzzy rela-
tion. A fuzzy relation is a generalization of the classic heahatical concepela-
tion. Traditionally a relation

R:UixUsyx---xUy—Y
over a finite number of universa
U1,Us,...,Upn,Y, ne N\ {0}
can be considered as being a subset of the Cartesian product
Up xUzx---xUpxY.

Like with regular sets, this subset can be defined by meansefabership function
Ur Which associates a value 1 with eaoht(1)-tuple ofU; x Uy x --- x Uy x Y that
belongs to the relatioR and associates a value 0 with all othar{1)-tuples of
Ui xUzx---xUpxY,i.e.
Ur:Ug x Uz x .-+ xUpxY — {0,1}
(X17X27 s 7Xn7Y) = 1 Iﬁ: (X15X27 cee 7Xn7Y) € R
(X17X27 s 7Xn7Y) = O Iﬁ: (X15X27 cee 7Xn7Y) g R

A fuzzy relation is then defined as follows:

Definition 2.6 (Fuzzy relation) A fuzzy relation
R:UpxUpx - xUp—Y
over a finite number of universa
U,Uo,...,Upn,Y, ne N\ {0}

is defined by means of a (generalized) membership funggomhich associates a
membership grade

“ﬁ((X].vXZv L axnay)) € [Oa 1]
with each(n+ 1)-tuple (x1,X2,...,Xn,Yy) Of the product set Ux Us x -+ x Up x Y.
These membership grades have the following semantics:

o Uz((X1,X2,...,%n,Y)) = 1 means thatxy, Xo, ..., Xn,Y) is a full element oR,

o ((X1,X2,...,%,Y)) = 0means thafxs, Xz, ..., Xn,y) does not belong t& and

o a((X1,X2,...,%n,Y)) € ]0,1] means that(x1,Xo,...,Xs,Y) only belongs to the
given extent tdx.

O
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A fuzzy relation y
R:UpxUyx---xUy—=Y

over a finite number of univerdd;,U,,...,Upn,Y, n € N\ {0} will generally be
denoted by

R= {((XlaXZa"'7Xn7y)a“§((xlax25---7Xn7y»)|
V (X1, %2, -, Xn,Y) €U x U x -+ x Up x Y :

Ha((X1, X2, - - Xn,Y)) > 0}

Furthermore, from the previous definition it follows cleatthat a classical relation
can be seen as a special case of a fuzzy relation.

2.1.4 Operations

The semantics of a fuzzy set are completed by the definiticsoofe operations.
It is definitely not our intention to give a complete desddptof all operations in

this subsection. For this purpose we refer to the literain@uding among others
[3, 12, 9, 7]. However, in this work we will pay attention toode operations that
are relevant within the scope of ‘fuzzy’ database technpldpre specifically we

will deal with operations to compose fuzzy sets (union,risgetion, difference and
aggregation operators), operations to compare fuzzy setisigion and equality),

implication operators, quantifiers and extension prireggbr relations.

2.1.4.1 The composition of fuzzy sets

The traditional operations union, intersection and défere for regular sets could
be generalised for fuzzy sets in several ways. Beside ofhieat exist some other
operations to aggregate fuzzy sets. These allow to combim®t more fuzzy sets
into one single fuzzy set.

Intersection and union.

The standard definitions for intersection and union, as originally presented by
L.A. Zadeh [22], are as follows:

Definition 2.7 (Standard intersection and union) With the understanding that
andV; are two fuzzy sets that are defined over the same universsaoiudse U, the
following definitions hold:

e (Standard) intersection.
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V21 2 { (x, min( g, (9, kg, (x)))1¥ x € U = min(pg, (x), g, (X)) > O}

e (Standard) union.

V1 UV £ { (x,max(py, (X), iy, (X)) [V x € U - max(pig, (x), g, (X)) > 0}
O

These definitions are only one of the many possibilities findehe intersection
and union operations for fuzzy sets. Generally, the int¢ize and union operations
are specified by means of a binary operation which is definedtbe unit interval
[0,1] and satisfies some given conditions.

As such, thantersection of two fuzzy setd/; andV, —defined over the same
universe of discourdd— can generally be specified by means of a function

i:]0,1] % [0,1] — [0,1]

which takes the membership grades of an elemenit) in the fuzzy set¥; andVs
as arguments and computes the membership graximdhe intersection of; and
\72, i.e.

VxeU t pg, g, (X) =i(Hy, (X), 4g, (X))

In order to be intuitively acceptable as an intersectiorcfiom, the function must
moreover satisfy the following axioms:

Axiomil.Vae [0,1] :i(a 1) = a(border condition).
Axiomi2.Va,b,d € [0,1] : b<d=-i(ab) <i(a,d) (monotonicity).
Axiomi3.V a,be [0,1] :i(a,b) =i(b,a) (commutativity).
Axiomi4.V a,b,d € [0,1] :i(a,i(b,d)) =i(i(a,b),d) (associativity).

Functionsi that satisfy the previous specification and axioms are initeea-
ture known under the nantenorms. A such, each t-norm acts as an intersection
operator. In table 2.1 we give some examples of (classesrafjms For a more
elaborated discussion and more examples we refer to [9].

Table 2.1: Examples of t-norms

Name Formulai(a, b) Parameter range
Zadeh [22] min(a,b)
Lukasiewics maxa+b—1,0)
Probabilisti ab
Yager [20] |[1—min(1,[(1—a)®+ (1—b)¥]Y/®) w>0
. ab
Dubois [3] maxa.b.a) a €[0,1]
a+b+Aab-1
Weber [19 0,—— A>-—1
eber [19] max(0, 1A ) >
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The union of two fuzzy setsV; andV, —defined over the same universe of
discourseé)J— can also generally be specified by means of a function

u:[0,1] x [0,1] — [0,1]

which takes the membership grades of an element) in the fuzzy set§71 andf/z
as arguments and computes the membership gragénothe union ofV; andVs,,
i.e.

VXG U : I‘l\71U\72 = u(l‘l\N/]_?I‘l\N/z)
In order to be intuitively acceptable as a union functioe, filmctionu must satisfy
the following axioms:

Axiomul.Vae [0,1] : u(a,0) = a(border condition).
Axiomu2.Va,b,d € [0,1] : b<d = u(a,b) < u(a,d) (monotonicity).
Axiom u3.V a,b € [0,1] : u(a,b) = u(b,a) (commutativity).

Axiom u4.V a,b,d € [0,1] : u(a,u(b,d)) = u(u(a,b),d) (associativity).

Functionsu that satisfy the previous specification and axioms are iHitbea-
ture known under the nameconorms. As such, each t-conorm can act as a union
operator.

For t-norms and t-conorms the following inequalities hold:

Furthermore it holds that

i(ab)=1-u(l—a1-b)
which corresponds with the laws of de Morgan (ae.b =avbandavb=anb).
Because of this, for each t-norm there exists a correspgrdinnorm. In table 2.2
we give the corresponding (classes of) t-conorms for thaesges of) t-norms of
table 2.1. For a more extensive discussion and more examplesfer to [9].

Table 2.2: Examples of t-conorms

Name Formulau(a, b) Parameter range
Zadeh [22] max(a, b)
Lukasiewics min(a+b,1)
Probabilisti a+b—ab
Yager [20] | min(1, (a®+b®)Y/®) w>0
. (I-a)(1-h)
Dub 3] 11— 0,1
ubois [3] max1-—al—b,a) a €01
Weber [19] |min(1,a+b— - ab) A>-1
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With respect to fuzzy databases, the Zadeh t-norm min adtidren max are
frequently used because of their simple computability.

Set difference.

As is the case for regular sets ttiéference operator for fuzzy sets can be derived
by relying on the definitions of t-norm and complement. lrdtlee

7\, = Ky, i (0)-

Definition 2.8 (Set difference) With the understanding th&t andV; are two fuzzy
sets that are defined on the same universe of discourse Uldi Huat:

V1 \V2 = {(x,i (g, (X), 1~ kg, (¥)))[¥ x € Ut (pg, (x), 1~ pg,(x)) > O}
U
This results for example with the Zadeh t-norm (@iyb) in
H;\7, (%) = min(pg, (%), 1 — pig, (X))
and with the Lukasiewics t-norm mga+b—1,0) in

Hgp, () = Max( g, (X) — kg, (%), 0).

Aggregation operations.

An aggregation operationis used to combine two or more fuzzy sets in a desir-
able way into one single fuzzy set. An aggregation operaii@r a finite number
of fuzzy sets/y, Vs, ..., Vy, n € N\ {0} —all defined over the same universe of dis-
coursdJ— can generally be specified by means of a function

h:[0,1]" — [0,1]

which takes the membership grades of an elementt) in the fuzzy set§/1~,\72, e
Vi, as arguments and returns the membership gradeimthe fuzzy se of the
aggregate, i.e.

VxeU : kg (x) = h(pg, (%), kg, (X), -, g, (X))

In order to be a meaningful aggregation operator, such aifumb minimally has
to satisfy the following axioms:

e Axiom h1.h(0,0,...,0) =0Ah(1,1,...,1) = 1 (border conditions).
e Axiom h2.
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¥ (a1,@....,an), (b1.bz....,bn) € (0,17, Vi € {1,2,....n} :
g < bi = h(alaaZa"'7an) < h(blabZa--'7bn)
(his non-decreasing in all of its arguments).

If an aggregation operator satisfies the following axiomsh#Bor h5, the operator
is respectively said to be continuous, symmetric or idepiot

e Axiom h3.his a continuous function (continuity).
e Axiom h4. For each permutatigm of {1,2,...,n} it must hold that
h(ai,a,....an) = h(ap):ap2): - --» Apn))

(his a symmetric function in all of its arguments).
e Axiomh5.Vac[0,1]:h(a a,...,a) = a(idempotency).

Examples of (classes of) aggregation operators are thalkmtgeneralized av-
erages and the so-called ordered weighted averages (OWAS).
Thegeneralized averageare defined by

1/a
C) A af+a‘2’+---+ag
h(a17a21"'7anaa)_ ( n

wherea € Ry is the parameter that distinguishes the different aggi@yaperators
and it must hold thady #0,i=1,2,...,nif a <O0.
Theordered weighted averagesre defined by

h(ay,az, ..., 80 W) £ wiby + Wabp -+ - -+ Wnbyy

wherew = (wg,Wa,...,Wq) € [0,1]" is called the weighting factor. It must hold
that s ;wi = 1 and that for eache {1,2,...,n}, by is thei'" largest element of

a,82,...,an, i.e. (b1, by,....by) is a permutation ofay, ay,...,a,) where the ele-

ments are ordered as follows:

Vi,je{l,2,...,n}: i< j=bi>bj.

2.1.4.2 The comparison of fuzzy sets

When comparing regular sets, the result is always expréssatbans of a classical
Boolean truth value ‘true’f{ or 1) or ‘false’  or 0). For the comparison of fuzzy
sets two approaches are used: a standard approach wheestifieis a Boolean

truth value and a gradual approach where result of the casgwais expressed by
a real number between 0 and 1. The latter approach is moréléeand allows to

consider gradations of truth.



2.1 Fuzzy set theory 19

Inclusion.

For regular set¥; andV, over a universe of discour&é the inclusion can be ex-
pressed with the help of the implication operator of the Baallogic. This can be
done as follows:

VM CVo) & (VxeU: (xeV)) = (XEVL))

For fuzzy sets thetandard definitionsfor inclusion are based on the same princi-
ple and given as follows [22].

Definition 2.9 (Inclusion and strong inclusion) With the understanding that;
andV, are two fuzzy sets that are defined over the same universsanfuitse U, it
holds that:

e (Standard) inclusion(Vy C V) < (VX €U : g, (X) < g, (X))

e (Standard) strong inclusiorfV; C V) < supVy) C core\V,)

O

The standard inclusion is illustrated in figure 2.2: in figap/s C Vs, is satisfied:;
in figure (b)V1 C V5 is not satisfied.

Fig. 2.2 (Standard) inclusion.

With the standard strong inclusioh, C Vs it is expressed that if an element
belongs to the support &, then this element must necessarily belong to the core
of V. This is illustrated in figure 2.3: it holds thét C V.

Fig. 2.3 (Standard) strong inclusion.
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Considering thgradual approach, multiple definitions exist. A frequently used
method to find the truth value ® C V, is to check to which extent the fuzzy 34t
‘matches’ the fuzzy se¥; NV,. Hereby, the following considerations with respect
to inclusion of regular sets are used:

(Vj_ - Vz) = ((VlﬂVZ) = Vl)

or
cardViNVy)

cardVy)
which leads to the following definition for the truth valuegfé, C Vs) of Vi C Va.

V1 CV2) & ( =1)

Definition 2.10 (Gradual inclusion) With the understanding that; and V., are
two fuzzy sets that are defined over the same universe obdé&cd, it holds that:

cardViNVs)

degVy € V) = cardVy)

O

For fuzzy sets with a discrete membership function the prevdefinition results
in
~ - (U (X Lo (X
degVy C V) = 3 xeu | (K, (%), g, (X))
> xeU Ky, (X)

wherei is a t-norm.
For fuzzy sets with a continuous membership function thendiefh becomes

Ju 1(Kg, (%), g, (x))dx

degVs € Ve) = (ax

wherei is again a t-norm.

Equality.

Thestandard definition for the equality of two fuzzy sets which are both defined
over a universe of discour&kis given as follows [22].

Definition 2.11 (Standard equality) With the understanding thal; and V., are
two fuzzy sets that are defined over the same universe obdé&cd, it holds that:

(G = V) & (VX €U g, (x) = Hig, ()
O

A frequently usedyradual approach is based on the fact that for regular gets
andV, over a universe of discourtk equality can be expressed as follows:
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(Vi=Vz) & (V1 S V2) A (V2 E V1))

Analogously as with gradual inclusion we then obtain théofeing definition for
the truth value dey, = V,) of Vi =Vs.

Definition 2.12 (Gradual equality) With the understanding th& andV, are two
fuzzy sets that are defined over the same universe of digcoyiisholds that:

degVy =\b) = i(degVy C Vz),deg Vs C Vi)

where i is a t-norm(]

2.1.4.3 Implication operators

The implication operator of Boolean logic has already be@amtioned with the
definition of inclusion. In essence the traditional implioa (P = Q) —if P, then
Q— is equivalent to the logical expressiof-P) v Q). In a fuzzy framework, the
propositions? andQ no longer take Boolean truth values, but more generally take
values from the unit intervdD, 1]. Like with fuzzy intersection and fuzzy union, a
fuzzy implication operator = ¢ can generally be defined by a function:

=+:[0,1] x [0,1] — [0, 1]
(p,q) — (p =1 Q)
The more the function values are closer to 1 (resp. 0), theerttor result of the
implication operator is true (resp. false). As with t-noram&l with t-conorms, there
exist multiple families of fuzzy implication operators. What follows, three such

families which are frequently used within the context ofZfy’ databases, are de-
scribed: S-implications, R-implications and contragosis of R-implications.

S-implications.

The nameS-implication stems from the fact that these kinds of implication op-
erations are based on a t-conorm. In the literature, a tyoone often denoted
with the symbol S. The definition of S-implications is basatdtbe expression

(P=Q) & ((-P)vVQ).

Definition 2.13 (S-implication) With P and Q two fuzzy propositions, the family of
S-implications (denoted bys ;) is defined by:

(P=siQ)=u(1-p,q)
where u is a t-conornti.l]

The most important S-implication functions are given inéah3.
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Table 2.3: Examples of S-implications

Name Definition Used t-conorm

Kleene-Dienes (P =k_p Q) =max1—p,q) | u(a,b)=maxa,b)
Lukasiewics |(P = ysQ) = min(1— p+q,1)|u(a,b) = min(a+b,1)
Reichenbachh (P=gpQ)=1—p+p.q u(a,b)=a+b—ab

As contraposition of an S-implication we receive the samenfication be-
cause:

(-Q=si-P)=u(l—(1-q),1—p)=u(g,1—p)=u(l-p,q)
=(P=si0Q)

Furthermore, it can be proved that [9]

(P=k pQ) < (P=rpQ) < (P=w0Q)

The largest S-implication is obtained by using the t-conofweber:

1-p iffg=0
(P=weQ) =141 iff p=1
1 else.

R-implications.

The family of R-implications is named in this way because their definition is based
on the principle ofesiduation which is traditionally described as follows:

(PA(P=Q)) < (PA(-PVQ)) = (PA-P)V(PAQ)) < (PAQ)

from which it follows that
(PA(P=1))<q
This leads to the following definition.

Definition 2.14 (R-implication) With P and Q two fuzzy propositions, the family of
R-implications (denoted by-r_) is defined by:

(P=r-i Q) = sup {x|i(p,x) <q}
xe€[0,1]

where i is a t-normd

An equivalent, more frequently used form for R-implicasas:
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o)1 iff p<q
(P=r1Q)= {f(p, q) else.

wheref is the function that characterizes the R-implication. Tateer follows from
definition 2.14 and the fact that:

(Vxe[0,1]:i(x,p) <i(1,p))

such that
(Vxe[0,1]:i(x,p) < p)

If p<qgone hasthus:
(Vxe[0,1]:i(x,p) <p<q)

Because we search for the largest |0, 1] for which the inequality holds, we obtain
the value 1, what guarantees the alternative form:

(P=riQ =1iff p<q

A special implication which can due to its form can be consideas being an
R-implication, is the implication of Rescher-Gaines

1 iffp<gqg
0 else.

(P=rcQ) = {

This implication always returns a Boolean value.
In table 2.4 we represent the most important R-implicatiorcfions.

Table 2.4: Examples of R-implications

Name Definition Used t-norm

i <
Godel mjm@_{l'ﬁ“”

q else i(a,b) = min(a,b)

1 iff p<q
1-p+q else

1 iffp<q
g/p else

Lukasiewicz(P = r Q) = { i(a,b) =maxa+b—1,0)

i(a,b)=ab

Goguen (P=c9Q) = {

It cab be proved that [9]

(P=rcQ <(P=60Q < (P=c3Q < (P=uQ)
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Contrapositions of R-implications.

A third family concerns the implications thedrrespondo thecontrapositions of
R-implications. We hereby depart from the definition:

(P=contr-i Q) = ((—Q) =r-i (=P))
For the Godel R-implication this results in the followingfahition

1 iff p<q
1-p else

(P =cont GoQ) = {

For the Goguen R-implication we obtain

1
(P =cont GgQ) = { 1-p

For the Lukasiewics R-implication and the Rescher-Gainesaflication is the con-
traposition the same as the original R-implication. Indeed

(P=cont LuQ) = ((=Q) =Lu (—P))

iff (1-a)<(1-p)
—(1-9)+(1—-p) else

and

2.1.4.4 Quantifiers

Fuzzy sets allow it to define a broad range of quantifiers [Rifleed, beside the
universal quantifiery) and the existential quantified), we can consider quanti-
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fiers that are described by linguistic terms. A distinctismiade betweeabsolute
quantifiers which denote a number or quantity like, e.g., ‘around twehaeound
six’, etc. andrelative quantifiers which refer to a total number and denote a pro-
portion of this total like, e.g. ‘most’, ‘a small number’ cet

An absolute quantifie@a is modelled by means of a membership function

HQs - N — [0,1] OfIJQA 'R —[0,1]
A relative quantifier by a membership function
How £ [0,1] = [0,1]

Hereby, the valugig, (n) expresses the extent to which the numbeorresponds
to the quantifier; analogously, the valpg,(p) expresses the extent to which the
proportionp corresponds to the quantifier.

Quantifiers play an important role in fuzzy queries whera iteéquired thatQ
X satisfyC’, whereQ is a quantifierC is a condition anX represents a collection
of elements. The intention is then to determine to which rxiteis the case that
Q elements ofX satisfyC, or with other words to determine to which extent the
number of elements (resp. the proportion)Xothat satisfyC is compatible withQ.

2.1.4.5 Extension principles for relations

A (regular) relation
R:UixUyx---xUy—Y

which is defined over a finite number of universa
U1,Uy,...,Un,Y, ne N\ {0}
can be generalized togeneralized relation
R:[J(Uy) x [J(Uz) x -+ x [T(Up) — LI(Y)

which acts on fuzzy sets that are defined over the univgysdp, . .. ,U, and results
in a fuzzy set that is defined over the universe of discoMrse

A method to obtain such a generalized relation is calleexdansion principle
One of the best known extension principles is the extensimwiple of L.A. Zadeh
[23, 24, 25] which is defined as follows:

Definition 2.15 (Extension principle) With the understanding that{UJ,, ..., Uy
andY are universa of discour¢e € N\ {0}) and that

R:UixUsx---xUy—Y

is a regular relation, the generalized relatidtof R is defined by:
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R:[J(U1) x [J(Up) x -+ x [1(Up) — LI(Y)
\71,\72, ce 7\7n — F'é(\71,\72, ce 7\7;1)

whereR(V1, Vs, ..., Vy) is the fuzzy set over the universe of discourse Y that is define
by:

RV Va,... . Vh) 1Y — [0,1]

y— sup min(y, (Xa), kg, (X2), - - -, g, (Xn)),V y € rangg(R)
(xl,xz,...,xn)eV<Ry)

y+— 0,Vy ¢ ranggR)

where rangéR) is the value set of the relation R, i.e.

ranggR) = {yly € Y A3 (X1,%2,...,%n) €U x Uz x -+ x Up:
R(Xl,Xz,...,Xn) :y}

and .V(R’y) is_ the set of all n-tuples which mapped onto the value y by meéthe
relation R, i.e.

Viry) = {(X1, X2, -, %n)[(X1, -, Xn) €Up x Uz x--- xUp A
R(X1,X2, ..., %) =Y}

O

In the previous definition of the extension principle of LZadeh the Zadeh t-
norm (cf. table 2.1) is used. By using other t-norms, othégmsion priciples can be
defined. An example is the extension principle of R.R. Yagét {vhere the Yager
t-norm (cf. table 2.1) is used.

With respect to fuzzy databases, extension principles eamskd to generalize
operators of regular data types. In such a way, the addif@nador+ of the data
type Integer, which is used for the modelling of integer values, can faraple be
generalized to an addition operatprwhich acts on two fuzzy sets and results in a
fuzzy set that are all defined over the universe of discodrskinteger numbers. A
major disadvantage is that in practice, the use of an exiarminciple is in most
cases very difficult to implement in software.

2.1.5 Shape functions and practical issues

A continuous membership function can be approached by akedshape func-
tion. This might be very useful for practical modelling purpofassoftware im-
plementations. Frequently used shape functions ares-fhaction, ther-function
and thefT-function. Other shape functions, that are important ircfica are the so-
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called trapezoidal and triangular membership functiore&hEof these shape func-
tions is further described below. In figure 2.4 some exampiéisem are illustrated.

0.5 05
o7 a By v o7 vy
(a) S-function
1 - b 1
v /i i
T—a ¢ y 5 U T v o u
(c) trapezoidal M-function (d) triangular M-function

Fig. 2.4 Some examples of shape functions.

2.1.5.1 TheSfunction

This function is characterized by two parameter valoeand y which are both
elements of the set of real numbési.e. (a,y) € R Furthermore, it holds that:

a<y

Domain values that are strict smaller tharare mapped onto the function value 0.
Domain values which are strict larger thgiare mapped onto the function value 1.
A special domain value
g2ty
2
has 05 as function value and is therefore called the ‘transitiom{. For all other
domain values —that are element of flae y]— the function value is obtained by a
quadratic interpolation (see examp# in figure 2.4). For eacha,y) e R?:a <y
a-+y

andp = — theS-function is formally defined by:
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iff xe]—o0,af
)2 iff x € [a, B]

1—ﬂ§rafiﬁxﬂﬁw
1 iff x € ]y, o0

2.1.5.2 Ther-function

The r-function is a clock function which is constructed by ‘coteraating’ anS-
function with its mirrored image. Hereby two parameter eal(3,y) € R? must

be provided. The parametgris called the bandwidth and determines the distance
between the two transition points. Therefore it is requited3 > 0. The parameter

y denotes the domain value of the top (maximum) of the clocktion (see example
(b) in figure 2.4). For each couplg8,y) € R? with beta> 0, the r-function is
formally defined by:

n(;B,y) :U — [0,1]

s 4 SKY=B.Y) WXG]—%W
1-S(xy,y+B) iff xe[y,of

2.1.5.3 Thell-function

This is a general shape function which is constructed uswdgutinctionsrg andrs
and four parameter valuéa, 3, y,8) € R*.

The functionsr andrs must both be continuous mappings from the unit interval
[0,1] onto itself, for which the following border conditions munild:

m(0)=0andm(1) =1
x <y=m(x) < m(y), with other wordsm is increasing
’(0) =1andrg(1) =0
X <y = 13(X) > 13(Y), with other wordsg is decreasing

For the parameter valuéa, B, y,5) € R* it must hold that:
a<B<y<d

For each pair of continuous mappingsandrsi which satisfy the border conditions
and for eaci{a,3,y,8) € R*: a < B < y < 6 the M-function is formally defined

by:
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ni;a,B,y,d):U —[0,1]

1 iff (x<a)A(a=p=inf(U))

0 iff (x<a)A(a<p)

Mg —g) 1 (@<x<B)r(a<p)
X—=<1 iff B<x<y

(5o W (y<x<8)A(y<?)

0 iff (Xx>03)A(y<9)

1 iff (x>0d)A(y=0=supU))

Due to its generality, thél-function can, with adequate parameter values and
adequate choices for the functioms and s, result in anSfunction or in arm-
function.

2.1.5.4 The trapezoidal functions

Trapezoidal functions are obtained by choosing the funstin and g for the con-
struction of al7-function as follows:

m : [0,1] — [0, 1] and s:[0,1] — [0,1]
X X X—1—x

Example €) in figure 2.4 illustrates a trapezoidal shape functionp&moidal
shape functions are fully characterized by the four domainesa, 3, y andd,
which are defined as depicted in the figure. For defining a a@igal function it is
sufficient to provide these four values.

Due to their simplicity, trapezoidal shape functions argyvfeequently used in
‘fuzzy’ databases and ‘fuzzy’ querying.

2.1.5.5 The triangular functions

A triangular shape function is a special case of a trapeksitpe function where
B = y. Example {) in figure 2.4 illustrates a triangular shape function. Aligh
triangular shape functions are characterized by only tthoeeain valuesr, 8 andd,
they are not frequently used in the context of ‘fuzzy’ datdsadue to their limited
modelling abilities.
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2.1.6 Interpretation of fuzzy sets

The membership gradesy (x) of the elements € U of a fuzzy seV/ can beinter-
pretedin three different ways [5]: as degrees of compatibilitydagrees of truth, or
as degrees of uncertainty.

2.1.6.1 Degree of compatibility

In his original, historical oldest, interpretation a memdbgp gradety; (X) is con-
sidered to be a degree that expresses to which extent themigns compatible
with the ‘prototype’-elements o¥ (i.e., is compatible with the elements that are
(or should be) full elements &f). Such a fuzzy set has intrinsically a conjunctive
interpretation: the fuzzy set represents a collection efents which together are
representative for the concept that is being modelled.

Example 2.1An example of a fuzzy set where the membership grades are inte
preted as degrees of compatibility, is the fuzzy set of ‘espes prices’ for paint-
ings. The membership function of this fuzzy set could forregke be modelled by
means of shape functioa)(of figure 2.4. From such a membership function we can
for example derive that the membership grade of 100.000tfarslalso the extent
to which 100.000 is compatible with an expensive price, &0d2. ©

2.1.6.2 Degree of truth

With the naming ‘degree of truth’ we prefer to use the terrtogy of L.A. Zadeh
[29]. D. Dubois & H. Prade call this kind of interpretatione'gree of preference’
[5]. With this interpretation, the membership grgggx) expresses to which extent
the elemenk of the fuzzy seV is true (or applies). Also in this case the fuzzy set
intrinsically has a conjunctive interpretation. With otheords, all elements of the
fuzzy set together represent the concept that is being neadel

Example 2.2An example of a fuzzy set where each membership grade reysese
degree of truth is the fuzzy set that models the languagdsesguy a person. This
fuzzy set can for example be specified by:

{(English1), (French0.6), (Spanish0.8), (German0.2) }

which represents a ‘perfect’ knowledge of English (highegh), a good knowledge
of Spanish, a moderate knowledge of French and a limited letye of the German
language. ©
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2.1.6.3 Degree of uncertainty

This interpretation has been presented by L.A. Zadeh wehiritroduction of the
possibility theoryf26]. Hereby, the membership gragg(x) represents the extent to
which it is possible that a single-valued paramgterof which it is known that the
parameter takes values in the universe of discdurseequals the valuge. Thus the
fuzzy setV hereby represents all allowed values that are consideriee pmssible
as value fomp. Because is single-valued —due to whighcan take only one single
value at the same time— and because the fuzzy set is a refatisemf the actual
value ofp, the interpretation of the fuzzy sétis disjunctive.

Example 2.3As example, we consider the pripeof a painting. Ifp is not exactly
known, but it is known that the painting is expensive, them thlue ofp can be
modelled by a membership function like the one represemtéidure 2.4 §). The
interpretation of the membership function is now differtiran in example 2.1: if a
painting is for sale, we know that it has some price. The jpbssalues of this price
are determined by the fuzzy set. As such, it is for examplertam, but possible to
an extent 0.42 that the price of the painting is 100.000.

Possibility theory will be described in the next section.

2.2 Possibility theory

Possibility theory [26, 4, 6] is closely related to fuzzy set theory. It is usedthfe
modelling of uncertainty and is thus an alternative for @tabty theory. Possibil-
ity theory departs from a more conservative approach, duehtoh uncertainty is
modelled with less risk for errors, but also with less infatian for the user. This
makes the theory especially suited for the modelling of wa@gty in situations
where the user has no full control (over the experiment),tidanostly the case
with uncertainty modelling in the context of database aggtions. Possibility the-
ory should not be seen as a competitopadbability theory . In contrary, in cases
of full control (over the experiment) the use of probabilitgory [15, 8] is better
because this provides the user with more information. Alfopossibility theory
is nowadays almost always used for the modelling of una#stain the context of
‘fuzzy’ databases, it is surely not excluded that in the fetbioth theories will be
applied next to each other. In fact, the theory of imprecissbabilities [17, 18],
which acts as a uniform framework for both probability andsibility theory, and
the use of generalized constraints [28, 29], are first rebesteps in this direction.
In the remainder of this section we describe the basic caacgpossibility theory
in more detail.
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2.2.1 Fuzzy measures

The concept ofuzzy measureis important for the modelling of the uncertainty
that can exist about the fact whether a given element of aewseévof discourse is
element or is not element of a set of the set of all subsetsaviihiverse. To model
such uncertainty a membership grade[Q, 1]), that is interpreted as a degree of
uncertainty, is associated with each subset. This degreeagfrtainty then denotes
to which extent it is certain that the element belongs to shaset.

Two specific types of fuzzy measures play an important rolghépossibility
theory: thepossibility measuresand thenecessity measures

Definition 2.16 (Possibility measure)With the understanding that U is a universe
of discourse, a possibility measure over the powefKgt) is defined by a function

Pos:J(U)—[0,1]

which satisfies the following axioms:

e Axiom plPog0)=0andPogU) = 1 (border conditions).
e Axiomp2¥ABe(U): ACB= PogA) < PogB)
(monotonicity).

and for which it holds for each set
{Ake K} COU)
with K an arbitrary index set, that
Po UAk) = supPogAy)
KeK keK
O

By definition each possibility measure has an associategksség measure. The
relationship between both of them is as follows:

With the understanding that is a universe of discourse and Pos is a possibility
measure that is defined over the powers@t ), the necessity measure Nec that is
associated with Pos is determined by

Nec:O(U) — [0,1]
A~ NedA) = 1—PogA)

A necessity measure can also be formally defined as follows:

Definition 2.17 (Necessity measureWith the understanding that U is a universe
of discourse, a necessity measure over the powér 8d} is defined by a function



2.2 Possibility theory 33
Nec:[0(U) — [0,1]

which satisfies the following axioms:

e Axiom n1Neq0) =0andNeqU) = 1 (border conditions).
e Axiomn2¥ABe[(U):ACB= NedA) < NedB)
(monotonicity).

and for which it holds for each set
{Adke K} COU)

with K an arbitrary index set, that

Nec( N Ak) = 112|f< NedAy)

keK
O

A possibility measure Pos which is defined over the powel s&t) denotes
the extent Pg®\) to which it is considered to bpossiblethat an element of the
universe belongs to the sAte [J(U). A necessity measure Nec which is defined
over the power sef/ (U) denotes the extent Ne&) to which it is considered to be
necessaryr certainthat an element of the universe belongs to thedset’ (U ).

From definitions 2.16 and 2.17 the following important pndjgs can be derived:

e YABec(U):PogAUB) =maxPogA),PogB))
e YABe(U):NedAnB)=min(NedqA),NedB))

Furthermore it can be proved that:

e YABe(U):PogANB) <min(PogA),PogB))
e YA BeJ(U):NeqdAUB) > maxNedA),NeqB))

Only in the special case th&tandB are independent, i.e. & andB are sets that
are determined by independent events, it holds that:

e YABe(U):PogANB)=min(PogA),PogB))
e YA Be(U):NedAUB) = maxNedA),NeqB))

BecauseA UA = U we obtain furthermore that
max PogA),PogA)) = Po§AUA) = PogU) =1
so that we can derive that
PogA) < 1= PogA) =1

with other words, ifA is not fully possible, then its complemehis fully possible,
or also eitheA or its complemenA is always fully possible. It also follows that
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PogA) + PogA) > 1.
Analoguously, based ohn A= 0, we can find that
min(Negq/A),NeqA)) = Neq ANA) = Neq0) =0
from which we can derive that
NedqA) > 0= NegA) =0.

It also follows that
Nedq(A) +NedA) < 1.

Based on the relationship between possibility measuresandssity measures it
can be proved that:
(NedA) > 0) = (PogA) =1)

and
(PogA) < 1) = (NegA) =0).

Indeed:

e Assume that Ne@) > 0, then Ne¢A) = 0, so that
PogA) = 1—NedA) = 1.
e Assume that Pd#\) < 1, then PogA) = 1, so that

NeqA) = 1—PogA) = 0.

2.2.2 Possibility distributions

Each possibility measure Pos that is defined over the powér &) of a universe
of discourséJ, is uniquely determined by a so-callpdssibility distribution

m:U —[0,1]
x— Pog{x})

If U is a universe with a finite number of elements, then it holds th
VAeOU):PogA) = maxri(x)
XeA
For a univers&) with an infinite number of elements this is generalized as

VAeO(U):PosA) = supm(x)

XEA
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The possibility distributiort thus completely determines the possibility measure
Pos and thus plays the same role as a probability distribitiprobability theory.
From the relationship between possibility measure Pos @cdssity measure
Nec it follows that a possibility distributiorr also completely determines a neces-
sity measure Nec as follows: For a univetseavith a finite number of elements, it
holds that
VAecOU):NedA) = Q’;Zi/rg(l— (X))

For a univers&) with an infinite number of elements this is generalized as

VAeO(U): NedqA) (1—m(x)).

= inf
XZA

2.2.3 Possibility distributions and fuzzy sets

A possibility distribution can be derived formfazzy setof which the membership
grades are interpreted as degrees of uncertainty.
Consider therefore the fuzzy set

V = {(x by () Ix € UA g (x) > 0}

which is defined over a universe of discoutsand of which the membership grades
are interpreted as degrees of uncertainty. Such a fuzzyasdie associated with a
(single-valued) variablX, by which the fuzzy set puts a flexible constraint on the
actual value ofX. A membership gradgy (X), x € U hereby expresses to which
extent it is possible that = x. The possibilityr (x) thatX = x is with other words
determined by the membership graggx), i.e.

VxeU : mx(X) = g (X).

The functionrk : U — [0, 1] that is defined by the previous consideration is clearly
a possibility distribution oved, of which the associated possibility measurexPos
is for each sef € [J(U) defined by:

Pos((A) = supri(x)
XEA
We say that the possibility distributian follows the membership functiomy [4].
If the fuzzy seW is normalized, then the associated necessity measureNao
for each seA € J(U) be derived from

Neck (A) = 1—Pox(A).

With this we are ready to clarify the more conservative mratfrpossibility the-
ory (compared to probability theory). We have also intreetlenough concepts to
compare both theories to each other.
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For a discrete probability distributioRr the normalization condition requires
that the sum of all occurring probabilities must be equalrte [8], i.e.

ZJ Pr(x) = 1.

For a continuous probability distribution this is genezed as

/U Pr(x)dx

For possibility distributions the normalization conditiis less stringent. Indeed the
only requirement is that at least one possibility must beaétpuone. For a discrete
possibility distributionrt this is expressed by

maxr(x) = 1.
xeu

For a continuous possibility distribution this is genezad as

supr(x) = 1.
xeU
Possibilities express preferences, which implies thatgisipossibility is in fact
not informative, unless it is placed next to and comparet wiher possibilities. A
possibility degree that equals 1 can correspond as well &vant that is completely
certain (if the opposite event is completely impossibke, has an associated possi-
bility 0), as to an event that is not necessarily certainh@ opposite event is also
completely possible). Probabilities however expressrimtion with respect to the
relative occurrence of an event (the probability of an eveistthe frequency with
which A occurs). Due to the fact that the probability of the oppositent can be
derived from the probability of the event, there is no needafsecond measure in
probability theory.
There exist several interrelationships between poss@sland probabilities. The
relationships proposed by L.A. Zadeh stem from the foll@nioteas:

1. What is not possible, is also not certain.
2. What s certain, is also possible.

With the notation ProfA) for the probability of an ever, the previous ideas can
be translated as:
VAeO(U):ProhA) <PogA)

and
VAecOU):NeqA) < ProbA).

These and other relationships between both theories aceiloles in more detail in
[16, 10, 9].



2.3 Fuzzy logic 37

2.3 Fuzzy logic

Fuzzy logic is an extension of Boolean logic where the ctadsruth values ‘true’
(T) and ‘false’ ) are extended to fuzzy truth values which are elements afiiite
interval [0, 1]. Hereby, the classical truth value ‘tru@ ) corresponds to 1, the truth
value ‘false’ ) to 0. The intermediate values]Q, 1[) denote a gradual truth: the
closer to 1, the more the truth value is true; the closer tb@ntore the truth value
is false. The semantics of a fuzzy truth value [0, 1] is are illustrated in figure 2.5.

Fig. 2.5 Fuzzy truth values.

The truth values ‘true’ and ‘false’ can be seen as lingutstims which are modelled
by the visualized membership functions that are defined tneeunit interval. The
membership gradg:rue(X) denotes to which extemtis compatible with ‘true’ and
analogously the membership gragdese(x) denotes to which extemtis compatible
with ‘false’.

Taking into account the above mentioned relationship wittzy theory, the logi-
cal operators of conjunctiom, disjunction {/), negation {), implication &) and
equivalence €) are defined conform to their algebraic counterparts in yuset
theory, i.e.

Conjunction: Vx,y € [0,1] : XAy =i(X,Y).

Disjunction: V x,y € [0,1] : Xy = u(x,y).

Negation Vx e [0,1] : =(x) =1 —x.

Implication: Vx,y € [0,1] : x=y=u(1—X,y).

Equivalence ¥V x,y € [0,1] : X< y=i(u(1—x,y),u(1—y,X)).

Which can, with the use of the Zadeh t-norm min and Zadeh treomax, be
concretised as:

Conjunction: V x,y € [0,1] : XAy = min(x,y).
Disjunction: V x,y € [0,1] : xVy = max(X,y).
Negationt Vx € [0,1] : =(x) = 1—x.

Implication: Vx,y € [0,1] : x=y=max1—x,y).
Equivalence

Vxye[0,1]:x<y=min(max1—xYy),max1l—y,x)).
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2.4 (Extended) Possibilistic truth values

In the context of ‘fuzzy’ databases uncertainty (abouthiyus mostly modelled
by means of possibility measures and necessity measurissagproach has some
disadvantages when considering logical operations. Als,swith respect to a pos-
sibility measure, it always holds for the union operatot tha

PogAUB) = maxPogA),PogB))
whereas for the intersection operator the equation
PogANB) = min(PogA), PogB))

only applies ifA andB are independent of each other. Analogously, with respect to
a necessity measure, it always holds for the intersectienabpr that

NedqANB) = min(NeqA),NeqB))
whereas for the union operator the equation
Neq AUB) = max(Ned A),NedB))

only applies ifA andB are independent of each other.

Another disadvantage is that possibility and necessitysores have some re-
strictions with respect to the modelling and handling ofgimig information, what
often occurs in databades

Among others because of the previous disadvantages thellsdHgossibilistic
truth values andextended possibilistic truth valueshave been developed. These
allow to model linguistic uncertainty about the truth valfea proposition more
adequately. Linguistic uncertainty is the uncertaintyt te@ontained in affirmative
propositions like for example ‘the painting is cheap’ artte'tvater temperature is
high’. The truth value of such a proposition gives inforroatabout for example
the temperature of the water without having complete kndgéeabout the actual
temperature of the water.

2.4.1 Extended truth values

By using classical two-valued Boolean propositional lagases of doubt about the
truth value of a proposition can not adequately be modellads is due to the fact

that in two-valued logic it is explicitly assumed that eachpmsition can be evalu-
ated and is eithezompletely trugor completely falseThis assumption is commonly
known as theorinciple of bivalence and states that

1 The handling of missing information in databases is desdrib chapter 4.
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Each proposition is either true, or false.

Following this philosophy, &uth value can be associated with each proposition,
denoting whether the proposition is trug)(or false £). With the understanding
thatP represents the universe of all propositions &rd {T,F} is a set with total
ordering relation

<= {(Fv F)v (F’T)v (T,T)}7

a truth value can be formally defined by:

Definition 2.18 (Truth value) The truth value tp) of a proposition pc P is for-
mally defined by means of the function t:

t:P—1:p—t(p)

t(p) equals T if p is true, i.e. if p corresponds to the reality.e€5i) equals F.
O

Example 2.4e t(‘2is an even numbey=T
e t(‘Eddy Merckx was a famous basketball playef F
<&

In database and information systems it occurs that data esntgf due to the
fact that they relate to exceptions which have not been détitexplicitly in the
database design. Examples are the flying speed of penguaseicord of record
type ‘bird’, the number of habitants of the Eiffel tower in @cord of record type
‘building’ and the salary of a retired person in a record aforel type ‘person’. In
such cases data are missing because they do not apply. Mgdbkse cases with a
regular domain value will not allow us the track the causéefrhissing and brings
along with it some kind of information loss which in some asan cause annoying
side effects in query results. For example, when queryiagltiabase for ‘birds that
cannot fly fast’ or ‘buildings with few habitants’ or ‘persemith low salaries’ we
do not want penguins, monuments like the Eiffel tower antta@tpersons to be
treated as regular query answers.

To avoid such information loss and side effects it is requii@ use a seman-
tic richer logical framework which explicitly allows to reftt inapplicability. The
principle of bivalence is then replaced by thenciple of trivalence which states
that

Each proposition either evaluates to true, false or inagglile, where the latter
indicates that the truth value of the proposition is not dedfin

To formally support the principle of trivalence, the conbetended truth value
has been introduced. Hereby, definition 2.18 is extendddavitextra truth value:
which models ‘undefined’. Considering the extended’set{T,F, L }, an extended
truth value can be formally defined by:

2 The handling of missing information is more extensivelyalésd in chapter 4.
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Definition 2.19 (Extended truth value) The extended truth valué&(tp) of a propo-
sition pe P is formally defined by means of the function t

t":P=1":p—t(p)
where

e t*(p) =T, if p corresponds with reality, i.e. if p is true;

e t*(p) =F, if p does not correspond with reality, i.e. if p is false;

e t*(p) = L, if proposition p is (partially) not applicable, undefinatht existent,
or not supported; in such cases it does not make sense toadetiether p cor-
responds with reality or not, i.e. p is then neither true, fadse, but undefined.

O

Logical operators can be used to build a new propositionithabmposed of
other propositions. The following logical operators arevied:

NegationNOT: P — P: p— NOT(p)
ConjunctionAND:Px P — P:(p,q) — pAND q
Disjunction:OR: Px P — P: (p,q) — pOR q

Implication:IF —THEN:PxP —P: (p,q)—IF p THENG(
EquivalencelFF :PxP— P: (p,q)— p IFF g

A proposition without logical operators is calledianple propositionExamples
are ‘2 is an even number’, ‘Lance Armstrong is a famous basltieplayer’, X is
larger than 1.000’, etc. A proposition that is obtained asralzination of other (sim-
ple) propositions and logical operators is callecbaposite propositiarExamples
are ‘2 is an even number AND 2 is prime’, ‘Lance Armstrong ismbus basket-
ball player AND Lance Armstrong is an Americankis larger than 1.000 ORis
smaller than 10'.

Theextended truth valuef a composite proposition can be computed by means
of the following computation rules:

e Rule for negation:
VpeP:t"(NOT p =—=(t"(p))

where—: 1* — 1" : x— —(X) is defined by the truth table

~(%)

o x
=T

e Rule for conjunction:
v p,geP:t"(pAND g =t"(p) At*(q)

whereA : 1* x I* — 1" : (x,y) — XAy is defined by the truth table
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x
<
X
>
<

(B e I
I I

-
T

e Rule for disjunction:

Vp,qeP:t"(pOR g =t"(p) Vt*(q)

wherev : 1* x I* — 1" : (x,y) — xVyis defined by the truth table

x
<
X
<
<

p—|——||—-n—|—|—|—|‘

e Rule for implication:
Vp,geP:t"(IF p THEN g =t*(p) =t*(q)

where=-: 1" x I* — 1*: (x,y) — X =y is defined by the truth table

X ylx=y

PrAA444+T4

Remark thatt*(IF p THEN g = —(t*(p)) Vt*(q)
=t*(NOT p OR q
e Rule for equivalence:

41
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Vp,geP:t"(p IFF q) =t*(p) & t*(q)

where<: 1* x I* — 1*: (x,y) — X< y is defined by the truth table

X Yy|X&y
TT] T
TF| F
T1| L
FT| F
FF| T
FLl L
1T L
1F| L
11| 1

Remark that:

t(pIFF a) = (t"(p) = t*(a)) A (t"(a) = t*(p))
=t*((IF pTHEN g) AND(IF g THEN p))

The operator- has precedence over the operatarand Vv and the operaton
has precedence over the operatoiThe evaluation of an expression is from left to
right, unless brackets are used to enforce precedence.

Due to the previous calculation rules the resulting logicainework is a strong
three-valued Kleene logic [14]. Kleene logics are truthctional, which means that
according to these logics the behaviour of each logical aperis reflected by a
logical function that combines Kleene truth values [1]. fiksto this property the
extended truth valuef each composite proposition can be computed as a function
of the extended truth values of its original propositions.

The natural partial ordering relation relatighover!* that corresponds with the
algebraic structurd*, A, V) satisfies:

<={(FF),(F,L),(F,T), (L, L), (L,T),(T,T)}

2.4.2 Extended possibilistic truth values

In reality, a lot of situations exist where we can not unambigsly determine
whether the truth value of a proposition is eitcempletelytrue,completelyfalse or
completelyundefined. Examples of such propositions are e.g., ‘thedhisusheap’,
‘the car is fast’ and ‘the suspect is tall'. The extendedhrelues that have been
introduced in the previous section 2.4.1 —only— allow it &present the actual
truth value of a proposition that is a priori considered teeliker completely true,
false or undefined. What is required, is a more epistemcddggpresentation of the
truth of a proposition which allows it to better reflect ouokviedge about the actual
truth value.
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In his approach to obtain such a representation, Prade §E3]aipossibility mea-
sure to generalize classical two-valued truth values. Bagposition then evaluates
to a so-called possibilistic truth value which is definedroie universe{T,F}.
This approach has been further developed in [1]. A basicvaswrof this is given
in the following subsection. Next, the concept extendedibdsstic truth value is
described.

2.4.2.1 Possibilistic truth values
Definition.

By generalizing the classical truth values tri® @nd false F), the principle of
bivalence is replaced by a more gengmanhciple of valence, which states that:

Each proposition has a (possibilistic) truth value.

For this generalization, the sél(1) of all fuzzy sets that are defined over the
universel = {T,F} is considered.

Definition 2.20 (Possibilistic truth value) The possibilistic truth valué(p) of a
proposition pc P is formally defined by means of the function

t:P—=00): p—=1(p)

which associates a fuzzy d¢p) with each pe P. The fuzzy sdi(p) represents
a possibility distribution, i.e. its membership grades arerpreted as degrees of
uncertainty:

VX el Tp)(X) = He(p)(X)

VpeP: g =I(p)
]

A possibilistic truth value is thus a fuzzy set, that generally has the following form

t(p) = {(T, k() (T)), (F, k() (F)) -

Interpretation.

By definition 2.20 the possibilistic truth valiép) of a propositionp € P must be
interpreted as follows:

Post(p) = {T}) = Hi(p)(T)
and
Post(p) = {F}) = Up)(F)
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where Pos represents a possibility measure.
Special cases of possibilistic truth values are:

Truth valuet(p)|Interpretation
{(T,1)} pis true
{(F,1)} pis false
{(T,1),(F,1)} |pis unknowr

By using Zadeh'’s standard equality definition for fuzzy getsdefinition 2.11),
the equality operator for possibilistic truth values cardbéned by:

Definition 2.21 (Equality) V p,p’ € P:

o f(p)=t(p) = Vxel: typ(x) =
o f(p) AT(p) & Ixel: Hyp)(X) # He(p) (%)

O

Example 2.5The possibilistic truth value
t(‘the house is cheap= {(T,1.0),(F,0.7)}

of the proposition ‘the house is cheap’ has to be interprated

Tt ‘the house is cheap= {(T,1.0),(F,0.7)}

Pogt(‘the house is cheap= {T}) = 1.0
Pogt(‘the house is cheap= {F}) = 0.7

which states that it is completely possible (to an extenhaj the house is cheap,
but on the other hand it is also less possible (to an extehtl@a? the house is not
cheapo

Calculus.

The computation rules for negation, conjunction, disjiorgtimplication and equiv-
alence are defined as generalizations of their counterpadsssical two-valued
logic. For the generalization, Zadeh's extension prireif. definition 2.15) can
be used:

e Rule for negation:
VpeP:t{(NOT p ==(t(p)

where=: [1(1) — [J(1) : V — =(V) is obtained by applying Zadeh'’s extension
principle to the operator:

M=) (T) = sup g (X) = g (F)
xe{X|xelA=(x)=T}
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and
K=y (F) = sup g (%) = pg (T)

xe{x|xelA=(x)=F }
e Rule for conjunction:

vV p,ge P:f(p AND g ={(p)At(q)

whereA : [7(1) < [J(1) = J(1) : (U,V) — U AV is obtained by applying Zadeh’s
extension principle to the operatar

Horg(T) = sup min(g (X), 4y (Y))
(xy)e{ (x| (xy)el XIA(XAY=T )}

= min(pg (T), 4y (T))

and

Hore(F) = sup min( g (X), kg (Y))
(xy)e{(xy)|(xy)el xIA(xAy=F)}

(min(uu( ), (F)),>
=max | min(ug (F), pg(T)),
min( g (F), 4y (F))
e Rule for disjunction:
v p,geP:t(pOR g =t(p)Vi(q)
whereV : [7(1) x [J(1) = J(1) : (U,V) — tildeU 7 V is obtained by applying

Zadeh's extension principle to the operator

Haow (T) = sup min(g (X), kg ()
(xy)e{(xy)|(xy) el xIA(xvy=T)}

min(ug (T), iy (F)),
=max| min(yg (F), 1y (T)),
min(ky (T), py (T))

and

Haoa (F) = sup min(tg (X), Ky (Y))
(xy)e{(xy)(xy)el xIA(xvy=F)}

= min(ug (F), kg (F))
e Rule for implication:

vV p,geP:{(IF p THEN g ={(p)={(q)

where =S : [7(1) x [I(I) — £J(1) : (U,V) — U =V is obtained by applying
Zadeh's extension principle to the operater
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Ho=y(T) = sup min( g (X), kg (Y))
(XYL (V)| ey el XIA(x=y)=T)}

min(i (T), kg (T)),
=max| min(ug (F), 1y (T)),
min(ug (F), iy (F))
and

Hg =y (F) = sup min( g (X), g (Y))
(X)L (V)| ey N XIA(x=y)=F )}

=min(pg (T), 1y (F))

Remark thatf(IF p THEN ¢ =f(NOT p OR q
e Rule for equivalence:

v p,geP:f(p IFF q) =f(p)&i(q)

where <5 : [7(1) x [7(1) — [J(1) : (U,V) — U & V is obtained by applying
Zadeh's extension principle to the operater

Hgzg(T) = sup min(tg (X), kg (Y))
(XY E{xY(XY)ElXIA((x=Y)=T)}
_ min(ug (T), 1y (T))
= max( oo L))
and
Hgay (F) = sup min( g (X), g (Y))

(xY)e{(xy|(xy) el xIA((xey)=F)}

_ min(ug (T), kg (F)),
= max( min(yg (F). g (T)) )

Remark thatt(p IFF q) =f((IF p THEN g AND(IF g THEN p)

Partial ordering.

The natural partial ordering relation over[J (1) that corresponds to the algebraic
structure(l7(1), A, V) is obtained by applying the following proposition [1]:

Proposition 1 The partial ordering relatior< over the sef] (1) satisfies:

VU,VeD”(I)xDN(l)iL]i\N/@{“O(T)E
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The proof of this proposition can be found in [1].

2.4.2.2 Extended possibilistic truth values
Definition.

In order to be able to efficiently deal with propositions ofigéhthe truth value is
(partially) undefined, the concept ‘extended truth values been generalized based
on possibility theory [2]. The resulting truth values arethextended possibilistic
truth values (EPTVs) and allow for a more flexible represimef the knowledge
about the actual truth of a proposition. For the generatinahe set7(1*) of all
fuzzy sets that are defined over the univdrse {T,F, L} is considered.

Definition 2.22 (Extended possibilistic truth value) The extended possibilistic
truth valuet*(p) of a proposition pe P is formally defined by means of the function
[

toP=0O01%): p—t(p)
which associates a fuzzy dé{p) with each pe P. The fuzzy sdi p) represents
a possibility distribution, i.e. its membership grades arerpreted as degrees of
uncertainty:

VXE ™ TR () (X) = M) (X)

VpeP: T =(p)
]

An extended possibilistic truth valueis thus a fuzzy set, that generally has the
following form

T (p) = {(T, kg () (T)), (F, e () (F)), (L Mgy (L)) }-

Interpretation.

By definition 2.22 the extended possibilistic truth valtig) of a propositiorp € P
must be interpreted as follows:

Post™(p) ={T}) = te(p)(T)

Post’(p) ={F}) = Hp(p)(

M
~—

and
Post™(p) = {L}) = t(p) (L)
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where Pos represents a possibility measure.
Special cases of extended possibilistic truth values are:

Truth valuet* (p) Interpretation

{(T,1)} pis true

{(F,1)} pis false

{(T,1),(F,1)} p is unknown

{(L,1)} p is undefined
{(T,1),(F,1),(L,1)}|pis unknown or undefined

By using Zadeh'’s standard equality definition for fuzzy getsdefinition 2.11),
the equality operator for extended possibilistic truthuesl can be defined by:
Definition 2.23 (Equality) V p,p' € P:

o T(p)=T(p) & VXl e p(X) = k() (%)
o T(p) AT(P) & IxE ™ Up () (X) # Ky () (X)
0

Example 2.6The extended possibilistic truth value
t*(‘the house is cheap= {(T,1.0), (F,0.7),(L,0.5)}

of the proposition ‘the house is cheap’ is interpreted as

Tt ¢the house is cheap= {(T,1.0),(F,0.7),(1,0.5)}

Pogt*(‘the house is cheap= {T}) = 1.0
Pogt*(‘the house is cheap= {F}) =0.7

and
Pogt*(‘the house is cheap={1})=0.5

which means that it is completely possible (to an extent &) tine house is cheap,
it is less possible (to an extent 0.7) that the house is n@had on the other hand
it is also possible to even lesser extent 0.5 that it does mbensense to consider
prices for the house (e.g. because the house is not for sale).

<&

Calculus.

The computation rules for negation, conjunction, disjiorgtimplication and equiv-
alence are defined as generalizations of their counterjoarextended truth values
(which are given in section 2.4.1). A possible approach iss® Zadeh'’s extension
principle (cf. definition 2.15) for this purpose:
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e Rule for negation:
VpeP:T"(NOT p =5(t"(p))
where=: [1(1*) — [J(1*) : V — =(V) is obtained by applying Zadeh'’s extension
principle to the—:

P (T) = sup Ky (%) = pg (F)
xe{x|xel* A—(x)=T}
=) (F) = sup  py(x) = py(T)

xe{x|xel* A=(x)=F}

M=y (L) = sup pg (X) = pg (L)

Xe{x|xel* A= (x)=L}
e Rule for conjunction:
Vp,geP:T"(pAND g =" (p)At*(q)

whereA : [1(1*) x [1(1*) — £1(1*) : (U,V) — U AV is obtained by applying
Zadeh's extension principle to the operator

Hary(T) = sup min(kg (X), kb (y))
(Y)E{(xy) [ (xy) el xI"A(AY=T)}

= min(ug (T), kg (T))

Hoav (F) = sup min(g (X), 4y (Y))
(xY) L ()| (6y)€l* x1* A(XAY=F )}

m
min(p (F

=max| min(uy(F
min( g (F
m

Hgrg (L) = sup min(g (X), kg (Y))
(xY)e{(xy[(xy) el xI*A(xAy=L1)}

min(i (T), kg (L)),
= max min(ulj (J-)7“\7(T))7
min(pig (L), kg (L))
e Rule for disjunction:
v p.geP:T"(pOR g =t"(p)Vi*(a)

where 7 : [1(1*) x [1(1*) — [1(1*) : (U,V) — U ¥V is obtained by applying
Zadeh's principle to the operator
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Mooy (T) = sup min(pg (X), k (y))
() E{(6y) [ (xy) el xI*A(vy=T)}

Mgy (F) = sup min( g (X), Ky (¥))
(xY)e{(xy)|(xy)el* xI*A(xvy=F)}

= min(ug (F), g (F))

Moo (L) = sup min(ug (X), kg ()
(xY)e{(xY)(xy)el* x1*A(xvy=1)}

min(ug (F), kg (L)),
=max| min(ug(L), kg (F)),
min(ug (L), kg (L))
e Rule for implication:
¥ p,geP:f(IF p THEN g =f*(p)=f*(q)

where=S : [7(1*) x I (1*) — (1*) : (U,V) — U =V is obtained by applying
Zadeh's extension principle to the operater

U=y (T) = sup min(g (X), Ky (¥))
(xY) Lyl (xy)el* xI* A(x=y)=T)}
min(ug (T), 4y (T)),
min(ug (F), kg (T)),
=max| min(ug(F), g (F)),
min(ug (F), g (L)),
min(pg (L), kg (T))
M= (F) = sup min(g (), K (Y))
(xY) L (XY (Yl xI*A(x=y)=F) }
= min(ug (T), ty (F))
Ho=g (L) = sup min(g (), K (Y))

el el XAy =L)}
= max| min(ug (L), kg (F)),
min(pg (L), kg (L))
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Remark thatt*(IF p THEN ¢ ={*(NOT p OR q
e Rule for equivalence:

Vp,qeP:(p IFF q) =t (p)&i'(a)

where<s : [7(1*) x [ (1*) — [0(1*) : (U,V) — U &V is obtained by applying
Zadeh'’s extension principle to the operater

Hg 2y (T) = sup min( g (X), ty (Y))
(YL Y)Y €l X I*A((xey)=T)}
_ min( g (T),W(T)),)
m”(mmwwxww»

Hg ey (F) = sup min( g (X), g (¥))
() e{(xy)l(xy)el* xI*A((xey)=F)}

_ min(ug (T), iy (F)),
‘m”(mm%wxwa>)

Moay (L) = sup min( g (X), kg (¥))

= max

Remark that:

(pIFF q) =*((IF p THEN g AND(IF g THEN p)

2.5 Further developments

With the mathematical frameworks presented in this chapterew trend in in-
formation processing is set. Fuzzy set theory and podgyilaite the onset for the
development of more advanced and more general framewoddgahnologies like
for example the framework for ‘computing with words’ [28,]3nd the theory of
perceptions [31, 32]. These new developments create ontthreinew opportuni-
ties for more advanced developments within the domain azyudatabases. In this
section we briefly describe what is meant by ‘computing witrae’ and by ‘fuzzy
information granulation’.

‘Computing with words’ [28, 30] refers to a recent trend ifoirmation process-
ing where one no longer uses numerical values in computatinrt words that ‘de-
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scribe’ numerical values in a way that is closer to natunagleage. Usually, these
words correspond to the result of one or more (human) paoreptThe inspiration
of this stems from the remarkable human capacity to exeartgtex physical or
mental tasks (like e.g. driving a car in a garage box, plagolj, or summarizing
a story) without a need for making numerical computations dy just relying on
(the processing of) perceptions (like e.g. speed, timegctin, or colour). Contrary
to numerical values (which are precisely described or ¢aled), perceptions are
often imprecisely or vaguely described by meanwofds.

The basic idea behind ‘computing with words’ is that (the aatits of) such
words can be mathematically modelled by means of fuzzy sairth Reasoning
can then for example be done by using deduction rules thairastich words —
fuzzy sets— and result in (new) words —fuzzy sets—, whichtaairtturn can be
used in deduction rules. ‘Computing with words’ can esfdbdiee used in situations
where:

e The values are not adequately known, to justify a numeraalasentation.
Precision is not required.

e The problem can not be solved, or the task can not be perfowitkdchumerical
values.

e The conceptis too complex for a numerical approach.

The ‘theory of fuzzy information granulation’ [29] formsdHormal basis for
‘computing with words’. Central in this theory are the gr&ation of information,
the organization of information and the causual nature fofrmation. Granulation
relates to the decomposition of a whole into different pamganization deals with
the integration of parts in a whole; while the causual natelaes to the association
of causes and consequences which are inherent to informatio

An important concept in the ‘theory of fuzzy information grdation’, which is
also important in the context of fuzzy databases, is the gotrgeneralized con-
straint that is defined as follows:

Definition 2.24 (Generalized constraint) With the understanding that X is a vari-
able that is defined over universe of discourse U (i.e. X cap@mmtain a value of
U), the syntax of a generalized constraint is given as

XisrR

Hereby, R is the constraining relationship and isr is a vat@acopula with a discrete
variable r whose value defines the way how X is constrained Bjn&@semantics of
a generalized constraint are completely determined by dheevof r.[]

The most important kinds of generalized constraints anitl tioeresponding value
forr are:

1. Theequality constraints, r = e. The semantics of an equality constraint

Xisea
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is defined byX = a.

2. Thepossibilistic constraints r = blanca In this caseX is interpreted as a dis-
junctive® variable —i.e. a variable which at the same time can contaiy one
value of the universe of discoure—. Furthermore,

XisR

with R being a fuzzy set with membership functigr : U — [0, 1], means that
a possibility distributionriz is derived fromR. This possibility distribution is
considered to be the possibility distributionfnd expresses that the possibility
thatX = x, x € U is determined by

TR(X) = HR(X).-
An example of a possibilistic constraint is
X is expensivavhich is equivalent withexpensivéX) = HexpensivéX)

whereexpensivas a linguistic term that represents the fuzzy set of expensi
prices.

3. Theveristic constraints, r = v. In such a constrain¥ is interpreted as a con-
junctive® variable —i.e. a variabele which at the same time can contaire than
one value of the universe of discoutde—. The semantics of

XisvR

with R being a fuzzy set with membership functipr : U — [0, 1], states that
the value ofX is the collection of elements &fwhere the membership grades of
Rare interpreted as degrees of truth. An example of a vedstistraint is

X isv{(English 1.0), (French 0.8), (German0.6) }

which means thaX contains the values ‘English’, ‘French’ and ‘German’ with
respective truth D, 0.8 and 06 (X can for example be a variable that is used to
represent the languages spoken by somebody).

4. Theprobabilistic constraints, r = p. HerebyX is seen as a variable whose value
is uncertain (in statistical sense). Furthermore, themégation of

XispR

is thatR is the probability distribution oK. An example of a probabilistic con-
straint is
X isp N(m, a?)

3 A disjunctive variable has also been named a possibilistitable by Zadeh. This is also the
origin of the name possibilistic constraint.

4 A conjunctive variable has also been named a veristic viariap Zadeh. This also clarifies the
origin of the name veristic constraint.
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which means that the value ¥fis modelled by a normal probability distribution
with mean valuen and variancer?. Analogously,

Xisp{0.2/a,0.4/b,0.4/b}

that the value oK is a, b or ¢ with respective probabilities., 0.4 and 04.

Other, for this book less important, kinds of generalizemst@ints are the so-called
probability value constraints, the arbitrary set constsaand the fuzzy graph con-
straints [29].
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Chapter 3
Fuzzy querying of regular databases

Databases are a very important component in many informatystems. Due to
their increasing number and volumes, effective and efft@eness to data becomes
more and more important. A lot of research has already beee tto enhance
database accessibility. This research focuses on diffaspects like, among others,
file organization, indexing, query languages and accebsigaes.

In this chapter such access techniques, which are basedoy $at theory and
possibility theory and moreover support flexible databaserygjng, are described
in more detail. These techniques will be calledzy database querying tech-
nigues In this chapter we explicitly assume that the underlyingdases are regu-
lar databases.

The core idea with fuzzy querying is that flexible preferenaee introduced in
the query formulations [5]. This can be done at two leviglsideelementary query
conditions andbetweemuery conditions. This core idea forms the basis of this ehap
ter. Flexible preferences inside query conditions allowffexible search criteria
which express to whategreeparticular attribute values are adequate for the result.
This is further described in section 3.2. Preferences batvggiery conditions are
used to associate different grades of importance to diffepeery conditions. This is
further handled in section 3.3. To support flexibility of fmeences, query languages
like SQL and OQL and their underlying algebraic and logicahieworks have been
extended. Therefore, among others, more general defigitibthe algebraic data
manipulation operators have been proposed [3, 28, 4, 29-pdheworks for fuzzy
querying are described in section 3.4.

There exist other flexible querying approaches than the dassribed in this
chapter. Examples are:

e Querying systems that are able to correct syntactical améisgc errors in the
query formulations.

e Querying systems that allow for an intelligent databaségadion.

e Querying systems that support ‘indirect’ answers like swames, conditional
answers and background information for (empty) queriek [20

These approaches are not dealt with in this book.

57
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3.1 Example database

Before we start with the description of flexible querying wegent an example
database that will be used in the remainder of the book tstititie techniques and
concepts. To keep generality, we assume that the databasistswf a finite number
of records. Each record consists of one or more fields that contain cditees. Each
field is defined by a name and an associated datd tgaeh field value must be an
element of the domafnof the associated data type. Each record is constructed in
accordance with the specifications ofriégord type. A record type is characterized
by a name and a set of field definitions. A database is typistdiyed in one or more
record files which are kept in the memory of the database syséhough this is
not a requirement, a file can contain records of differenvmedypes. In practice
the number of records in a database can vary from just soroed®to millions of
records.

Example 3.1

Figure 3.1 contains a representation of the record typesegatds of the exam-
ple database for artworks. The database consists of a tofigaf records of three
record types: ‘Painting’, ‘Artist’ and ‘Owner’. For the sabkf readability, the records
are ordered by record type and field names are repeated ie#uing. o

In the example database, the relationship between a pagiatid a painter is
modelled by means of the field ‘Artist’ of the record type ‘Rig’ and the field
‘Name’ of the record type ‘Artist’. A ‘painting’-record wiit field value ‘Monet’
for ‘Artist’ is hereby associated with the ‘artist’-recovdth the same field value
for ‘Name’. Whenever this is relevant, the example datalélde translated to a
relational or object oriented database scheme.

3.2 Fuzzy preferences inside query conditions

In reality it happens that a database user describes onhp@pmately what he or
she searches in the database. This could, among othersghlie the fact that the
user only has a limited knowledge about what is searchedrfbeaue to the fact
that the user explicitly wants to allow some tolerance indatabase querying —
not only the exact results, but also results that are clagglifar are tolerated in the
result—.

1n a software context, a data type defines the structure a@ciipns of a collection of data with
common characteristics.

2 The domain of a data type is considered to be the set of allahes that are allowed whenever
a value of that data type is expected.
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RECORDTYPE Painting (ID:CHAR(3); Name:CHAR(30); Artist: CHAR(30);
Period:INTEGER; Value:REAL; Owner:CHAR(30))

| ID | Name | Artist | Period | Value | Owner |
P01 | Fishermans house Monet 1882 16.000.000 | Boijmans
P02 | The ballet course Degas 1872 8.500.000 Louvre
P03 | Mona Lisa Da Vinci 1499 75.000.000 | Louvre
P04 | Afternoon in Ostend Ensor 1881 200.000 KMSK

RECORDTYPE Atrtist (Name:CHAR(30); First_name:CHAR(20);
Year_of_birth:INTEGER; Year_of_death:INTEGER)

Name | First_name | Year_of_birth | Year_of_death |
Da Vinci Leonardo 1452 1519
Degas Edgar 1834 1917
Ensor James 1860 1949
Monet Claude 1840 1926

RECORDTYPE Owner (Name:CHAR(30); Place:CHAR(20); Country:CHAR(20))

Name | Place | Country |
Boijmans Rotterdam The Netherlands

Louvre Paris France

KMSK Antwerp Belgium

Fig. 3.1 Records of the example database ‘Artworks’.

Example 3.2

e As anexample of the first situation we consider a museunovigihio remembers
only that the painting he is looking for dates from ‘around@8 To find the
painting the visitor can query the database for paintingsifiaround 1880’

e The second situation occurs for example when a teacheregubis examn
database for students with a ‘high score’.
<&

3.2.1 Modelling

3.2.1.1 Linguistic terms

Approximately indicating which values has to be searchedbyathe querying sys-
tem, is almost the same as indicating which values are matevaiich values are
less allowable as an answer. This can be modelled by fuzzy$ethich the mem-
bership grades are interpreteddegrees of compatibilitySuch a fuzzy set is thus
conjunctiveby its interpretation. As illustrated in the previous exd@spit is more
practical to work withlinguistic terms. In such a case, the linguistic term is used
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aslabel for the underlying fuzzy set. In accordance with the desionipof the in-
terpretations of membership grades (cf. previous chapteg)membership grade
g (x) of an elemenk in a fuzzy seV with labelL denotes to which extendis a
value that is typically represented by the linguistic tdrmif the linguistic termL
identifies the fuzzy seéf, then the membership functiqy will be denoted by, .

Example 3.3
e The label ‘around 1880’ can be modelled by the fuzzy set:

{(18750.2),(18760.4),(1877,0.6), (1878 0.8), (1879 1),
(18801),(1881 1), (18820.8), (1883 0.6), (18840.4), (18820.2)}

e The label ‘high score’ can be modelled by the fuzzy set:
{(16.0.35),(17,0.65),(18,1),(19,1),(20,1)}
<

In general, linguistic terms could be associated with fuzeis that are defined
on several domair®;, Dy, ..., Dy and thus have a membership function of the form
D1 x Dy x -+ x Dp — [0, 1]. Domains could be measurable (numerical) or not.

In practice fuzzy sets that are defined on only one domain aslynused. If
this domain is measurable, then the fuzzy set will mostly &fneéd by means of a
trapezoidal membership function. Discrete membershiptfans are used in case
of unmeasurable domains.

The meaning of a linguistic term and its corresponding fusetycould be depen-
dent on the context and on the subjectivity of the user. Ak segpensive’ will for
example have a different meaning in the context of ‘pairgtitigan in the context of
‘flowers’. Also, the linguistic term ‘young’ in the contexf ages of persons will be
completely differently experienced by a child than by areolderson.

3.2.1.2 Madification functions

The meaning of a linguistic term can be strengthened or wesakby the use of
adverbs. An example of an adverb that strengthens the tiguérm ‘expensive’
is ‘very’, whereas ‘more or less’ is an example of an adved theakens the term
‘expensive’. The impact of an adverb on a linguistic term barmodelled mathe-
matically by means of so-calledodification functions which are applied on the
corresponding membership function. One can make a digtmbetweerpre mod-
ification andpost modification

In pre modification the membership functiom_ is applied onto the modification
functionmpre. The membership function of the modified linguistic telrfiPd then
becomes

VX €U 1 i moa(X) = HL(Mpre(X))
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Pre modification changes the shape and position of the meimpdunction and is
therefore most suited in the modelling of vagueness andaoigion.

In post modification the modification functiommyest is applied onto the mem-
bership functioru,. The membership function of the modified linguistic telrfffd
then becomes

VX €U : Hmod(X) = Mpost UL (X))

Post modification only changes the shape of the membershdifun and is there-
fore most suited in the modelling of uncertainty.

Modification functions that are mostly used to strengtheguistic terms are the
square function.f) and the fourth power function4). The most popular weaken-
ing modification functions are the root functiogy)) and the fourth root function

(.1/4). Another interesting parametrized modification funcfishich is used in pre
modification and can be used for the modelling of as well gfileening, as weak-

ening adverbs is the so-called twofold, piecewise lineadiffzation functionfn"q"ﬁ
which is presented in figure 3.2. The functiﬁﬁ’ﬁ is completely characterized by

v

\
min m max U
Fig. 3.2 The twofold piecewise linear modification functidaﬁ’ﬁ.

the parametemn (the domain value that corresponds with membership grage O.
B (parameter for the angle of the first linear piece) an(barameter for the angle
of the second linear piece).

The application of post modification and pre modificationlligstrated in fig-
ure 3.3.

1

R

T (M)
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*,

post modification pre modification

Fig. 3.3 Post and pre modification applied pp.
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3.2.1.3 Similarities

An alternative approach, that is especially useful to de#h wnmeasurable do-
mains, is to work with similarities. To model the compatifyibetween two domain
values a grade of similarity is associated with any pair ghdm values. Again, one
can work with grades that are elements of the unit intgzd]. Formally, similarity
is then characterized by a so-calkthilarity relation which is defined as a binary
fuzzy relation
S:UxU —[0,1)
that satisfies the following axioms:
e Axiomsl.VxeU : §(x,x) =1 (reflexivity).
e Axioms2.V (x,y) € U?:S(x,y) = S(y,x) (Symmetry).
Optionally one can also consider a transitivity condition:
e Axiom s3.V (x,2) € U?: §(x,2) > supmin(S(x,y),S(y,2))
yeU

(sup-min transitivity).

Given a domain valug € U and a similarity relatior§, it is always possible to
construct a fuzzy set of compatible valueofhe membership grades of this fuzzy
set are interpreted as degrees of compatibility. The dowelire could be used to

label the fuzzy set. The fuzzy ¢, representing (the similar values of) the domain
valuex € U could be obtained as follows:

Ve ={(y,S(x,y))lyeU}

Departing from such a fuzzy set, we can search for apprepnedification func-

tions to model the impact of strengthening and weakening@dmdv In this way

strengthening and weakening adverbs could be handled inatbe of unmeasur-
able domains.

Example 3.4
The following similarity relatiors could be defined for the linguistic terms ‘green’,
‘light green’, ‘kaki green’ and ‘light brown’:

S greeflight greenkaki greefilight browrl
green 1 0.8 0.6 0.2
light greenl 0.8 1 0.8 0.4
kakigreeny 0.6 0.8 1 0.6
light brown 0.2 0.4 0.6 1

On the basis of this similarity relation we can build the dafing fuzzy sets:

green= {

light green= {

kaki green= {

light brown= {

greenl), (light green0.8), (kaki green0.6), (light brown 0.2)}
green0.8), (light greenl), (kaki green0.8), (light brown 0.4)}
green0.6), (light green0.8), (kaki greenl), (light brown 0.6)}
green0.2), (light green0.4), (kaki green0.6), (light brown 1)}

—~ o~ o~ o~
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<

3.2.2 Evaluation

Considering flexible search criteria in query formulatisimgs along with it that a
database object could only partially satisfy the critefibis cannot be adequately
handled by Boolean logic. Therefore there is a need for adveonk that is based
on a many-valued logic. In this book we describe two such é&aorks: a simple
approach that is based on fuzzy logic and fuzzy sets wherehmiesiip grades
are interpreted as degrees of truth and a more advancedaapptitat is based on
(extended) possibilistic truth values. In both framewotke evaluation of a search
condition can be seen as the comparison of a value thatisvedfrom the database
and the collection of allowed values that are specified irgthery formulation.

3.2.2.1 Approaches with satisfaction degrees

In these approaches, the evaluation of a query conditiaritsefor each database
object in an associated degree of truth. These degreestbfara interpreted as
satisfaction degreesand are calculated by means of evaluation and aggregation
functions. Usually only objects with an associated dedgnaédiffers from zero are
considered in the result set of the query.

Evaluation of simple conditions.

In fuzzy querying, a query can contain both regular and flexéuery conditions.
For the evaluation of a simple (or atomic) regular conditassical Boolean logic
can be used. If the condition evaluates to trlig, then the corresponding satis-
faction degree should equal to 1, denoting that the datad@sg under considera-
tion completely satisfies the condition. Otherwise, if tbadition evaluates to false
(F), then the corresponding satisfaction degree should bal ¢g@, denoting that
database entry under consideration does not satisfy thitmonat all.

The best known evaluation functions for simple (or atomi@zy query condi-
tions are the comparison operators and the compatibilieyatpr.

e Comparison operators , #, <, <, >, >).

— To model the equality operater, Zadeh’s standard equality operator (cf. def-
inition 2.11) or the gradual equality operator (cf. defmiti2.12) can be used.
Hereby, the regular attribute valuasstored in the database need to be con-
verted to their corresponding fuzzy séta, 1)}.

When using Zadeh'’s standard equality operator:
Equality corresponds with a satisfaction degree 1;
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Inequality corresponds with a satisfaction degree 0.
When using the gradual equality operator, the satisfaalegree corre-
sponds to the resulting degree of equality.

— The comparison operatots, >, < and > can for example be obtained by
applying Zadeh'’s extension principle (cf. definition 2.1Ayain, the regular
attribute values stored in the database must be converted to their correspond
ing fuzzy sets{(a,1)}. Given thatop € {<,>,<,>} andL being the fuzzy
set of acceptable values, the satisfaction degree is inafabe operatoop
obtained by

sup LX)
{x|xeUAra opx

e Compatibility operator ( IS). In most cases a user will be rather interested in the
extent to which an attribute valaghat is retrieved from a databasecompatible
with the allowed values that are specified in the query conditiothe simple
approach under consideration this degree of compatihdityonsidered to be
the membership grada (a) of ain the fuzzy seL of acceptable values that is
specified in the query condition. Thus,Afis a database attribute aads the
value of A in the recordr, then the evaluatioe(A IS L)(r) of AIS Lforr is
defined by

e(AIS (1) = i (a).

An even more flexible way to deal with comparison operatots isse ‘fuzzy’ com-
parison operators. ‘Fuzzy’ comparison operators can beeffeztiby means of a
membership functiom,p which is defined over the Cartesian product of two do-
mains and which denotes for each couple of domain values tohwéxtent the
operator is satisfied. In this way, we can for example defireaiprs like ‘approxi-
mately equal to’ and ‘much larger than’. For the evaluatiba uzzy’ comparison
operator the same method as with the evaluation of the cabilfigtoperator can
be used. Assume thatp represents the ‘fuzzy’ comparison operator, thad the
value of attributéA that is stored in the database recohd that_ is the fuzzy set
of allowed allowed values foA with membership functiom that is specified in
the query condition. With these assumptions, the satisfadiegree(A op L)(r) of
AopLforr is obtained as

e(AopL)(r) = HLoop(a)

where

Hioop(@) = SUp min(Liop(a, X), ki (X)).
xedomp

Evaluation of composite conditions.

Generally, a query condition consists of a logical expmss$hat is composed of
simple conditions, logical operators (conjunction, digtion and negation) and
brackets that are used to enforce precedencies on logieedtmps. The evaluation
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of a composite condition is completely analogously as inlBawo logic. Firstly,
the simple conditions are evaluated (each evaluationtsesula satisfaction de-
gree). After that, the expression is evaluated. Brackegsjstent, are appropriately
dealt with. Negation-{) has precedency over conjunction)@nd disjunction ),
whereas conjunctiom\) has precedency over disjunction)( The evaluation of an
expression is from left to right, unless brackets are usehforce precedency.

The conjunction, disjunction and negation operators ftisfection degrees are
defined as follows:

e Conjunction. tpnq = min(Up, Uq)-
e Disjunction. tpyq = max Up, HUg)
e Negation.up = 1— lp.

Remark that other definitions for conjunction and disjumciéan be used. In fact, it
is sufficient to replace the coup{ein,max) by another (t-norm, t-conorm)-couple

(i,u).

3.2.2.2 Approaches with (extended) possibilistic truth viaes

Instead of using satisfaction degrees, one can also wohl(extended) possibilistic
truth values ((E)PTV’s) to model query satisfaction. Inlsaccase the definition of
a record type is considered to be a predicate. The recordseafecord type are
then propositions which for regular database querying galeg databases all have
to evaluate to trueT(). When considering fuzzy querying the truth values of these
propositions could be gradual. To belong to the record kettruth value of the
proposition of a record must differ from falsg);

(Extended) possibilistic truth values can be used to modeddation of truth. An
(E)PTV then expresses to which extent ipsssible(or impossiblé that the propo-
sition under consideration is satisfied. In an approach (#PTV’s the evaluation
of a query condition always results in éextended) possibilistic truth value Here
also, query conditions are evaluated using appropriaie&tan functions.

Evaluation of simple conditions.

For the evaluation of simple (or atomic) regular condititimest are part of a fuzzy
guery formulation classical Boolean logic can again be uisaccondition evaluates
to true ('), then the corresponding (E)PTV{$T, 1)}, which denotes that it is cer-
tain that the database entry under consideration complsédisfies the condition.
On the other hand, if the condition evaluates to falsg then the corresponding
(E)PTVis{(F,1)}, denoting that for the considered database entry, the tonds
not satisfied at all.

For simple (or atomic) fuzzy query conditions the comparisperators and
compatibility operator are modelled as follows.

e Comparison operators &, #, <, <, >, >).
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— The modelling of the equality operatercan again be based on Zadeh'’s stan-
dard equality operator (cf. definition 2.11) or be based emgtadual equality
operator (cf. definition 2.12). Again, the regular attrdowaluesa stored in
the database must be converted to their fuzzy counteffeart)}.

When using Zadeh'’s standard equality operator:

Equality corresponds with an (E)PTNT,1)};

Inequality corresponds with an (E)PTVF,1)}.
When using the gradual equality operator, the resulting®{&) is com-
puted using the obtained degree of equality deg. This is deriellows:

deg 1—deg
{ max(deg 1 — deg ) (F, max(deg 1 — deg )

— The comparison operatots, >, < and> can in a framework with EPTV'’s
also be obtained by applying Zadeh'’s extension princigled@finition 2.15).
The regular attribute valuesstored in the database are first converted to their
corresponding fuzzy seft(a,1)}. With op € {<,>,<,>} andL being the
fuzzy set of acceptable values, the (E)PTV is in case of tleeadprop then
subsequently computed by

(r—F ) F—F )

Tmax(pr, pde) T max(ur, Ur )
where
pr= sup  w(x)
{X|xcUAa op»
and
Hr = sup p(X)

{XxeUANOT(aop X}

e Compatibility operator (1S). The degree of compatibility between a stored
valuea of attributeA in the record and a given fuzzy set of acceptable values,
specified in the query condition, thus the result of the eatgdme(A IS L)(r), is
obtained by

p(a) ). 1-p(a) )
"max(p(a),1- (@) max(u(a),l—-p(a)

‘Fuzzy’ comparison operators can also in this frameworkeduas a more flexible
alternative for the modelling of comparison operators.uiss thab prepresents the
‘fuzzy’ comparison operator that is modelled by the memiigrBinctionpi,p which
is defined over the Cartesian product of two domains and wihéciotes for each
couple of domain values the extent to which the operatortisfia. Furthermore,
assume thaa is the value that is stored for attribugein the database recordand
thatL is the fuzzy set of allowed values férwith membership functiop; which is
specified in the query condition. With these assumptiores(E)PTVe(A op L)(r)
of Aop Lforr is obtained —in a similar way as in the approaches with satisfn

e(AISD(r)={(T
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degrees— as follows:

HLoop(3) )
"max(t o op(@), 1 — troop(@)”’
( 1— i oop(@)
"max(HL o op(@), 1~ Hioop(d))

e(AopL(r) ={(T

where

Hioop(@) = sup min(Hop(a,X), UL (X)).
xedomy

Evaluation of composite conditions.

The evaluation of composite conditions is analogous as widzm logic. The eval-
uation starts with the evaluation of the simple conditioeach evaluation results
in an (E)PTV’s). Subsequently, the composite conditionvisleated. Brackets, if
existent, are appropriately dealt with.

For the conjunction, disjunction and negation of (E)PTV®& gan use the com-
putation rules that are given in section 2.4.2.2. Alterrsatiomputation rules can
be used [13]. Below, two alternatives for the conjunctiommpor for possibilis-
tic truth values are described. Both alternatives are baseal (t-norm,t-conorm)-
couple(i,u) and can be generally defined as follows (with {T,F}):

RO <O =0I(1): (G,V)—U AV
where:
o U (T)=1(ug(T), ky(T))
o Uy (F)=u(ug(F). kg (F))
This definition reflects that the membership grqz@e;\i\y(T) is mostly ‘influenced’
by the worst (the smallest) of the membership graggd ) andpy (T); furthermore

itis also reflected that the membership gragde  (F) is mostly ‘influenced’ by the
worst (the largest) of the membership graggs$F ) and g (F).

Proposition 2 All operatorsA; are truth functional, i.e¥ p,qge P:f(p A q) =
t(p) Ai t(g).

Proof:
This proposition is proved by a full case study of the moaglbf the classical
logical conjunction:

i. Ift(p)={(T,1)} andf(q) ={(T,1)}, then it must hold that

tpAa)={(T,1)}
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t(p) Aif(a)

{(T,i(1,1)), (F,u(0,0))}
{(T,1)} (Axiomsil and ul.)
tpAq)

ii. If (p) = {(T,1)} andf(q) = {(F,1)}, then it must hold that

tp A a)={(F.1)}

f(p) Ai (a)

{(T,i(1,0)), (F,u(0,1))}
{(F,1)} (Axioms i1, i3, ul and u3.)

fpAa)
iii. If t©(p) = {(F,1)} enf(q) = {(T,1)}, then it must hold that

tp A a)={(F.1)}

f(p) Ai f(a) = {(T.i(0,1)), (F,u(1,0))}

{
{(T,1)} (Axioms i1, i3, ul and u3.)
flpAa)

{(F,1)}, then it must hold that

tp A a)={(F.1)}

iv. Iff(p) = {(F,1)} andf(q)

f(p) Ai f(a) = {(T.i(0,0)). (F,u(1,1))}

{
{(F,1)} (Axioms i2, i1, u2 and ul.)
flpAa

To obtain concrete definitions of conjunctive aggregatiperators, we must
choose a (t-norm,t-conorm)-couple. Two examples are:

e Zadeh t-norm and t-conorfmin, max):
Azaden: CI(1) x CI(1) = CI(1) : (U 7\7) — U AzadenV
where:
HG R gaqe (T) = Min(ig (T), kg (T))
and
HG A e (F) = maxX(pig (F), kg (F))
e Probabilistisc t-norm and t-conorab,a+ b — ab):
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where:
G 7 ot (T) = Mg (T) -1y (T)
and
G 7 yopt (F) = G (F) + kg (F) — g (F) - g (F)

Because of proposition 2, both alternatives are truth fanet.
Analogously, we can define alternative computation rulegife disjunction. For
a (t-norm,t-conorm)-coupl@, u) andl = {T,F} one can find that:

Tu: 00 xO0) =001 :(G,V) =0 7yV
where:
o Hgg,u(T) =u(pg(T), kg (T))
* Uy (F)=1(ug (F), kg (F))

Concrete definitions of disjunctive aggregation operates then obtained by
choosing a (t-norm,t-conorm)-couple. Two examples:

e Zadeh t-norm and t-conorgmin, max):

Vzaden: (1) x O(1) = LI(1) : (07\7) U VzadenV

where:
MG 3qqe9 (T) = MaX(pt (T), iy (T))
and
MG, (F) = min(pg (F), py (F))
e Probabilistic t-norm and t-conorfab,a+ b — ab):

Tprob: LT(1) < O(1) = (1) : (G,V) = U VpropV

where:
MG o7 (T) = g (T) + g (T) = pig (T) - (T)
and
M350 (F) = Hg (F)- g (F)
These alternative definitions for conjunction and disjiorchave, among others, as

advantage that they are easier to implement and thus beitted $or fuzzy querying
applications. A more elaborated discussion can be fount4h [
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3.3 Preferences between query conditions

Traditionally all simple conditions in a composite condiitiare considered to be of
equal importance. Nevertheless, it can occur that someitbmmglare more impor-
tant (or more relevant) for the user than others so that tipaatof their evaluation
on the query result must be larger than others. This meariritfat the user puts
preferences between query conditions. Putting prefeeehetveen query condi-
tions is in most approaches realized by associatiaghtswith the conditions.

Example 3.5

A visitor of the museum wants an overview of all paintings efas that are painted
‘around 1870'. Hereby, it is for the user more important tihat painting is a Degas
than that the period matches.c

3.3.1 Modelling

Associating weights with query conditions can be modelleddupling a real num-
ber, taken from the unit intervé0, 1], to each condition. To obtain a semantic mean-
ingful interpretation of weights, these numbers must &attiee following conditions
[17]:

Assume thatv; € [0,1] is the weight that is associated with conditignwhere
w; = 0 denotes ‘totally not important’ ang; = 1 denotes ‘totally important’.

e In order to have a suited reference and scaling, it must hait t

maxw; = 1.
I

e If wi =1 andc; evaluates to ‘false’K), then the impact of the weight must be
equal to ‘false’ F). With other words, ifc; is fully satisfied and;; is totally
important, then the weight may not change anything to thefaation ofc;.

e If w; = 1 andc¢; evaluates to ‘true’T), then the impact of the weight must be
equal to ‘true’ ). With other words, ifc; is fully satisfied and; is totally im-
portant, then the weight may not change anything to thefaatisn ofc;.

e Finally, if w; = 0 then the impact of the weight must result in the neutral eleim
The neutral element of the conjunction)(is ‘true’ (T), the neutral element of
the disjunction ) is ‘false’ (F). With other words, ift; is totally not important,
then the impact of the weight must be such that it seemjikees not exist.
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3.3.2 Evaluation

To adequately model the impact of weights within the framithoat is used to sup-
port fuzzy querying, implication operators can be used.t®loekinds of approaches
described in section 3.2 are further developed in the redeaiof this subsection.

3.3.2.1 Approaches with satisfaction degrees

As described in section 3.2 in an approach with satisfactegrees, the evaluation
of a query condition results in a satisfaction degre@X( 1]). A possible way to deal
with weights is as follows:

1. Evaluate the simple conditions as if there are no weigftis results for each
simple condition in a satisfaction degree. The weight ofdingple condition is
then associated with this satisfaction degree.

2. Consider an implication operatérf (resp.:v>f) for conjunction (resp. disjunc-
tion).

3. Define an extended versiaw; (resp.v¥,) of the conjunction operator (resp.
disjunction operatoy). Hereby, the implication operat@Azlsf (resp.:v>f) is used.
The extended operators take as arguments the satisfaetipaats that must be
aggregated and their associated weights and result in aegaggd satisfaction
degree with an associated aggregated weight.

4. Define an extended versiet of the negation operater. This extended operator
takes as arguments a satisfaction degree and its assoeiaight and results
in the negation of the satisfaction degree and the same (dified) associated
weight.

5. Evaluate the composite query condition, hereby usingttended operators for
conjunction, disjunction and negation'(;, V%, and—"%).

For the definition of the implication operators for conju'nnt:A>f and disjunc-

tion :v>f a fuzzy implication=-¢, as introduced in subsection 2.1.4.3, can be used.
In general, we then obtain as:

e Implicator operator for conjunction

4¢:10,1] x[0,1] — [0,1]
(W,V) > (W= V)

e Implicator operator for disjunction

= ¢:10,1] x [0,1] — [0,1]
(W,V) = —(W =t =(V))

Implicator operators that are useful in practice are:
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¢ Kleene-DienegP =_p Q) = (max1—p,q))
e ReichenbachlP=rpQ) = (1—p+ p.q)
1 alsp<q

e Godet (P=¢coQ) =
g anders

The extended versions of the operators for conjunctidf)( disjunction ¢%,) and
negation () can be defined as follows:

e Extended operator for conjunction
A% :([0,1] x [0,1])2 = [0,1] x [0,1]
(W Ve, (Wa,V2)) = (U(W1, W), 1 (S 1 (W, V1), 51 (W2,v2)))
e Extended operator for disjunction
vy ([0,1] x [0,1])% — [0,1] x [0,1]
((Wa, V1), (W2, V2)) > (U(W1, W), U(=>f (Wi,V1), =1 (W2,V2)))
e Extended operator for negation

W 10,1] % [0,1] — [0,1] % [0,1]
(W) - (W 1)

With the choice for using a t-conorm in the computation ofweghts in the defi-

nitions of the extended operators for conjunction and disjion it is modelled that
the importance of a conjunction (resp. disjunction) canbeotess than the impor-
tance than its arguments.

3.3.2.2 Approaches with (extended) possibilistic truth viaes

In these approaches, the evaluation of a query conditionltsesr an (E)PTV
(cf. 3.2). Weights can be modelled, completely analogoaslyn the approaches
with satisfaction degrees, by:

1. Evaluate the simple conditions as if there are no weigftis results for each
simple condition in an (E)PTV. The weight of the simple cdiugli is then asso-
ciated with this (E)PTV.

2. Consider an implication operatéff (resp.:v>f) for conjunction (resp. disjunc-
tion).

3. Define an extended versiow; (resp.Vv",) of the conjunction operatorx (resp.
disjunction operatoy). Hereby, the implication operat@Azlsf (resp.:v>f) is used.
The extended operators take as arguments the (E)PTVs tlsatmaggregated
and their associated weights and result in an aggregat®d {E)ith an associ-
ated aggregated weight.
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4. Define an extended versioff’ of the negation operatof. This extended oper-
ator takes as arguments an (E)PTV and its associated weidghieaults in the
negation of the (E)PTV and the same (unmodified) associagéghiv

5. Evaluate the composite query condition, hereby usingttended operators for
conjunction, disjunction and negation;, V', and—").

For the definition of the implication operators for conju’nnt$f and disjunc-

tion = ¢ the fuzzy implication operates ¢, as introduced in subsection 2.1.4.3, can
be used. In general, with= {T,F } we then obtain:

e Implicator operator for conjunction

S¢:[0,2] x (1) — LI(1)
(W) =21 (wV)
where
M ) (T) = W=t big(T))
and

Hay oy (F) = (W= =(ky(F)))

e Implicator operator for disjunction

=¢:[0,2] x (1) — LT(1)
(W) =g (W)
where
By iy (T) = =W =1 =(g (T)))
and

Implication operators that are interesting in practicease here:

¢ Kleene-DienegP =_p Q) = (max1—p,q))
e ReichenbachlP=gpQ) = (1—p+ p.q)
1 alsp<q

e Godet (P=¢coQ) =
g anders

The extended versions of the conjunctiot), disjunction {*,)) and negation-(%)
operators can be defined as follows:
e Extended operator for conjunction

A% (10,2 x [T(1))? — [0,2] x (1)

(Wi, V1), (W, V) = (U(w,W2), 2 ¢ (Wi, V1) Ai ¢ (Wp, V)
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where A is a conjunction operator for possibilistic truth values ased on a
(t-norm,t-conorm)-couplé, u))—, as described in subsection 3.2.2.2.
e Extended operator for disjunction

VW ([0,2] x [7(1))2 — [0,1] x [T(1)
(Wi, V1), (W2, V) ) = (u(wi, o), =1 (Wi, Va) Ty = (W, Vo))

where V¥, is a disjunction operator for possibilistic truth values asbd on a
(t-norm,t-conorm)-couplé, u))—, as described in subsection 3.2.2.2.
e Extended operator for negation

where—'is the negation operator for possibilistic truth valuesdascribed in
subsection 2.4.2.1.

With the choice for using a t-conorm in the computation ofwesghts in the def-
initions of the extended operators for conjunction anduisfion it is also in these
frameworks modelled that the importance of a conjunctiesyr disjunction) can
not be less than the importance than its arguments.

Example 3.6
As an example, the definitions introduced above are workeétbotthe case where
Godel'’s implicator operator is used, i.e.

1 iffp<q
P= =
( Go Q) {q elsewhere
With this operator, the implication operator for conjunctbecomes:
B0 [0, x (1) — (1)
(WV) 5260 (W V)
where
W< L
. 1 (T = 1 iff w< gy (T)
=Go(WV) ug(T) elsewhere

0 iff L—w> g (F
o Wy o (F)= = HolF)
=Go(WV) ug(F) elsewhere

The implication operator for disjunction becomes:

v

=co: [0,1] x [T(1) = [I(1)
" .

V) =60 (W, V)

X
(
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where
0 iff1—w> g (T)
¢ oM =1
Mg (T) elsewhere
1 iff w< g (F
* Hy o(V"-,\N/)( ): ~ V( )
uy(F) elsewhere

Using the probabilistic t-norm and t-conorm
(ab,a+b—ab)

the extended versions of the conjunctioi frop), disjunction (/" yrop) and negation
(—%) operators are defined as follows:

e Extended operator for conjunction
A¥prob: (0,2] x [7(1))? — [0,2] x LT(1)
(W1, V1), (W2,V2)) > (Wi + Wo — Wy Wy,
(S60 (W1, V1)) Aprob (S0 (W2,V5)))
e Extended operator for disjunction
\/Wprob:([o 1]><D( )) [Ol]XD()
(e, V1), (W2, V) > (Wg + W2 — Wy Wa,
(=60 (W1, V1)) Vprob (2o (W2,V5)))

e Extended operator for negation

x [9(1) = [0, x (9(1)
W) = (w=(V))

With these definitions, weights are interpreted as threshalues. To illustrate
this, consider the following:

-":0,1]

e The choice for the Gédel implication function for the cortation of the mem-
bership grade of ‘true) in the implication operator for conjunction models for
example that:

— If the proposition of the criterion is true with a possityillegreguy; (T) that
is larger than or equal to the weight then it is assumed that the proposition
is completely true, i.e. the modified possibility degred dfecomes 1.

— In the other case it is assumed that the proposition is tithe aypossibility
degrequy (T), i.e. the modified possibility degree ®fremaingiy (T).

e The choice for the Gédel implication function for the corntation of the mem-
bership grade of ‘false’H) in the implication operator for conjunction reflects
that:
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— Ifthe proposition of the criterion is false with a possiyitlegreewy; (F) that
is smaller or equal to the complemdnt w of the weight, then it is assumed
that the proposition is completely false, i.e. the modifiedsbility degree of
F becomes 0.

— In the other case it is assumed that the proposition is fmigea possibility
degregy; (F), i.e. the modified possibility degree Bfremainsiy (F).

3.4 Frameworks for fuzzy querying

To apply the techniques that are introduced in this chapteractice, it is necessary
to introduce some minimal extensions for traditional datgbmodels. These exten-
sions can be easily implemented in a database system. Isebi®n, we briefly
handle and describe the (required) extensions for thearkdt(section 3.4.1) and
object oriented database models (section 3.4.2).

3.4.1 Relational databases

Relational databases are constructed in accordance ifbréscriptions of thee-
lational database model of which the fundamentals have been presented in 1970
[8, 9]. According to the relational database model, all datastructured iables

that have a predefined form. A table is a representation fétheaconceptiatabase
relation which on it turn is inspired by the abstract mathematicalcemtrelation

[26, 18].

Characterizing for relational database relations is they @are all composed of
atomic data values, which means that these values are ajpgay the database
model as one single atomic unit and thus are not conceptiuathyer subdivided in
components. Each relatidtis defined by means of a relation schema

R(Al . T1,A2 . T2,...,An . Tn)

that consists of a nanfeR and a finite set of attributeA; : T1,A2 : T, ..., An: Tn}.
Each attributed; : Ti, 1 <i < non its turn consists of an attribute namewhich
has to be unique within the relation schema, and an assddiatemic) data type
which specifies the allowed values fér (the values forA; are restricted to the
domain values of;). As such, each attribute corresponds with a column in atabl
The actual data in a relation are represented by means ofeadetiof rows which is
called the extent of the relation. The extent of arelaRof : T1,A2: To, ... ,An: Tp)

is a finite set that consists afrows (also called n-tuples)

ti = (AL Wi 1,A2 i Wi, ..., An i Wip), 1<i<m
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Each n-tuplé; consists o (attribute name, value)-paifs : w; j, 1 < j <nwhere it
must hold thaw; ; belongs to the domain of the atomic data typeThe valuesy; j,

1 < j < ntogether represent (characteristics of) a real worldenthe number of
relation attributes is fixed and fully determined by thetielaschema. The number
of rows, on the other hand, typically changes with the timgeteling on whether
entities are added or removed from the database.

The relational database model prescribes that a relaté@aiabase schema con-
sists of a finite number of relation schema’s. Each relatatrema can alternatively
be seen as a predicate. For a relation schRfa: T1,Az: Tz, ..., An: Tp) this pred-
icate states thaR models real world entities that are characterized by thibates
with namesA;, 1 < i < n of which the allowed values are determined by their cor-
responding data typ&. The rows in the extent of the relation are then propositions
that satisfy the predicate. As such, the n-tugle: wi 1,A2 1 Wi 2,...,An I Wip) iS in-
terpreted as being a proposition that states that ‘thestseaireal world entity that
is characterized by the valug ; for attributeA, the valuew, » for attributeA,, ...,
and the valuev; , for attributeA,’. This approach is also extended towards database
querying. According to the relational database model, #seilt of each query is
a relation, of which the rows are interpreted as being pribipas that satisfy the
predicate imposed by the query.

To model relationships between rows of two relations, thecepts ‘candidate
key’ and ‘foreign key’ have been introduced.candidate keyof a relation is an
irreducible subset of attributes of that relation, whosetatte values uniquely iden-
tify the rows of the relation. This implies that a candidagg ks fully characterized
by the following two properties:

1. Unicity: For each row of the relation, the combination of the valuethe at-
tributes that belong to the candidate key must be uniquamiitie relation.

2. Irreducibility: It should not be possible to remove an attribute from thelciate
key, without violating the unicity property. With other wis, no attribute of the
candidate key should be redundant.

For each relation in the database schema, at least one atmi@) must be defined.
One of the candidate keys will be denoted as beingtiraary key of the relation.
The relationships between rows of two relations are thenattediby adding a can-
didate key (in practice usually the primary key) of one lielato the other relation.
In this latter relation, the extra added attributes form &aledforeign key. Re-
mark that a foreign key itself is not a candidate key, but drdg to contain values
that exist as candidate key values in the related relatiba.ldtter constraintis gen-
erally known as the referential integrity constraint obteinal databases.

In figure 3.4 it is illustrated how the database ‘Artworks’ eample 3.1 can
be modelled in accordance with the prescriptions of theioelal database model.
The presented database schema consists of three relad®aimsing’, ‘Artist’ and
‘Owner’. Because of the assumption that different artists bave the same first
name and name, the candidate key of relation ‘Artist’ is elna® be

{NameFirst_nameYearof_birth}.
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TABLE Painting candidate key: {PID} foreign keys: {Artist} and {Owner}
PID: Name: Artist: Period: Value: Owner:
STRING | STRING STRING YEAR INTEGER STRING
PO1 Fishermans house A04 1882 16.000.000 | Boijmans
P02 The ballet course A02 1872 8.500.000 Louvre
P03 Mona Lisa A01 1499 75.000.000 | Louvre
P04 Afternoon in Ostend A03 1881 200.000 KMSK
TABLE Artist candidate keys: {AID} and {Name, First_name, Year_of_brith}
AID: Name: First_name: Year_of _birth: | Year_of_death:

STRING | STRING STRING YEAR YEAR

A0l Da Vinci Leonardo 1452 1519

A02 Degas Edgar 1834 1917

AO03 Ensor James 1860 1949

A04 Monet Claude 1840 1926

TABLE Owner candidate key: {Name}

Name: Place: Country:

STRING STRING STRING

Boijmans Rotterdam The Netherlands

Louvre Paris France

KMSK Antwerp Belgium

Fig. 3.4 An example of a relational database schema.

With this choice it is implicitly assumed that there neveulcbe two artists stored
in the database who both have the same name, first name anofyedh. An ex-
tra so-called surrogate kejAID} is added to uniquely identify artists in a more
convenient way on the basis of only one attribute. The onhditate key for re-
lation ‘Painting’ is{PID}, whereas the only candidate key for relation ‘Owner’ is
{Name. The relationship between a painting and its painter is reddy the
foreign key{Artist} in the relation ‘Painting’ that refers to the relation ‘sti
the relationship between a painting and its owner is modddle the foreign key
{Owner} in the relation ‘Painting’ that refers to the relation ‘Owhe

The definition and manipulation of a relational databaseoisedby means of
the SQL standard language (Structured Query Languagehwhibased on the
operators of the so-called relational algetitat all act upon relations. With that, the
relational model is the first database model that has thesi#@pf a mathematically
founded query language.

3 SQL has also been formalized by means of the so-called aekitcalculus which is a logical
approach.
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To come to a framework for flexible querying, the relatioratiabase model must
be extended. In the remainder of this section we presentossilple approaches for
such an extension. In the first approach satisfaction degmeaused to model query
satisfaction, whereas in the second approach (extendssifilcstic truth values are
used.

3.4.1.1 Frameworks based on satisfaction degrees
Structural aspects.

In this approach, it is at least necessary to extend thetimgguélations of queries
with one extra attribute that is suited to model the satisfaction degree of each re-
sulting tuple. This satisfaction degree then denotes tehvbktent the proposition
that corresponds with the tuple satisfies the predicate segbdy the query. Only
tuplest of relationr with satisfaction degreg,(t) > 0 are included in the rela-
tion r. Optionally, the opportunity can be offered to the user wvjte a threshold
value 0< 1 <1 in the query specification. If this is the case, then onlyttipes

t for which i (t) > 1 holds, are included in the query result. Omitting such an ex-
tra attribute would result in an information loss as usefifibimation about query
satisfaction would then be discarded.

Another extension is necessary, at least from a theorgimat of view, if we
want to keep theloseness properyf the relational algebra, which states that each
operator of the algebra should act upon one or more relatindsshould result in
a new relation such that the result of an operation can be assadgument for an-
other operator and which allows it to build expressions. largntee this closeness
property, it is recommended to extend each relaRomith such an extra attribute.
The relation schema of the extended counterigadf a relation

R(Al . T1,A2 . T2, - 7An . Tn)
is then for example modelled by
R(A1:T1,A2: Ty, ..., An: Ty, degree real)

wheredegreedenotes the satisfaction degree of the tuples, which iesepted by

a real number (of the unit intervé, 1]). The constraint that the real number must
belong to the unit interval can for example be modelled byiragidn extra integrity
constraint to the definition of the relation. For regulaati®nsr it must necessarily
hold for all tupleg thatp (t) = 1.

Operational aspects.

To be supportive for a flexible querying language, the opesatf the relational
algebra must be adapted in such a way that (the computatjahefatisfaction
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degree is taking into account. The relational algebra, igénally presented by E.F.
Codd [10], consists of eight operators

union

intersection
difference
Cartesian product
selection
projection

join

division

of which the union, difference, Cartesian product, sebectnd projection form a
minimal subset, i.e. the other operators intersection,goid division can be derived
from the operators of this minimal subset.

With the understanding thatandr’ denote relations andandt’ respectively
denote tuples, the operators of the minimal subset can lea@ad by applying the
following computation rules for satisfaction degrees:

e Union.
Hunion(r,r") (t) = max(ur (t), Ky (t))
¢ Difference.
Hditferencer,r’) (t) =min(Hr (t),1— pp(t)).
e Cartesian product

Hcart-prodr,r) (tt') = min( (t), per (1))

e Selection.
Hselectr,c) (t) = min(ul’ (t)v “C(t))

wherec is the (fuzzy) selection condition ang(r) is the satisfaction degree
which results from the evaluation ofwith r.
e Projection.

Hprojectrv) (V) = maxgr (vw)

whereV is a subset of the s&t of all attributes ofr, vis a subtuple consisting of
the values for the attributes ¥fandw is a subtuple consisting of the values for
the attributes oK \ V.

Furthermore, for the intersection it holds that

Hintersectiorr,r) (t) = min(”r (t)v My (t))

Remark that other extensions are possible and are obtayneahsidering another
(t-norm, t-conorm) couple thafmin, max).

Moreover, we can also introducesaipport operator for extended relations
which transforms an extended relation into a regular mtathat consists of all
tuples that belong to the extended relation, i.e.
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1 iff e (t) >0
0 else.

Hsupportr) (t) = {

Implementations.

Extensions similar to the ones presented in previous papagrhave been imple-
mented and used in several fuzzy querying applications. Wgrbe implementa-
tions of fuzzy querying engines, we mention the FQUERY pgekihat has been
built on top of the Microsoft Access database system [23] @s®b a calculus for
quantified linguistic propositions that is based on fuzayidpthe implementation
of the SQLf extension of SQL [4], the PRETI-platform whichr&gher an experi-
mental environment for the exchange of expertise [11, 18}tha FuzzyQueries 2+
software for fuzzy querying of Oracle databases.

3.4.1.2 Frameworks based on with (extended) possibilisttcuth values
Structural aspects.

In a approach that is based on a logic with (extended) pdissibiruth values it is
at least necessary to extend the resulting relations ofegeithtwo —in the case
of possibilistic truth values— athree extra attributes —in the case of extended
possibilistic truth values—. These extra attributes aemthsed to model the mem-
bership gradegy, (T), ur, (F) andpr, (L) of the (E)PTVr{ that expresses to which
extent it is (un)certain that the predicate of relatios satisfied with tuplé. Only
tuples for which it holds that differs from{(F, 1)} are included in relation.

Additionally and for practical reasons, an ordering fuoetird for (E)PTVs can
be provided. This allows the user to better interpret resadt these can now be
ordered on the basis of their associated certainty of quadisfaction.

e A possible ordering function for PTVs is:

ord:[J(I) = R
(T par) (Fopi) oo BT HE)

whereR denotes the set of real numbers.
e A possible ordering function for EPTVs is:

ord: [7(1*) — [0,1]
1+ (pr —pr)(1— %)
{(TvuT)a(Fqu)a(J-vuL)} = 2
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Other ordering functions exist [15]. Also here, the userloanffered the possibility
to specify a threshold value€ 1 < 1 in the formulation of a query. In this is the
case, then only tuplegor whichord(f;) > 7 holds will be included in the result. As
an alternative, one can also work with three threshold waiwet= andt; which
all act upon the membership grades froonTo be included in the query result, a
tuplet must satisfy

—

Ft( )Z T
t(F)STF
R(L) <1,

TEE

To keep thecloseness propertyf the relational algebra it is also recommended to
extend each relatioR with two (or three) extra attributes. The relation schema of
the extended counterpd®t of a relation

R(Al : T]_,Az : T2, A ,An : Tn)
is then for example in the case of three extra attributes frextliey
R(Ap:Ti,A2: T, .., A Ty, it s real, pg s real, u, :real)

whereur, Ur andy, respectively denote the membership grades of the trutlesalu
T, F and_L within the EPTVs of the tuples ¢¥*. Together the valugsr, ur andy |
then express to which extentitis (un)certain that the itsasponding tuple satisfies
the predicate imposed by the relation schema. Each of thesat, ur andu, is
represented by a real number (of the unit intef@al]). Like in the approach with
satisfaction degrees, the constraint that the real numhest trelong to the unit
interval can for example be modelled by adding an extra fitiegonstraint to the
definition of the relation. For regular relationg must necessarily hold for all tuples
tthatpy (t) = {(T,1)}.

Operational aspects.

To obtain a framework for fuzzy querying the operators of tblational algebra
must be adequately adapted in such a way that (the compute)ithe associated
(E)PTV of each tuple is taking into account.

With the understanding thatandr’ are relations antlandt’ respectively denote
tuples and with the understanding that the notaé(mp)(t) is used to denote the
evaluation of the operatarp for tuplet, the operators union, difference, Cartesian
product, selection and projection of the minimal subsehefrelational algebra can
be extended by applying the following computation rule(E)PTVs:

e Union.
e(union(r,r’))(t) = V r'y.

—

e Difference. .
e(differencer,r’))(t) = fy A 5(r'y).



3.4 Frameworks for fuzzy querying 83
e Cartesian product
e(Cart-prodr,r’))(tt') = it Ar'y.
e Selection.
e(selectr,c))(t) =t A &

wherec is the (fuzzy) selection condition amgis the (E)PTV that results from
the evaluation o€ with t.
e Projection.
e(projectr,V))(v) = ¥ fw

whereV is a subset of the st of all attributes ofr, vis a subtuple consisting of
the values for the attributes wfandw is a subtuple consisting of the values for
the attributes oK \ V.

Furthermore, for the intersection it holds that
e(intersectiofr,r'))(t) = fy A r';.

Remark that other extensions are possible and are obtaynedrsidering oper-
ators for conjunction ), disjunction {/) and negation-() of (E)PTVs (cf. sec-
tion 3.2.2.2).

Table 3.1 Intermediate querying result.

PID AID Value EPTY Yearof_death EPTY
P01 A04 3.2M{(T,0.67),(F,1)} 1926 {(T,0.89),(F,1)}

P02 AD2 5M  {(T,1)} 1917 {(T,1),(F,0.30)}
P03 AO1 75M  {(T.1)} 1519 {(F,1)}
P04 AD3 1.3M  {(F,1)} 1949 {(F.1)}

Example 3.7
For the relational database presented in figure 3.4 theafvilpfuzzy query could
be considered:

Give the name of the painting and the name of the artist ofealf expensive paint-
ings of artists who die at the beginning of the twentieth agntwhere the condition
on the year of death of the artist must have significant laigeact on the query
result than the condition on the value of the painting.

This query can be translated to the following algebraic egpion:
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pro ject(selectCart — prod(Painting Artist),
(PaintingArtist = Artist.AID, weight= 1) AND
(PaintingValue 1S very expensiveweight= 0.6) AND
(Artist.Yearof_death IS beginningo f_twentiethcentury, weight= 1)),
{PaintingNameArtist. Name)

where ‘veryexpensive’ and ‘beginningf_twentiethcentury’ are linguistic terms
that are modelled by the fuzzy sets with membership funstion

0 iff x < 2M
Hvery.expensivéX) = %2 iff 2M < x < 5M
1 iff x> 5M
and
1 iff 1900< x < 1910
Hbeginningof_twentiethcentury(X) = 2940_)( iff x < 19000rx > 1940

30 iff 1910< x <1940
The Cartesian product results in a relation with 16 tuplésylich 4 satisfy the
join conditionPainting Artist = Artist.AID. We can continue working with these 4
tuples because of the facts that the associated weight gditheondition is 1 and
that there are only conjunction operators in the composedyqgeondition. When
the logical framework based on EPTVs is used, the evaluatiohe simple fuzzy
conditions
PaintingValue IS very.ex pensive

and
Artist.Yearof_death IS beginningo f_twentiethcentury

results respectively in the EPTEPTV, enEPT\ that are presented in table 3.1.
Using the extended conjunction operatdfyo, from example 3.6 we obtain with
the given weightsv; = 0.6 andw, = 1 the intermediate aggregated querying result
that is presented in table 3.2. For each of the intermedéat@ting tuples, the asso-
ciated aggregated weightus= 1. The final querying result, which is obtained after

Table 3.2 Intermediate aggregated querying result.

SID AID EPTVAY i obEPTV
POL AOA{(T, 1), (F, 1)} A% prop {(T,0.89), (F, 1)} = {(T,0.89), (F, 1)}
P02 A02{(T,1)} AW pron {(T, 1), (F,0.30)} = {(T,1), (F,0.30)}

P03 AOL{(T,1)} AWpron {(F,1)} = {(F,1)}
P04 A03{(F,1)} A%prob {(F, 1)} = {(F, 1)}
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projection, is given in table 3.3.

Table 3.3 Final querying result.
PaintingName ArtistName ur g p.

‘Fishermans house’ ‘Monet” 0.89 1
‘The ballet course’ ‘Degas’ 1 0.30

o

(=)

Implementations.

The extension presented above has been implemented in a DigMSendent pro-
totype of a fuzzy querying engine for relational databagés [

3.4.2 Object oriented approaches

Along with the success of the object oriented paradigm afebbbriented program-
ming languages like C++, Smalltalk and Java came the neeatii@nced database
facilities to manageomplex objectswith support for typical object oriented facili-
ties like, among othersbject identityencapsulation of structure and/or behavipur
inheritanceandtype hierarchiespolymorphismandoperator overloadingTo cater
for this extra need, several new database models have beelopled. These models
can grosso modo be subdivided in two categories:

1. Database models that fully support the object orienteadigm and are therefore
calledobject oriented database modelsAn (unsuccessful) attempt to standard-
ize these approaches resulted in the so-called ODMG moHel [6

2. Database models that support, and are in fact extensifprtheo relational
database model and are therefore caldbject relational database models
These approaches have less object oriented facilitiesttr@nobject oriented
counterparts, but are standardized in the SQL99 and moentr&QL3 stan-
dards.

Theobject oriented database modelare proposed in the beginning of the 90’s

and are all built around pure object oriented concepts. Bgifging data structures

in (almost) the same way in both the programming languag&endatabase model,
data can almost seamlessly be communicated between (@japticprograms and
databases. Common to all object oriented database modkés ihey all support a
notion ofobjectswhich all have a unique identity and are defined by means of one
or more data types or object prototypes [24] wherein thectire and associated
behaviour of the object are defined. The structure of an oigegpically defined

by means of attributes and (binary) relationships whicbvalto relate the object
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with other objects; the behaviour of an object is determimethe operators that act
upon the object.

Due to the large diversity and differences of concept défimétin object oriented
data models and programming languages, there exists a/atigéy of possible def-
initions and interpretations for the concept object. Thais been resulted in a lack of
uniformity within the object oriented programming paradignd a large diversity of
object oriented database models. This problem has alresetyilentified and men-
tioned in 1989 [25, 1] and is until now one of the most impottapstructions for
the standardization and commercial break througthefbject oriented database
model. Although not commonly accepted, is it worth to memtive ODMG object
model (Object Database Management Group) [6] as a propassliEh a standard.

Figure 3.5 illustrates the modelling of the database foxaunits of example 3.1
in accordance with the prescriptions of the ODMG object nhadbjects are spec-

Owner
owns4

:; belongs_to
Artwork

T is;painted_by

Painting (<< painted Artist

Fig. 3.5 An example of a graphical representation of an ODMG databelsema.

ified by means of so-calleclasseswvhich help to define the object definitions and
are represented in the figure by rectangles. In the figurseseare provided for the
specification of painting objects (‘Painting’), objectpresenting owners (‘Owner’)
and objects representing artists (‘Artist’). For the sakdlastration we have also
provided a more general class ‘Artwork’ which helps to deiiee, by means of
a mechanism called ‘inheritance’, the specification of anfiag object (this is de-
picted in the figure by the fat arrow that is drawn from the narecific class ‘Paint-
ing’ to the more general class ‘Artwork’). Association tigd&s between objects are
specified by means of binary relationships that are definéddsn the classes of
these objects and are depicted in the figure by thin labeledsided arrows. To
specify the semantics of the binary relationship, a caltityneonstraint is associ-
ated with each of the participating classes (a cardinaliiy depicted by a single
arrow, whereas a cardinalitganyis depicted by a double arrow). Further, each thin
arrow is labelled with the names of the relation as specifieglich of the partici-
pating classes. For example, the thin double-sided arrowdssn ‘Owner’ and ‘Art-
work’ represents that each artwork object belongs to (‘hgédo’) one owner and
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that each owner owns (‘owns’) one or more artwork objectsalégously, the thin
double-sided arrow between ‘Painting’ and ‘Artist’ repeats that each painting is
painted by (‘ispaintedby’) one artist and that each artist has painted (pasted’)
one or more paintings.

Alternative, less rudimentary graphical modelling corti@ms can be used. In
this context UML [19, 2] is worth mentioning. UML allows it tepresent both the
structural and the behavioural characteristics of claséesever, according to some
database experts UML is too stringent and too closely cdeddo programming
languages and is therefore considered as being less saiteldtabase modelling
purposes which should be database model independent. Aajodative, which
is database model independent, but does not support thelmgaé behaviour, is
the Enhanced Entity Relationship modelling technique 77,22].

The object relational database modelsare all extensions of the relational
database model. With tHeQL3 standard the SQL standard has been evolved to-
wards a standard for object relational database models3$@ivides, among oth-
ers, in facilities

e to construct structured user defined data types that candakfasthe construc-
tion of complex relations of which the attributes no longeed to be atomic;

e to associate operators with relations;

e to reuse specification of existing relations for the corcdtam of a new relation
(inheritance);

e to support tuple-identity which allows to directly navigdtom one tuple to its
associated tuples without the need of resource consumimgperations, and

e to support unstructured data types for the management dimadia and textual
information.

The difference with the object oriented database modelsaisthe standardized
object relational model is based on the relational databas#el instead of on a
‘pure’ notion of classes and objects. Thanks to their uryitegl standardization,
their underlying commonly used relational structure, telative simplicity and
their mathematically supported behaviour, object retatialatabase systems can
continue profiting from the commercial success of the refeti database systems.
Even stronger, they completely push out the object oriedé¢dbase systems from
the market. The most important commercial relational detalsystems are nowa-
days almost all evolved to an object relational system.

3.4.2.1 Structural aspects

The structural extensions that are required for flexiblergjng of object oriented
and object relational databases are analogous to theséatibnal databases: de-
pending on the chosen framework each database object massbeiated with a
satisfaction degree or an (E)PTV. From a theoretical pdimtaw, this can be done
without the use of extra attributes: the satisfaction degrg E)PTV can be seen as
an extra feature of the persistent object (or tuple) ancctyrbe associated with the
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object identifier or tuple identifier (in case the latter doesexist, the primary key
can be used). These associated values, either satisfdetipees or (E)PTVS, must
be visible for the users. In practice, one can always proside attributes in some
system owned data types whose characteristics have to batethby all object
types that are part of a database schema.

3.4.2.2 Operational aspects

With respect to the operational extensions, two aspects Ineusonsidered:

1. Objectrelational databases use the SQL3 querying layggT#e basic operators
of this language are the same as in SQL and can thus be extandedously as
with relational databases. Object oriented databasestbatompliant with the
ODMG model are queried using the OQL querying language. [Eniguage is
also based on SQL and can thus also be extended analogouwgtp aslational
databases.

2. Object oriented and object relational database modeel #he user to provide
user-defined operators. These operators can then be usttfquerying and
manipulation of objects (or tuples) and can in fact be irdégnt in queries. The
facility of user-defined operators can skilfully be usedtf@ implementation of
a flexible querying engine.

3.4.2.3 Implementation

As far as we know there are no implementations of flexible gjungrengines that
are intended to act on exclusively on regular object ori¢ntaetabases. However,
there exist implementations of flexible querying enginesftozy’ object oriented
databases. These implementations are described in chded 5.



References

10.

11.

12.

13.

14.

P.A. Bernstein, U. Dayal, D.J. DeWitt, D. Gawlick, J. Grié Jarke, B.G. Lindsay, P.C.
Lockemann, D. Maier, E.J. Neuhold, A. Reuter, L.A. Rowe,. I3¢hek, J.W. Schmidt, M.
Schrefl, and M. Stonebraker, “Future Directions in DBMS Resle (The Laguna Beach
report)”, ACM SIGMOD Record81 (1989) 17-26.

. G. Booch, J. Rumbaugh, and I. Jacobsbime Unified Modeling Language User Guide

(Addison-Wesley, Reading, USA, 1999).

. P. Bosc, and O. Pivert, “Some approaches for relatiortabdaes flexible queryingin-

ternational Journal on Intelligent Information Systen§1992) 323—-354.

. P. Bosc, and O. Pivert, “SQLf: A Relational Database Laggufor Fuzzy Querying”,

IEEE Transactions on Fuzzy Syste®(4995) 1-17.

. P. Bosc, D. Kraft, and F. Petry, “Fuzzy sets in databaseirgfodnation systems: status

and opportunities”Fuzzy Sets and Systes33 (2005) 418-426.

. R.G.G. Cattell, and D.K. Barry (edsfhe Object Data Standard: ODMG 3(®organ

Kaufmann Publishers Inc., San Francisco, USA, 2000).

. P.P. Chen, “The Entity-Relationship Model — Toward a WmfView of Data”,ACM

Transactions on Database Systehis(1976).

. E.F. Codd, “A Relational Model of Data for Large Sharedd@Banks”,Communications

of the ACM13 6 (1970). Republished i@ommunications of the ACEB 1 (1983).

. E.F. Codd, “Further Normalization of the Database Retati Model”, in:Database Sys-

tems Prentice-Hall, New Jersey, USA (1971) 65-98.

E.F. Codd, “Relational Completeness of Data Base Sgbkges”, inData Base Systems,
Courant Computer Science Symposia Serjé®.8. Rustin (ed.) Prentice-Hall, Englewood
Cliffs, USA (1972).

M. De Calmes, D. Dubois, E. Hullermeier, H. Prade, an&édes, “A fuzzy set ap-
proach to flexible case-based querying: methodology andrewrpntation”, in:Proc. of
the 8th International Conference, Principles of Knowle&gpresentation and Reasoning
(KR2002)(Toulouse, France, 2002) 449-458.

M. De Calmes, D. Dubois, E. Hillermeier, H. Prade, anSdees, “Case-based querying
and prediction: a fuzzy set approach”, Proc. of 2002 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE’0@®Jonolulu, Hawaii, 2002) 735-739.

G. De Tré, R. De Caluwe, J. Verstraete, and A. Halleznj@uactive Aggregation of Ex-
tended Possibilistic Truth Values and Flexible Databaser@ng”, Lecture Notes in Ar-
tificial Intelligence2522(2002) 344-355.

G. De Tré, A. Hallez, J. Verstraete, and A. Verkeyn, “@&y Conjunctive Aggregation
of Possibilistic Truth Values in Database Systems” Aroceedings of the Eurofuse 2002
Workshop on Information Systeif\@renna, Italy, 2002) 137-142.

89



90

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

References

G. De Tré, T. Matthé, K. Tourng, and B. Callens, “Ragkihe Possible Alternatives
in Flexible Querying: An Extended Possibilistic Approachécture Notes in Computer
Science2869(2003) 204-211.

G. De Tré, R. De Caluwe, K. Tourné, and T. Matthé, “Tie¢ical considerations ensu-
ing from experiments with flexible querying”, iffroceedings of the IFSA 2003 World
CongresqIstanbul, Turkey, 2003) 388-391.

D. Dubois, H. Fargier, and H. Prade, “Beyond min aggiegah multicriteria decision:
(ordered) weighted min, discri-min and leximin”, ifhe ordered weighted averaging op-
erators: Theory and applicationsR.R. Yager, and J. Kacprzyk (eds.) (Kluwer Academic
Publishers, Boston, USA, 1997) 181-192.

R. Elmasri, and S.B. NavatHeyndamentals of Database Systefosrth edition (Pearson
Education, Boston, USA, 2004).

M. Fowler, and K. ScottJML Distilled: Applying the Standard Object Modeling Lan-
guage(Addison Wesley Longman, Inc., Reading, USA, 1997).

T. Gaasterland, P. Godfrey, and J. Minker, “An overviéwamporative answering'Jour-

nal of Intelligent Information Systenig1992) 123-157.

J. Galindo, J.M. Medina, O. Pons, and J.C. Cubero, “A&dor Fuzzy SQL Queries”, in:
Flexible Querying and Answering SystemMsAndreasen, H. Christiansen en H.L. Larsen
(eds.) (Kluwer Academic Publishers, Dodrecht, The Ne#mels, 1998) 164-174.

M. Gogola, and U. Hohenstein, “Towards a Semantic ViewawfExtended Entity-
Relationship model’ACM Transactions on Database Systef68 (1991).

J. Kacprzyk, and S. Zadrozny, “The paradigm of computiitp words in intelligent
database querying”, il€omputing with Words in Information/Intelligent Systefext 2.
Applications.L.A. Zadeh, and J. Kacprzyk (eds.) (Physica-Verlag, Hé&iele, Germany,
1999) 382-398.

H. Lieberman, “Using prototypical objects to implemesfitared behavior in object-
oriented systems’ACM SIGPLAN Notice21 11 (1986) 214-223.

D. Maier, “Why isn't there an Object-Oriented Data Md¥elin: Proceedings of the IFIP
Information Processing '89 conferenti&lsevier Science Publishers B.V., Amsterdam,
The Netherlands (1989) 793-798.

J. Paredaens, P. De Bra, M. Gyssens, and D. Van GlicbtStructure of the Relational
Database Mode{Springer-Verlag, Heidelberg, Germany, 1989).

T. Teorey, D. Yang, and J. Fry, “A Logical Design Methampt for Relational Databases
Using the Extended Entity-Relationship modedCM Computing SurveyE3 2 (1986).

M. Umano, and S. Fukami, “Fuzzy Relational Algebra fos$toility-Distribution-Fuzzy
Relational Model of Fuzzy Data"Journal of Intelligent Information Systen3s(1994)
7-217.

S. Zadrozny, and J. Kacprzyk, “FQUERY for Access: towdndman consistent query-
ing user interface”, inProceedings of the 1996 ACM Symposium on Applied Computing
(SAC)(Philadelphia, USA, 1996) 532-536.



Chapter 4
Fuzzy databases

By providing also at the level of database modelling faetitto model imperfect
data as adequate as possible, even more flexibility in ds¢aggstems could be
obtained. Such an approach results in databases that aamtseatily richer. If the
modelling of imperfections is based duzzy set theor{60] one speaks about a
‘fuzzy’ database

Radecki was one of the firsts to recognize the power of fuzzyhsory with
respect to information management [47]. After Radeckigsaivother researchers
have proposed ‘fuzzy’ database models. As such, there exishsions and gen-
eralizations of the relational database model, the (ErddnEntity Relationship
model, object relational models and object oriented modeds an overview we
want to refer to [9, 44, 19, 59, 8, 38].

This chapter deals in more detail with the modelling of infperdata in databases
and is subdivided in two sections. In the first section 4.1 wedte the data mod-
elling aspects. Hereby we subsequently describe techsifpuehe modelling of
imprecise, uncertain, incomplete, and inconsistent m#dion. In the second sec-
tion 4.2 we present some fuzzy database models.

4.1 Data modelling

4.1.1 Dealing with imprecise and fuzzy information in databes

Possibility theory [62, 25] is the most commonly used mettogy for the mod-
elling of imprecise and fuzzy data in databases. Anotheraguh is to work with
similarity relations [10]. More recently, some other attatives have been proposed,
making use of generalizations of fuzzy sets [22].

In each of these approaches the data types in the field defisitf the record
types areextendecbr generalizedn such a way that the domain values could also
be fuzzy sets.

91



92 4 Fuzzy databases
In anextension some extra data types like
FUZZYINTEGERFUZZY REALandFUZZY STRING

will be added to the database model. The domain of such aa@ata type is defined
to be the fuzzy powerset of the domain of the correspondigglee data type. As
such, the domain

dontuzzy inTeGER= L (dOMNTEGER)

will for example be the set of all fuzzy sets that could be dsfinver the domain of
the data typeINTEGER.

In ageneralization the existing regular data types are generalized in suctya wa
that their domains also contain fuzzy sets. The original @iomaluesx are then
considered to be the same as the fuzzy{éetl)}.

Both approaches have their own advantages and disadvani&ghk an exten-
sion we have the theoretical problem that we can model parfearmation in two
ways: via the regular data types and via the extended da&s.tyyloreover, the
database designer must decide in advance whether a reddrddiecontain fuzzy
values or whether it is restricted to perfect values. Theaathges of an extension
are that it is easier to implement and that it could be integr&n an easier way in
existing databases (because almost no database conviereegded). Generaliza-
tions are a better solution from a theoretical point of vibut are more difficult to
implement.

4.1.1.1 Possibilistic approaches

In a possibilistic approach, the membership grades of theyfsets are interpreted
as degrees of uncertainty. As such, the fuzzy set can be seepassibility distri-
bution that is associated with the record fidldnd therefore is denoted as

.

Because of imprecision, the exact value of the record fielbinknown with cer-
tainty. The possibility tha = x is My (x), x € dom, with dom the domain of the
data type of the record field.

For a single-valued field, the possible valuesdom are represented by a possi-
bility distribution that is defined odom, which necessarily must consist of single-
valued elements. For a multi-valued field, the dontom consists of multi-valued
elements (collections). Each collectigfior which ma(x) differs from O then a can-
didate value for the field, where the associated membership gragle) denotes
the possibility, i.e., the degree of (un)certainty, tAdtas the collection as value.

Example 4.1

The value of the record field ‘Value’ of the record type ‘Paigt of the exam-
ple database of example 3.1 could for a given record be vagiescribed as
‘very_valuable’ and be defined by the possibility distribution
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0 iff x<10M
x—10 .

THaluelX) = IJvery_valuable(X) = 0 iff LOM <x<20M
1 iff x > 20M

4.1.1.2 Similarity-based approaches

In the similarity-based approaches [10] the basis donddamg of the data types
of the fields of the record types are extended with a simylagtationS (cf. sub-
section 3.2.1.3) and generalized to power §5tdom). For some domains the sim-
ilarity relation will be the identity relatiori, which is a special kind of similarity
relation and is defined by:
[:UxU—[0,1]

xy)—1liff x=y

(x,y) — 0 else
Due to the generalization, all field values of a record fielthwdata typed are sets
that are elements @f (dom). The similarity relation defines the degrees of corre-

spondence, which denote to what extent the elements of tldeviidue could be
used instead of each other. Several valid interpretatimnassociated with a record

[c1:V1;C0: Vo ;G i Vn],ne N\ {0},ViCU,1<i<n

An interpretation
a=|cp:a1,Cr:a,...,Cn: an)

is obtained by choosing an elememtin each of the set%; and by considering
these elements together. To be valid, an interpretatiort moseover satisfy the
underlying semantics of the record type. As such, the inégation

[BrusselsFrancé
of the record
[{BrusselsWarsawParig, { Belgium PolandFrance]
of the record type
Capital(City : CHAR30); Country: CHAR30))

is invalid.



94 4 Fuzzy databases

4.1.1.3 Other approaches

Different generalizations of the concept of ‘fuzzy set’ bdeen presented in litera-
ture for several reasons. Some of these generalizatiomsinassence been devel-
oped to deal simultaneously with both positive and neg&tiaaviedge (bipolarity),
which in some situations can be beneficial because it alloygsdvent information
loss.

Three such generalizations, which could be beneficial incthrgext of fuzzy
databases, are the so callederval-valued’ fuzzy setdVFS), the‘intuitionistic’
fuzzy setglFS) and thetwo-fold’ fuzzy setTFS). Each of these generalizations
allow to model the semantics of information in a more natway.

‘Interval-valued’ fuzzy sets.

An IVFS
F={<upu),puU)>ucU}
over a univers& is defined by two functions

HE, pf :U —[0,1]

such that
0< pp(u) < pf(u) < LYuel.

For eachu € U, the valuegy\- (u) and g (u) respectively denote a lower and upper
bound for the membership gradewin F. It follows clearly from the special case
whereu,': = p¢ that ‘interval-valued’ fuzzy sets are generalizationsagfular fuzzy
sets.

If an IVFS is used for the modelling of imprecise or vague data fuzzy
database, then the lower and upper bounds can be assignes$ibilstic inter-
pretation such that the IVFS becomes a representation ofierglized possibility
distribution [40]. An ‘interval-valued’ possibility disibution (IVPD) can be asso-
ciated with a record field, in which case it could be denoted as

(7. 7)
and could be characterized by the functiefsand ¥, such that
0< m(u) < m(u) <1LVueU.

Furthermoren‘A(u) is interpreted as a lower bound for the possibility that u and
My (u) is interpreted as an upper bound for the possibility #hatu. In this way, a
IVPD makes it possible to model the imprecision of the data database as well
as the uncertainty that is inherently connected with thisletiing.

An IVFS can also be used within the fuzzy querying of regutatiases in cases
where the membership grades (of linguistic terms) couldoogxactly assigned.
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As an example, consider the case where a user wants to spieaifthe age 30 is
compatible with the linguistic term ‘young’ with a degred\ween 0.4 and 0.6.

‘Intuitionistic’ fuzzy sets.

AnIFS [2]
F={<upr(u),ve(u)>lucU}

over a univers# is defined by two functions
U, Ve :U —[0,1]

such that
O<ur(u)+Vve(uy<1lVueU.

For eachu € U, the valuesur (u) and ve (u) respectively represent the grade of
membership and the grade of non-membership of F. Considering the special
case wherer = 1— U, it follows clearly that ‘intuitionistic’ fuzzy sets are ger-
alizations of regular fuzzy sets. Even more, by takﬁx}@: pr andpf =1—ve it
follows that an IFS can formally be dealt with as an IVFS. Atlfier study on this
correspondence is outside the scope of this book. In what¥s] we are only inter-
ested in the interpretation and usability of both geneasitins of fuzzy sets within
the context of fuzzy databases.

If an IFS is used for the modelling of imprecise or vague datafuzzy database,
then a possibilistic interpretation can be assigned todhghat also in this case a
kind of generalized possibility distribution is obtainégh ‘intuitionistic’ possibility
distribution (IPD) can be associated with a record fi&ldn which case it could be
denoted as

(T[IJA’ T[VA)

and could be characterized by the functiong andrs,,, such that
My, (U) + 10, (u) <L VueU.

Furthermore, it is assumed tha, (u) defines the degree that it is possible that
A=uandm,(u) defines the degree that it is impossible that u. In the case of

a regular possibility distributiom this degree of impossibility equals-11(u)
and is thus completely determined Iny(u). The notion of impossibility is fairly
intuitive and also fits formally in the regular possibilcstiontext because- (u) in

an IFS corresponds with-1 ur (u) in a regular fuzzy set. Consequently:-Im,, (u)
andrr,, (u) could be interpreted as the necessity that u.

Example 4.2

The idea of using ‘intuitionistic’ fuzzy sets and their gesized possibility distri-
butions for the modelling of data in fuzzy databases canlbstikted as follows:
consider a database record type ‘Crime’ which is used amdmgr®to keep in-
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formation about possible perpetrators. For the sake oflgiitypit is assumed that
each crime is committed by exactly one perpetrator, whiahaslist of suspects. To
model this, the record type has a field ‘Perpetrator’. Theeslof this field could
be modelled by means of an IPD which is completely determinyeah IFS of sus-
pects. Such an IFS;, can for example be constructed by means of the following
procedure. A group of experts studies the crimes and clarstits of the suspects
under consideration. After that, each expert votes for edahe considered sus-
pects. Voting results in:

e ‘yes’if the expert is convinced that the suspect is a pogdperpetrator of the
crime;

e ‘no’ifthe expert is convinced that the suspect is not a ptigéperpetrator of the
crime;

o ifthe expert cannot decide between ‘yes’ and ‘no’, he or direabstain.

After the voting, the proportion of ‘yes’ and ‘no’ votes cagspectively be used
to determine the membership functioms andvg of the IFSF. Finally, the cor-
responding IPD distribution denotes for each suspect hasiple (1,.) and how
impossible (&) it is that he or she has committed the crimeo

An IFS can also be used in a more intuitive way in the fuzzy yingrof regular
databases to denote which field values are preferable iretlvels —given via the
membership functiop;,,— and which field values should be avoided —given via
the membership functiowy, .

Twofold fuzzy sets.

ATFS [24]
F=({<upee(u)>[ucU}{<Upps(u) > [ucU})
over a univers& is defined as a couple of fuzzy sets
FP={<uper(u) > jucU} andFS = {<u, ps(u) > ue U}

overU, such that
supdFP) C corgFd).

Consequently, it holds that
0 < ppp(u) < pps(u) <1, VueU.

From the special cas;e'F = Uep and g = Ugs and the special cagg = pee and
VE = 1— s, it follows clearly that a TFS can formally be dealt with aspeaial
case of respectively an IVFS or an IFS set. In what followsaneonly interested
in the interpretations and usability of twofold fuzzy setsthe context of fuzzy
databases.
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A TFS can be used in the querying of regular databases toeemath field val-
ues are satisfactory (allowed, acceptable, not rejectetijvich of these values are
really preferred, cf. [27]. The membership grades of thégpred values correspond
with per, the membership grades of the satisfactory values mith

Due to the correspondence between on the one hand twofatgl fiets and on
the other hand both interval-valued fuzzy sets as well astionistic fuzzy sets,
twofold fuzzy sets could also be used to model imprecise gugalata in databases.
In such cases, a TFS can be assigned a possibilistic intatipre by which another
kind of generalized possibility distribution is obtain@dtwofold possibility distri-
bution (TPD) can then be associated with a record f¢lith which case it could be

denoted as
(7, 783)
and could be characterized by the functigigsandrt;, such that

0<7i(u) <my(u)<1,Vuel.

Herewith, it is assumed thanAP(u) defines the possibility thatis a preferred value
for A and thatn;:’(u) defines the possibility that is a satisfactory value foh. In
this way, 1T, puts a ‘hard’ constraint on the possible valuesﬁﬁowheream/f puts a
‘soft’ constraint on these values.

4.1.2 Dealing with uncertain information in databases

To deal with uncertain information in databases we canpassibility theory[62,
25] in a completely analogous way as with the handling of eame and vague
information. On the other hand, if one has more control ondat that has to
be modelled, as explained in section 2.2, then one can aésprabability theory
[51, 28]. In both approaches, uncertainty is modelled bymaez an uncertainty
distribution, which associates with each candidate valuelae that expresses to
what extent it is certain (or uncertain) that the candidataerwould be the effective
value. The way how these associated values are interpretechast be processed
is completely defined by the used theory. Beside probalaifity possibility theory,
there exist other theories for the modelling of uncertaforimation. An overview
can be find in the work of Peter Walley [56, 57].

In the simplest approaches basedpwabability theory , a probability is asso-
ciated with each database record (a tuple if the relatioatdlzthse model is used
[58, 45] or a persistent object of an object type if an objeEtrded database model
is used [33]). These probabilities form a probability dimition which in turn is
used in the query processing to model to which extent it i@e(or uncertain) that
the record represents a correct answer to the query. In €&se@lational database
model, probability distributions could also be used to nlogheertain attribute val-
ues [3, 35]. The same holds for object oriented database Ismadiere there exist
also proposals to model uncertain inheritance with prdiigblistributions [33].
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In fuzzy databases, uncertainty is in most cases modelleddans ofpossibil-
ity theory. This is in essence due to the more conservative charactke diieory,
which results, among others, in a less stringent normadizatondition (cf. sec-
tion 2.2), that is better suited in practice. When using iility theory, uncertainty
is modelled by means of possibility distributions, whichmost cases could be
derived from a fuzzy set with discrete membership funct®assibility distribu-
tions can be associated with attributes in order to modeduain attribute values of
database tuples or database objects [46]. Furthermoneakegf uncertainty could
be associated with database tuples [54] and database ©B8¢t In such a case,
the associated degree of uncertainty denotes to whichtexisrcertain or uncer-
tain that the tuple (resp. object) belongs to the extent efréfation (resp. object
type). Possibilistic uncertainty can also be considerabject oriented inheritance
[53].

Because of the fact that imprecision and vagueness are kbtigonal with re-
spect to uncertainty (cf. section 1.1.2), it could happe éhpossibility distribution
for the modelling of uncertainty is defined on a universe afsiility distributions
for the modelling of imprecision or vagueness. In such a,dhsepossibility distri-
bution is derived from a so-calldevel-2 fuzzy sef21].

A level-2 fuzzy seV over a univers® [61, 30] can informally be described as
a fuzzy set of which the elements are regular fuzzy sets teadlhdefined oved.
This can formally be defined as follows:

Definition 4.1 (Level-2 fuzzy set)A level-2 fuzzy s&t over a universe U is defined
by
V={(V,us(V)IVV edU): p(V) >0}

where each regular fuzzy 9étis defined by
V= {(xmy(x)¥xe U : g > 0}
O

Example 4.3

Suppose that it is only known that the value of a painting tisezi‘most probably
about 2M, or ‘less probabl\3.2M'. This information can for example be modelled
by a possibility distribution which is derived from a lev2Fuzzy set

{(about2M, 1), ({(3.2M,1)},0.7)}

where{(3.2M,1)} is a possibility distribution and ‘abol®@M’ is a linguistic term,
that is modelled by the possibility distribution

0 iff x< 1.8M orx > 2.2M
Xx—18 .
iff 1.8M < x<2M

TaluelX) = Haboutam (X) =

2

2.8—x .
<x<2.

02 iff2M < x < 2.2M
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By applying the extension principle (cf. section 2.1.4% tiperators for regular
fuzzy sets can be generalized to operators for level-2 fgery [21]. More details
on this are beyond the scope of this book.

4.1.3 Dealing with incomplete information in databases

In regular databases, missing information is in most casedefted by means of
a pseudo description calledlll, which denotes that the actual database value is
missing [13, 55, 52, 4, 50, 31, 63, 14, 32]. As soon as nulleslare allowed in a
database, it is also necessary to define their impact on thbake manipulation and
the database querying [39]. In Codd’s approach, the relaticalculus is extended
using an underlying three-valued logic [13, 14] to formalifine the semantics of
null values in relational databases. This approach is baitigized a lot due to the
fact that the law of excluded middle does not hold in a thrédeedlogic [15, 16, 17].

As an alternative, Date proposed to avoid using null valyedddining an ap-
propriate, so-calledefault value for each record field which could contain missing
information. The default value must be an element of the dowfzhe data type of
the record field. Whenever data is missing in those fields,dhta will be approx-
imately represented by the default value [15, 18]. Defaalties have as disadvan-
tage that they can give a misrepresented view of realitytwbpecially can cause
problems in statistical querying.

Both the approach with null values and the approach withudetalues have
been generalized for fuzzy databases. In the framework s$ipitity theory the
problems with null values can be solved to a large extent.Hatollows, we only
describe such a generalization of a null value approachaE@scription of a gen-
eralization of a default value approach we refer interestaders to [1, 42, 43].

In order to assign correct semantics to null values it is irtgrag to make a dis-
tinction between two main sources of missing informatiordatabases (see also
section 1.1.3). As originally presented by Codd [14] migsimformation can occur
because:

e Data areunknownto the users. In such a case, the data exist but they cannot be

entered in the database because they are unavailable abthennthey has to
be entered.

e Data are missing because they are related to a propertydbatubt apply for the
database record under consideration. In such a case onesisautundefined
data

To illustrate these two cases, we consider a database thédin® informa-
tion about birds. For each bird type the fly speed is amongr atigistered in the
database. The first case, unknown data, occurs for examalsiination where it is
known that the birds of that type can fly, but extra observetiare still necessary
to know the fly speed. The second case, undefined data, ocbers itvis known
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that birds of the type under consideration cannot fly, asXanele is the case with
penguins (fly speed is not applicable for penguins).

The truth values in Codd’s original three-valued logic agpectively ‘true’ T),
‘false’ (F) and ‘unknown’ (Lnyy). Hereby, the truth value ‘unknown’ is used to
model logical expressions involving either unknown or Uit data. Furthermore,
this logic is a strong Kleene logic [48] (cf. section 2.4.4hich means that the
computation rules for negation, conjunction and disjunttf section 2.4.1 hold.

The law of excluded middle does not hold in a strong Kleeng&ldthis can be
seenin

Lnant A ﬁ(J—null) = Lnun 7é F

and
Lnan Vo(Lnan) = Loan # T

Furthermore, ‘unknown’ denotes thi@certaintyone has about the fact whether the
proposition is ‘true’ or ‘false’. This completely differsdm the underlying principle
of many-valued logics that states that different gradesutifitare considered: grades
of uncertainty and grades of truth are from the semantictpdimiew completely
different concepts [26]. So, using an extra truth value taetdunknown’ does
not make sense from such a point of view. These observatigiaie partly the
motivations behind the criticism of Date on the use of nullea [15, 16, 17]. In
the modelling approach described in the next paragraplsawn information —
more specifically uncertainty, due to unavailibility, abthe actual values of record
fields — is modelled by means of possibility theory, whichnidact meant for the
modelling of uncertainty [62, 25].

4.1.3.1 The modelling of unknown information
In fuzzy databases, ‘unknown’ can be modelled by means ofmalized possibil-
ity distribution which is characterized by a fuzzy set wittm@mbership function

that takes the value 1 for all regular domain values. An extithvalue for the mod-
elling of unknown data is meaningless and thus not requirédzazy databases.

‘unknown’

dom,

Fig. 4.1 Value unknown.
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Example 4.4

If the value of a given painting is unknown, this can be magtélhy a possibility
distribution which is characterized by a fuzzy saknownwith membership func-
tion

Hunknown: d0Myaiue — [0, 1]
X—1

This is illustrated in figure 4.%:

4.1.3.2 The modelling of undefined information

A specific null value is still required for the modelling of defined information.
This null value is then strictly interpreted as ‘not applite. Thus for the modelling
of missing information in fuzzy databases one kind of nulleais sufficient. To
allow for a distinction between inapplicability in the cert of different data types,
the domairdom of each data typeis extended with an extra, domain specific null
value_ L which is used to model missing undefined data in that dom&h Plomain
specific null values allow to distinguish between undefingides of different data
types in such a way that the available information about tita t/pe of the record
field is not neglected. As such, for example, inapplicapivhere one expects an
integer value differs from inapplicability where one exyse character string value,
and will explicitly be modelled by the null valuelsytecerand LstrinG

To obtain an adequate logic for the handling of null valuethrae-valued logic
with truth values ‘true’ T), ‘false’ (F) and undefined () can be enriched with
possibilistic uncertainty. This is the approach taken endlevelopment of extended
possibilistic truth values (EPTVs) [20] (cf. subsectiod.2).

When we consider domain specific null values, three linguisirms ‘UNK’,
‘UNA and ‘N/A’ can be defined for each domadom. These are respectively mod-
elled by:

e Theterm ‘UNK’ stands for ‘unknown (but applicable)’ and oesponds with the
rectangular possibility distribution

Tunk(X) = 1, iff xe dom \ { Lt}
=0,iff x= 14

e The term ‘N/A stands for ‘not applicable’ and correspondtwihe possibility
distribution

Th/a(X) = 0, iff xe dom \ { Lt}
=1, iff x= 1t

e The term ‘UNA stands for ‘not available’ and correspondshathe possibility
distribution
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TUNA(X) = 1,¥X € domy,

These possibility distributions are visualized in figurg.4.

‘UNK’ ‘N/A

|':|( dc=>mt
Fig. 4.2 Linguistic terms for the modelling of missing information.

The use of a special null value for the handling of undefindédrination still
brings along with it a problem of incomplete truth functitihg][16]. Indeed, if we
use extended possibilistic truth values (EPTVs), we allensti able to adequately
deal with the two special cas€§p AND NOT p andt*(p OR NOT p. In order
to have correct query results in these cases too, the detapatem has to handle
them explicitly.

4.1.4 Dealing with inconsistent information in databases

In order to obtain a consistent database, some integrigg must be defined on the
database. This could be done by meansooistraints[41]. Furthermore, there exist
more advanced techniques to detect and to solve inconsissen databases. Their
description falls outside the scope of this book.

4.2 Database modelling

The techniques described in the previous section 4.1 fomb#sis of several ad-
vanced database models for the management of imperfeatiafmn. Each of these
models is an extension or generalization of a traditiontdloase model. As already
mentioned at the beginning of this chapter there exist eit@s and/or generaliza-
tions of the relational database model, the (E)ER-modgg&ablvelational models
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and object oriented models. In what follows, the modellisgexts of four repre-
sentative ‘fuzzy’ database models are described in moegld€he first and second
are based on the relational database model, the third amthfate based on an
object oriented database model. The data manipulation aedyipg aspects are
described in chapter 5.

4.2.1 Possibilistic approaches

The possibilistic relational model, as presented in [46]aigeneralization of the
relational model [12]. For the generalization, possipiliteory is used [62].

At the basis of the model is the generalization of the domairtke data types
that are associated with the attributes of a relation. Fergibneralization, these
domains are firstly extended with an extra domain valuenhich is used to denote
that the attribute is not applicable for the tuple— and thesoadly generalized to
a set of fuzzy sets which all characterize possibility disttions. Thus, for each
database relation with schema

R(Al . T1,A2 . T2, - 7An . Tn)
with attributesA; : Ty, 1 <i < nthe domainslom; are generalized to
domy = [7(dom; U{L})

where each element of the new domdamy characterizes a possibility distribution
Ty,

Example 4.5
As an example consider a database in which information aboupany cars is
registered. As such, for each employee, among others, thefdgs/her company
car is stored. With respect to the age of Peter's companyheafpllowing situations
are possible:

e We don’t know if Peter has a company car and if he has one, wi kitow the
age of this car. This can be modelled by the domain value

Ticaragepeten (X) = 1,V x € domr U{ L}

whereT is the data type of the attribu@ar_age

e It is completely possible that Peter has no company car,tbstalso possible
with a possibilityA > 0 that Peter has a company car that is more than five years
old. This can be modelled by the domain value

1 iffx=1
Tlcar agéPeten X)=qA iff x>5
0 iffx<5
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e Itis completely certain that Peter has no company car. Tdmisbe modelled by
the domain value
1 iffx=1

Tcaraggpeten 0 = {O otherwise

e Itis completely possible that Peter has a new company ¢aguwgh there is also

a possibilityA > 0 that he has none. This can be modelled by the domain value

A iff x=_1
TcaragéPeten (X) - Lhew(X) Otherwise
wherepnew is the membership function that is used to represent they foeti-
cate ‘new’.
e [tis completely certain that Peter has a company car, bug¢ tseno information
available about the age of this car. This can be modelleddydmain value

0 iffx=_1

X) =
Meaagapeter (X) {1 otherwise

e It is completely certain that Peter has a company car whitleigeen two and
four years old. This can be modelled by the domain value

(X) = 1 iff xe[2,4]

TearagaPete) X) =\ 0 otherwise

e [tis completely certain that Peter has a new company cas @dn be modelled
by the domain value

(X) = 0 iff x=_1

Tcaragepeten X) = Lnew(X) otherwise

e [tis completely certain that Peter has a two years old comypan This can be
modelled by the domain value

1 iffx=2

X) =
Mearagapeter (X) {O otherwise

<

All possibility distributions are assumed to be normaliZEllis corresponds to nat-
ural expectations becaudeny, U {_L} describes all the possible alternatives. Fur-
thermore, in the approach it is assumed that all attributessimgle-valued. This
conforms with the atomicity property of attributes in th&at®nal database model.
The uncertainty on the data in the database —data modelledrtyrmalized
possibility distribution which is not restricted to a siagin— propagates to the
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manipulation and querying of the database. In order to mibdela tuple does not
belong with complete certainty to a query result, all dasab@@nd result) tables are
extended with two extra columns ‘Pos’ (possibility) and tNénecessity) which
contain membership grades. In this way, two fuzzy sets diaatbon the rows of
each table. Because of the fact that column definitions obke teould be seen as
a predicate, these fuzzy sets respectively denote whick pmgsibly satisfy this
predicate and which rows necessarily satisfy this prediddie membership grades
then respectively correspond with the values of a possiliiieasure and the values
of a necessity measure.

In the model, the operators of the relational algebra argeaieralized. This is
done in such a way that each operator additionally comphteadsociated values
for Pos and Nec for each row in its result set. This guararnteesloseness property
of the generalized relational algebra. Querying of ‘fuzdgtabases is described in
chapter 5.

Example 4.6

Generalizing the relation ‘Painting’ in the ‘artworks’tdhase of example 3.1 by
means of the possibilistic relational database model tedal example in the
‘fuzzy’ relation that is represented in table 4.1 (for thé&esaf the representation,
the attribute ‘Name’ has been omitted). The attributesit®Brvalue’ and ‘Owner’

Table 4.1 ‘Fuzzy’ relation ‘Painting’.

PID Artist Period Value Owner Pos Nec
PO1 AO4 1882 about5M  {(Boijmans1),(KMSK,0.6)} 1 1
P02 A02 aroundl870 morethan6M {(Louvre1)} 1 1
P03 A01 veryold very_expensive{ (Louvre 1)} 11
P04 AO3 1881 ateast100K {(KMSK,1)} 11

have a generalized data type. The values of the attributrodP and ‘Value’ are
represented by linguistic terms which are all modelled bgssjbility distributions.
Remark that attributes that belong to a candidate key aralifmved to contain
imprecise or uncertain values. Attributes that belong toraign key can have an
uncertain value (e.g., attribute ‘Owner’). It is assumedibyault that all rows cer-
tainly belong to the table, i.e., for each rées= 1 andNec= 1. ¢

4.2.2 Similarity relation based approaches

An alternative for the possibilistic model is tisemilarity based relational model
as originally presented in [10]. In this approach the domdom of the data types
T that are associated with the attributes of a relation arengbed with asimilarity
relation & (cf. subsections 3.2.1.3 and 4.1.1) and generalized to
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domr = {V|V € O(domy) A V is a finite discrete sétJ { Lo}

wherel] (domr) denotes the power set ddbmy and the extra domain value, is
used for the modelling of both unknown and undefined inforomafThe sedomy
is called the basic set of the domain.

Thus for each database relation with schema

R(Al : T]_,Az : T2,...,An : Tn)

with attributesA : Tj, 1 <i < nthe domainslomy, of the attributes are generalized
to a couple B
(dommy;, Sp).

Example 4.7

As an example, one can consider a generalized domain thestasiated with an ex-
tra attributeDominantColour that is added to the schema of the relation ‘Painting
of the ‘artworks’-database of example 3.1. This domain isf@mple defined as

(domy, Sr)

;

where the basic séomy is scalar and defined by
domy = {white greenblue red}

and the associated similarity relati®@ is given by the similarity matrix that is
presented in table 4.2. Remark thdtiteis only considered to be similar with itself.

Table 4.2 Similarity relationSr.

Sr |white green blue red
whit 1 0 0 O
green O 1 0503
blue| 0 05 1 0.3

red|] 0O 03 03 1

Due to the generalization of the domains, each typle<i < mof a relation
R(AL:T1,A2: Toy .o, An it Th)
has the following form
(At W1, A2 W2, ..., An i W)

whereW j C domr;, 1 < j <n. The possible interpretations
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a =ay,a,...,an

of a tuple are obtained by taking an elementin each of the setg{ ;. Also in
this approach, each tuple is interpreted as being a pramositat should satisfy the
predicate imposed by the relation schema. Thus, in order sovalid interpretation,
the interpretation must satisfy the predicate imposed by¢hation schema.

Furthermore, the database model prescribes tlsandarity threshold values
associated with each attribude T of a relation. This threshold value is by definition
obtained as:

THRESA) = Jmn (X(rywérvl(sr(x, y)

wheret[A] denotes the set of all values (séfse domr) of the attribute with name
Athat occur in a tuplé of the relation. For regular databases the cardinality &f
always equal to 1 anfr (x,y) = 1, such thal HRESA) = 1, for all attributesA of
the relation. These similarity threshold values play a nolidhe database querying.

For querying purposes, the operators of the relationalbatgare extended in
such a way that the user can specify a minimal similarityshoéd value for each of
the attributes involved in the query. The result of the quetien built up in such a
way that no extra tuples can be added without exceedingsttdea of the minimal
threshold values. If the user did not specify thresholdestihen these are implicitly
considered to be equal to 1. Threshold values could alsodesented by linguistic
terms in which case each linguistic term is associated wittxact threshold value.
Querying in similarity relation based approaches is furttescribed in section 5.4.

Example 4.8

Using the similarity based relational model, the relati@mvher’ of the ‘artworks’-
database of example 3.1 can be generalized to a ‘fuzzy'iealats presented in
table 4.3. For this relation, the following algebraic exgsien can be considered

Table 4.3 ‘Fuzzy’ relation ‘Owner’.

Name Place Country
{Boijmang {Rotterdam,Amsterdajn {The Nederlands,Hollard
{Louvre} {Parig {France
{KMSK} {Antwerp,Mechlin,Bornerh {North Belgium,Flanders

pro ject(Owner{PlaceCountry})
WITH THRES$Place > 0.75
AND THRE $Country) > 0.80

The result of this operation consists of a new relation wigabbtained by remov-
ing the attribute ‘Name’'. In order to obtain the resultingltes, the tuples of the
remaining intermediate relations are combined, if possibhe idea behind this is
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that in a regular database it is not allowed to have identigales in the same re-
lation and identity is now ‘weakened’ to similarity. Two tieg can be combined if
application of the union operator for sets does not reswdténossing of one of the
given threshold values.

A similar, similarity based object oriented database mbdslbeen presented in
[29].

4.2.3 The fuzzy object oriented FOOD database model

The FOOD-model [5, 36, 6, 7] is an extension of the ‘on grapasel’ object
model of Lucarella [37], where as well theatabase schemas itsinstancesare
represented by directed labelled graphs and where theakstabanipulations are
defined in terms of graph transformations.

The conceptual schentaof Lucarella’s model is defined by a quintuple

(C.T,AH,P)

where:

e Cis afinite set ofobject) classes

e T is afinite set of primitiveypes Each type € T has an associated 3é(t) of
allowed values;

e Aisafinite set oattributes Each attribute has an associated domain. The domain
of a primitive attribute is a primitive typec T, the domain of a complex attribute
is aclass ce C;

e H C CxCis theinheritance relation This is a partial ordering relation, where
(ci,cj) € H means that; is a subclass dfj;

e PCCxAx(CUT) istheproperty relationwhich denotes the attributes that are
associated with a class. (i§;,a, ¢j) € P, this means that; has an attributa with
domainc;.

The conceptual scheniais represented by means of a directed labelled graph
G(2) = (N,E)

where:

e N =CuUT isthe set of all nodes of the graph. Each classC is represented by
a rectangular node with labe] each (primitive) type € T is represented by an
oval node with labe;

e E=HUPisthe set of all labelled edges of the graph. Each elerfegrtj) € H
is represented by an arrow that is directed fronto c; and has a label ‘is a’,
whereas each elemeft;,a,c;j) € P is represented by an arrow that is directed
from¢; to ¢; and has a label.
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An object oriented databa&ss finally defined by a quadruple
(Za Oa I ) L)

where:

e 2 is the conceptual schema that has been defined above;
e Ois the set of all objects that are present in the datab&3e), is the (sub)set of
all primitive valuesV(T) = U V(t);
teT

e | C(OxC)U(V(T)xT)istheinstance relation; each object Ois an instance
of a clasx € C and each value € V(T) is an instance of a primitive tyde= T;

e LCOxAX(OUV(T)) is the reference relationip;, a,0j) € L means thao; is
the value forain theobject q.

The instance relatiohallows it to construct an instance graph for a schema graph
G(X). At each time, the nodes of an instance graph correspondtotijects and
values that are present in the database.

For the FOOD-model the following extensions have been &skedul:

1. Definition offuzzy attribute value$-uzzy attribute values are modelled by means
of possibility distributions that are defined on the domdithe attribute. For this
reason, a so-called set fafzzy types,Tis added. This is done by extending the
set of primitive types to an extended Sgt= T U T,. For this set it holds that:
V(Te) =V(T)UV(Ty).

2. Definition offuzzy classe®\ so-called set of fuzzy class€s is introduced. This
is done by extending the set of clas&=® an extended s€ = CUC:;.

3. Definition ofuncertain property and reference relationgncertainty about the
association of a value to an attribute of an object is forrealiby means of the
uncertain property relation

P, CCex Ax (CeUTe)
and the uncertain reference relation
Ly:Oex Ax (0(Oe)UO(V(Te))) — [0,1]

whereOg is the extended counterpart of the €et

4. Definition of‘strengthened’ (imprecise) property and reference relas Inde-
pendently of dealing with uncertainty it can also happebhwehave to deal with
imprecision when associating a value to an attribute of g@abbr his is formally
dealt with by means of the ‘strengthened’ property relation

Ps CCex Ax (CeUTe)
and the ‘strengthened’ reference relation

Ls € Oe x AX (O (Oex T(Strength) U (V(Te) x T(Strength))
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whereT (Strength = {nonevery lowlow, high, very high full } is the set of the
allowed linguistic terms for the linguistic variab&rengthImprecision can also
occur within the elements of an uncertain property relatioan uncertain refer-
ence relation. Therefore the uncertain ‘strengthened@nty relation

PsuC Ce x A (CeUTe)
and the uncertain ‘strengthened’ reference relation
Lsy: Oe x AX ((Oex T(Strength) U (V(Te) x T(Strength)) — [0,1]

are introduced.

5. Definition of the'strengthened’ (imprecise) instance relatiohhis concept is
introduced to make it possible that an object is only pattlya(given extent) an
instance of a class and is defined by

I+ C Oe x Ct x T(Strength.
6. Definition offuzzy class hierarchieé\n extended inheritance relation
Hi C Cs x Ct x Modifiers

allows it to express, by means of the Beadifiers of modifiers, to which extent
an object of a subclass belongs to a superclass.

These extensions are used for the formal definition of thersld¢d conceptual
schema, and the so-called fuzzy object oriented multimedia syd#emhich can
be graphically represented by means of an adapted repaéser(t, 7].

4.2.4 The constraint based object oriented database model

The fourth ‘fuzzy’ database model that is described in mataitlin this chapter is
based orgeneralized constraintgs introduced by L.A. Zadeh (cf. subsection 2.5)
[23]. Generalized constraints can be used to specify theuwsgos and integrity of
the databases and to state the selection criteria in quéeanderlying logical
framework, a logic based @xtended possibilistic truth valu€sPTVs) is used (cf.
subsection 2.4.2.2). Furthermore, the model is, as fasasglar components are
considered, in conformity with th@DMG data mode]11].

The basis of the database model is formed by a so-called ygbes —that states
the supported data type definitions— and a so-called canssgstem —that states
the allowed constraint definitions. Starting from data t/pad constraints, object
schemas and database schemas are specified. The databaebis cmupleted with
data definition and data manipulation operators.
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4.2.4.1 Data types and type system

Like in the ODMG data model [11], the common characterigtifosbjects are spec-
ified by class properties which on their turn are built updafa types Each data
typet is a generalization of an ODMG data type and is among othensacterized
by a domairdom and a set of operatof® which all operate on the domain values
of the data type. Each domain contains a domain specific vajughich is used
to represent ‘undefined’ information (cf. subsection 42).3The data types sup-
ported by the database model are defined bypa systemiTo be conform with the
ODMG data model, the type system supports definitionsitemal types(€ Tiiteral)
and object typeqe€ Topjecy). Additionally, there are also definitions foeference
types(€ Treterencd- Reference types allow it to refer to instances of objeges/and
are used to model the binary relationships that can existdsst object types in a
database schema.

Thereference typesare subdivided in:

e Single-valued reference typeghich are denoted biRef(t) wheret is an object
type.

e Multiple-valued reference types/hich are denoted bRe keft), Re kag(t) or
Refist(t) wheret is an object type.

Theliteral types are subdivided in:

e Basic typeslike e.g.Integer, Real Boolean andString
e Collection typeslike e.g.Seft), Bag(t), List(t), andArray(t) wheret is a literal

type.
e Structured typedn general a structured type is specified as

Struct id(idy isry ty;idy isra tp; . . . ;idn ISty tn)
whereid is the name of the type and
(idqisry tg,idpisrp to, ..., idn St th)

are the components of the type. Each comporiggnsr; tj, 1 < i < nrepresents

a (generic) generalized constraint that acts on a varidplgith associated data
typeti € Tiiteral U Treference The variable copulésr; can take the following val-
uesisr; € {iseis,isv}. The semantics of these constraints can be described in a
simplified way as:

— If isrj = isg, then the allowed values fad; are restricted to the values of the
domaindom; of the associated data typeof id;.

— Ifisr; = is, thenid; is interpreted as a (disjunctive) possibilistic variaflbe
allowed values ford; are in this case restricted to the fuzzy sets that are de-
fined over the domaidom,. The membership grades of these fuzzy sets are
interpreted as degrees of uncertainty. With other wordsh sufuzzy set rep-
resents a possibility distribution.
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— If isr; =isy, thenid; is interpreted as a (conjunctive) veristic variable. The al
lowed values ford; are in this case restricted to the fuzzy sets that are defined
over the domainlom; and of which the membership grades are interpreted as
degrees of truth.

With a view on the specification of thabject typesthe concept operator signa-
ture is introduced. In general, an operator signature isipée as:

e Signa{() —t')
e Signa((idy isry ty;id5 isra ty; ... idg isrp ty) — t')
Herebyt’ is the data type of the result values. It holds that Tiitera) U Tre ference”
{Void} with Void being a data type that is used in situations where no funthere
specific, type specification can be given [11] (which mighd, ebe the case if the
operator produces no results). Furthermadgisr; t/, 1 < i < p are the parameters
of the operator. Each parameter is represented by a (g¢generalized constraint
that acts on a variabliel{ that has to take values of the domain of the associated
data typd/. Again, the variable copuliar; is allowed to one of the following values
isri € {ise is,isv} where the different options are interpreted as describedeab

In general, an object type is specified as follows:

e Classididy isry sp;id2isry Sp;...;idn isrn )
e Classid:idy,idy,...,idm()
e Classid:idy,idy,...,idm(idy isry s1;idz isr2 Sp; ... ;idp iSrn )

Hereby,id denotes the name of the object type, the identifthrsl < i < mindicate
the parent types of the object type (if these exist) —herebYADMG type-subtype
inheritance mechanism is considered [11]— and

(idy isry sp;idgisra ;. . . ;idn isrm )

are thecharacteristicof the object type. A characteristid; isr; 5, 1 <i <nis:

e anattributeif 5 is a literal type or an object type;
e a(binary) relationshipf s is a reference type;
e amethodf s is an operator signature.

Each characteristic is represented by a (generic) gemedatonstraint that acts on a
variableid; with associated specificatian The allowed copula are also in this case
isr; € {iseis,isv} with the same semantics as explained above. For methods, the
generalized constraints puts a restriction on the allowsdlt values of the operator.
Beside the characteristics that are explicitly represeimehe specification of the
object type, an object type also inherits the charactesigif its parent typeal;,
1 <i < m(if these exist and are specified in the object type spedidicht

The type systenT S which defines all data types that are supported by the
database model, is defined as a quadruple:

TS=[ID,T, <, <]

where
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e |D is the set of all valid identifiers,
e T isthe set of all supported type specifications, i.e.

T = {Void} U Treferencd Tiiteral U Tobject

o < Topject X Tobject — {True False} is a partial relation that defines the binary
(association) relationships between object types.

o <:TopjectX Tobject — { True False} is a partial ordering relation that defines the
on inheritance based type-subtype relationships betwijectaypes.

Example 4.9
The type systenT S allows it to specify the following (simplified) types for the
modelling of employees. With the structured types

e Struct TAddreg$Street ise StringCity ise String
e Struct TCompanfName ise String-ocation ise String
e Struct TWork€Company ise TComparfRercentage is Real

and the enumeration literal type
Enum T Languagé&rench English Spanishitalian)
the object type3 PersonandT Employeecan be defined as follows:

Class T PersofName ise String
Yearof_birthis Integer
Address ise TAddress
Languagesisv T Language
Children ise Set(T Person;
Add_child ise Signat(Newchild ise T Persoh— Void))

Class TEmployeeT PersofEmployeelD ise String
Works for ise BagTWorks)

The instances of the reference types and literal types apectéively calledef-
erence instancesindliterals. These are defined as a coufile], wheret is a ref-
erence type or a literal type and= dom.

Depending on its lifetime an object is either transient orsfgent. Transient
objects are not stored in a database. They only temporati$f, @s long as the
application that created them runs. Persistent objectstared in a database and
remain in the database until they are explicitly removed hyser or application
program. Atransient object is defined by a triplet

o= [t,v,{*(‘ois aninstance of )]
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where

o tc Topjectis the type of the object,

e v dom is the state of the object and

o f*(‘oisaninstance of ) is the EPTV that expresses the truth value of the propo-
sition ‘o is an instance of thet objecttype

A persistent objectis defined as a quintuple
o= [oid,N,t,v,f*(‘0is an instance df )]

where

t € Tobjectis the type of the object,

v € dom is the state of the object,

oid is a unigue object identifier,

N is a (finite) set of object names which act as access pointsetoliject in the
database and

o f*(‘oisaninstance of ) is the EPTV that expresses the truth value of the propo-
sition ‘o is an instance of the object type

The unicity of the object identifier must be enforced over ¢henplete database.
The object identifieoid is used to refer to (the state of) the object. The set of object
namesN can be empty.

The set of all instances of an object type Top ject i denoted agnstance |f t js a
subtype of another object typethen it holds thay"s'aneeC vnstance The extent of
an object type is denoted a¥®®"and defined as the set of all persistent objects
of t that occur in a given databaset lis a subtype of another object typethen it
holds thap;&en C vexent

Example 4.10

The instances of the object typéersonof example 4.9 are eith@rPersorobjects,
orTEmploye@bjects (becauseE mployeés a subtype of Persor). Examples of
persistenT Personobjects are:

[oidy, {}, T Person
(Name iseAnn’;
Yearof_birthis Around1993;
Address is¢Street is€Church street, 12City ise ‘Paris’);
Languagesisy(French1),(English0.4)};
Childrenise Sdt)),{(T,1)}]

and
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[oidy, {}, T Person
(Name iseéTom’;
Yearof_Birthis Around1990;
Address is€Street is€Church street, 12City ise ‘Paris’);
Languagesisy(French 1), (English0.5), (Spanish0.7)};
Childrenise Set)),{(T,1)}]

An example of a persistefitt mployeebject is:

[oids, {}, TEmployee
(Name ise¢Johan;
Yearof_birthis {(19651)};
Address iséStreet is€Church street, 12City ise‘Paris’);
Languagesisy(French 1), (Spanish0.8), (English 1)};
Children ise Sdbids, oidy);
EmployeelD is€lD25’;
Works for ise Bag(Company iséName iséXYZ’ ;
Location ise'Paris’);
Percentage i§(1001)}))),{(T,1)}]

4.2.4.2 Constraints and constraint system

Constraints can formally be seen as relations that musttisfied. With respect to
databases, constraints are an important and adequate toekgime the data(base)
semantics and to guarantee the data(base) integrity [34uh, constraints can be
used to specify the semantics of an object type. An objec fgp the modelling
of persons can then be extended with constraints that défen&utl semantics of
the allowed domain values of attributes like ‘Yeaftbirth’, ‘Height’, and ‘Weight’
of persons. Other constraints can specify the valid treomsif from the old to the
new value, of attributes like ‘Salary’ (e.g. a salary canaredecrease) and ‘Marital
status’ (e.g. one can never be divorced without first beingiet so a transition
from ‘unmarried’ to ‘divorced’ is not allowed). Other congints can enforce still
other integrity constraints. A persistent instance of ajeditype then belongs to
the database to the extent that all of the applicable canttraf the object type are
satisfied for the instance.

Remark that in some object oriented database models thei éxplicit sup-
port for constraints. In such models, the underlying asgionpn that constraints
should be dealt with in the implementation of the class mashand that an object
attribute is only accessible via adequate methods thatrrétaad), insert (write)
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or modify (overwrite) the actual attribute value. In the stvaint based object ori-
ented database model this assumption is not made and séqpexplicit constraint
specifications is provided.

Constraints can also be used to specify selection conditioqueries. In such a
case, each constraint states a condition. In order to bétoihg result set of a query
an instance must satisfy the constraints imposed by theycret belongs to the
result to the extent that it satisfies these constraintsush svo constraints could
be used to search for all persons that are around twenty p&hiend live in the
environment of Paris: a constraint to find all persons thatiad twenty years old
and a constraint to find all persons that live in the environino¢ Paris.

Eachconstraint is characterized by a specification and a logical functiat th
acts on an object and results in an EPTV. The constraintostgzpby the database
model are fully determined by eonstraint systemrlo make a distinction between
the (generic) generalized constraints that are used inyghe $pecifications, the
constraints that are derived from the constraint systermalled specific constraints
(or constraints for short).

In the constraint system four categories of constraintsaneg distinguished.
Hereby, a first distinction is made on the basis of whethectwestraint is defined
over the instances amne single object typ@r is defined over the instances of mul-
tiple object types (single-type dependent vs. multi-typpehdent). A second dis-
tinction is made on the basis of whether t@mplete extendf an object type is
involved in the evaluation of the constraint, or not. Therfasulting categories are
respectively denoted &, C3, C™ andC{' and are described as follows:

e The se(C? consists okingle-type dependent constraints that are not defined
over the complete extent of an object typeExamples of constraints of this
category are:

— ‘Not null’ constraintswhich impose that null values are not allowed for the
specified attribute or relationship.

— Value constraintsvhich impose a restriction on the allowed domain values
of the specified attribute or relationship. Furthermorédy @me object type is
involved in the specification of the constraint.

— Transition constraintsvhich impose a restriction on the allowed transitions
(from the old value to the new value) of the specified attetartrelationship.
Again, only one object type is involved in the specificatidiihe constraint.

e The seC§ consists obingle-type dependent constraints that are defined over
the complete extent of an object typeExamples of constraints of this category
are:

— Key constraintsvhich put an unicity constraint and an irreducibility caagtt
on a specified subset of attributes and relationships of pleeified object
type. Unicity means that no two objects of the extent of thpditype are
allowed to have the same values for each of the attributeselationships
in the specified set. Irreducibility means that no attriboitaelationship is
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superfluous and can be removed from the specified set witholating the
unicity constraint.

— Aggregation constraintavhich impose a condition that contains at least one
aggregation operator that acts on the specified object §pb. one object
type is involved in the specification of the constraint.

e The selC" consists ofmulti-type dependent constraints that are not defined
over the complete extent of an object typeExamples of constraints of this
category are:

— Value constraintsvhich impose a restriction on the allowed domain values of
the specified attribute or relationship. More than one dkjgee is involved
in the specification of the constraint.

— Transition constraintsvhich impose a restriction on the allowed transitions
(from the old value to the new value) of the specified attebaot relation-
ship. Again, more than one object type is involved in the djpation of the
constraint.

e The seC{" consists ofnulti-type dependent constraints that are defined over
the complete extent of an object typeExamples of such constraints are:

— Unicity constraintswhich put an unicity constraint on the object identifiers
and object names that are associated with objects in thetexiEthe specified
object types. No two object in the union of these extents Boevad to have
the same object identifier or object name.

— Referential constraintashich guarantee referential integrity for the specified
relationships. Referential integrity imposes that that dibjects that are re-
ferred to must always exist in the database.

— Aggregation constraintavhich impose a condition that contains at least one
aggregation operator that acts on at least one of the spgkoifiect types.
More than one object type is involved in the specificatiorhef¢onstraint.

The constraint systel@S which defines all valid (explicit) constraints that are
supported by the database model, is defined as a triple:

CS=[ID,E,C]

where

e |D is the set of all valid identifiers,
e Cisthe set of all supported constraint specifications, i.e.

c=ctucsuchucy

e E is the set of all valid characterizing logical functions f@wnstraints. Each
logical function maps an object of each of the involved objgpes onto an
EPTV, which denotes to which extent the objects satisfy trestraint.
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Example 4.11
With respect to the object typ@dersonandT Employeeghat have been introduced
in example 4.9, the following constraints can be considered

_ ~not_null
® C1 = CrEmployeEmployeeln (]

o Cp= C\ﬁlg%pmyee(ear_ 0f_bmh}[ around1930< T PersonYearo f_birth < 1990]
o C3= cvalue [0 <

{TEmploye&Vorks for.Percentagg
TEmploye&Vorks for.Percentage< 100]
key

o Cy= C{TPersor}[ TPersonName]

_ coid
* G= C{TPersom{TPersomTEmponeé} []
e Cs — chame
6 = “~{TPerson{T PersonT Employeg}
_ coid
(O C{TEmponee{T PersonT Employeé} [ ]
e Cgq — chame
8 {TEmployeg T PersonT Employeg}
o o Creference []
Co = {T PersonChildren}

e C

Hereby,cy is a ‘Not null’ constraint,c, andcs are value constraints, is a key
constraintgs, Cg, C7 andcg are unicity constraints ar is a referential constraint.
iod

4.2.4.3 Object schemas and database schemas

The semantics of an object is described byoitgect schema This schema com-
pletely defines the object and contains the definitions dffgkific constraints that
are defined for the object type of the object. Each objectrselusis defined as a
quadruple

os= [id,t,M,&]

where

e id € ID represents the name of the object schema.

o tc Topjectis the type of the object schema.

e M describes the ‘meaning’ of the object scheiMas provided to add comments
and is usually a description in natural language.

e G c[J(C?) is a normalized fuzzy set of explicit constraints that alééo act
on the objects of type The membership grades©f are interpreted as weights
and denote the relative importance of the constraints mwithe object schema.

The set of all existing object schemas is denote®3sind is defined to be the set
of all quadruples that satisfy the above definition.

An instanceo of the object type is by definition also an instance of the object
schemeos= [id,t,M,G], if and only if it satisfies (with a EPTV that differs from
{(F,1)}) all constraints of5; and all constraints of the fuzzy sé% of the object
schemas R R

[id,£,M, &)
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that are defined for the super tydesf t. In this way, inheritance has an impact on
the constraints that has to be satisfied. The set of all instaf an object schema
osis denoted ay/,nstance while the set of all persistent instancesosis denoted as
VEXEN Clearly, it holds thay/RstanceC jinstancegpdyextent c jextent

Example 4.12

With respect to the object typ@dersonandT Employeeghat have been introduced
in example 4.9 and the constraimtsc,,...,co from example 4.11 the following
object schema'’s can be considered:

OSPerson= [OSPersoriT Person
‘schema to represent person objedt&,, 1) }]

and

OSEmployee- [OSEmployed Employee
‘schema to represent employee objedt&,, 1), (c3,0.7)}]

A database schemalescribes the semantics of the objects stored in a database.
Each database schemisais defined as a quadruple

ds= [id,D,M,Cp]

where
e id € ID is the name of the database schema.
e D={05,09,...,05} C OS\ { Log} is afinite set of object schemas. Each ob-

ject schema i has a different object type. If an object schewsa D is defined
for an object typé andt’ is a super type dfort’ is an object type that contains a
binary relationship that refers tpthenD must contain an object schems € D
that is defined fot’.

e M describes the ‘meaning’ of the database schema.

e Cp € [J(CSUCMUCT) is a normalized fuzzy set of constraints that all put extra
restrictions on the instances of the object schem#&s dthe membership grades
of Cp are interpreted as weights and denote the relative impogtahthe con-
straints within the database schema. For each object schem® there exist
unicity constraints it€p which guarantee the unicity of the object identifiers and
object names of the instancesaf Furthermore, each constrainte C3UCT'
must be defined for the extent of the object tyjpd an object schemase D.

The set of all existing database schemas is denot&fBasd is defined as the set
of all quadruples that satisfy the above definition.

Each persistent instanceof an object schemase D of a database schends
must satisfy (with an EPTV that differs frof(F,1)}) all constraints inCp. An
instance of a database schedsis called a database and is defined as the set of
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the extents of all object schemasdx In this way, each database is a set of sets of
objects.

Example 4.13

With the object schemd3SPersorandOSE mployeef example 4.12 and the con-
straintscy, Cy, . . ., Cg from example 4.11 the following database schema can be con-
structed:

DSEmployee- [DSEmployeg OSPersonOSE mployeg
‘schema for an employee databgse’
{(cs,1),(cs,1),(Ce, 1), (c7,1),(Cs, 1), (Co, 1) }]

By only considering the object identifiers of the persistamjects of example 4.10,
the corresponding database can be represented as:

{{Oidl, Oidz7 Oid3}, {Oldg}}

4.2.4.4 Database model

Finally, the database model is obtained by consideringipeperators for data
definition (DDL) and data manipulation.

For data definition purposes, operators are considerecetiecand to remove
databases and database schei@asate DB, Drop_DB), to add and to remove ob-
ject schemas to database schentagdteOS Drop_O9), to add and to remove
characteristics to the object type of an object schefdtd(Char, Drop_Char), to
add and to remove weighted constraints to an object sch&dth@SC Drop_OSQ
and to add and to remove weighted constraints to a databheemacddd -DBC,
Drop_DBC).

The operators for data manipulation provide facilitiesdd,aemove, modify and
guery database objects. These operators all act on setstanaes that are associ-
ated with an object schema and result in a new object schethawiew associated
set of instances. In this way, each data manipulation opecan act on the result
of each data manipulation operator which allows to constilgebraic expressions
and guarantees the closeness property of the set of datpuletion operators. The
supported operators are the set operators unipnirftersection ), difference )
and Cartesian product), the database operators projectidh){ extension @),
selection ¢) and threshold ) and the operators for making an object persistent
or transient flaketransient Make persisten}. The extension operator allows it to
add derived attributes to the object type of an object sch@mathreshold operator
is used to restrict the set of instances of an object sches®llmmn the given thresh-
old values for EPTVs. The semantics of all other operatoeaogous to that of
their relational counterparts (cf. section 3.4.1.2).
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The database modBIM is then finally defined by:
DM = [TSCS 0S DS, Of5g{, Ofite]

where

T Sis the type system,

CSis the constraint system,

OSis the set of all object schemas,

DSis the set of all database schemas,

oggge' is the set of all data definition operators and
modeljs the set of all data manipulation operators.

More details about this database model are described in [23]

4.2.5 Other approaches
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Chapter 5
Fuzzy querying of fuzzy databases

The fuzzy querying techniques for regular databases asmiexsin chapter 3 can be
further extended (or generalized) so that they can be apfaighe fuzzy querying
of ‘fuzzy’ databases. The main difference with the ‘fuzzylenying techniques of
regular databases is that in ‘fuzzy’ databases the databak&awn with certainty in
case of imprecision, fuzziness, uncertainty or missingrimiation. This uncertainty
propagates to, and should be reflected in, the query resulitasthe logical frame-
work that is underlying the querying mechanism must be abbedequately model
and deal with this uncertainty. In this chapter, fuzzy qiregyof fuzzy databases in
three such frameworks is described. More specificallynéitia is paid to querying
in the possibilistic frameworkin a similarity based frameworkand in anextended
possibilistic frameworkThe extended possibilistic framework can hereby be seen
as an extension of the possibilistic framework.

For fuzzy querying of ‘fuzzy’ databases the same main ideagth fuzzy query-
ing of regular database remain applicable: preferencebeantroducednsideel-
ementary query conditions armbtweenelementary query conditions [5]. For the
treatment of preferences inside elementary querying tiondi the evaluation func-
tions for simple conditions must be generalized in such ativaythe possible im-
perfection of data is adequately dealt with. The treatméunbmposed conditions,
taking into account preferences between querying comdit{d existent), can then
occur completely analogously as with fuzzy querying of tagdatabases.

In the first section 5.1 of the chapter an example of a ‘fuzatadase is given.
This example will be used in the remainder of this chapteliustrate the presented
techniques. The next sections deal with the possible lbffmmeworks supporting
fuzzy querying of ‘fuzzy’ databases. In section 5.2 a genateoduction is given.
In section 5.3 the possibilistic approaches are descrisstion 5.4 deals with the
similarity based approaches, and in section 5.5 the ess#nite extended pos-
sibilistic approach is presented. For each of these appesaattention is paid to
the generalization of evaluation functions for simple sbariteria. With the han-
dling of the extended possibilistic approach, extra aib@ngoes to the description
of dealing with missing information in fuzzy query procegsi The chapter ends
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with section 5.8 that deals with some relational and objeeinted frameworks for
fuzzy querying of ‘fuzzy’ databases.

5.1 Example database

The example database of section 3.1 can be adapted to aflatabase as de-
scribed below.

Example 5.1Figure 5.1 contains a representation of the records of tlptad
database. The database again consists of three recordPgiesng’, ‘Artist’ and
‘Owner’. To illustrate the handling of imperfect informati the record types ‘Paint-
ing’ and ‘Artist’ have been generalized. The semantics efricord fields ‘Artist’,
‘Period’, ‘Value’ and ‘Owner’ of the record type ‘Paintingind the semantics of
the record fields ‘Yeaof_birth’ and ‘Yearof_death’ of the record type ‘Artist’ are
hereby generalized in such a way that these fields can copdawibility distribu-
tions as values (cf. the possibilistic relational modelant®n 4.2.1). These possi-
bility distributions allow to model imprecision, uncem& or unknown information.
For the record fields ‘Period’, ‘Value’, ‘Yeanf_birth’ and ‘Yearof_death’ all field
values are represented by means of linguistic terms. Reatsokthat record fields
that are used to associate record types with each otheisfAahd ‘Owner’) can
contain uncertain values. ¢

5.2 The evaluation of fuzzy query conditions

As already shortly explained in the introduction of this ptea, the evaluation of
fuzzy querying conditions with ‘fuzzy’ databases has a faeohniques in common
with fuzzy query evaluation with regular databases. Thiedihces stem from the
fact that a ‘fuzzy’ database can contain imperfect data hade imperfections can
bring along uncertainty with them.

Possible sources of imperfections are:

e With the integration of databases (e.g. when building a @at@house) different
values can be assigned to the same single-valued recordiledde each of these
values originates from a different data source.

e With predictions, one almost always has to deal with diffépossible/(un)certain
data values, which eventually can be dependent of some péeesn

e In archives, information can (partially) get lost or (paltiy) get damaged. This
can result in incomplete or missing data.

e Applying advanced analytical techniques, like for exangblestering or pattern
recognition, mostly results in different candidate obgemt patterns.
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RECORDTYPE Painting

I ID IName IArtist IPeriod Value IOwner I
PO1 | Fishermans house |{(Monet,1)} 1882 about_15M {(Boijmans,1),
(KMSK,1)}
P02 | The ballet course  [{(Degas,1)} around_1870|more_than_8M |{(Louvre,1)}
P03 |Mona Lisa {(Da Vinci,1)} |very_old very_expensive [{(Louvre,1)}
P04 | Afternoon in Ostend [{(Ensor,1), 1881 at_least_1K {(KMSK,1)}
(Permeke,0.4)}
RECORDTYPE Artist
Name First_name I Year_of_birth I Year_of_death
Da Vinci Leonardo around_1452 |around_1519
Degas Edgar 1834 _or_1835 | 1917
Ensor James 1860 1949
Monet Claude 1840 1926
Permeke Constant 1886 1952
RECORDTYPE Owner
Name Place Country
Boijmans Rotterdam The Netherlands
Louvre Paris France
KMSK Antwerp Belgium

Fig. 5.1 Records of the ‘fuzzy’ example database ‘Artworks’.

If the exact value of a record field is questioned and thus maice the result of
a query that acts on these field values can never be certaia.chssequence of
this, the approaches with satisfaction degrees, presantgthpter 3 are no longer
suited as an underlying logical framework. Indeed, theggaaches do not allow
it to model uncertainty. The other approaches, based om@atepossibilistic truth
values, can still be used as will be explained in what follo@ther, commonly used
frameworks are the possibilistic framework and the prolistlai framework. The
use of a similarity based framework has also been studietbj6 Due to the scope
of this book which is centralized around ‘fuzzy’ databasmdy the possibilistic,
the similarity based, and the extended possibilistic apgies are further described
in this chapter.



130 5 Fuzzy querying of fuzzy databases

5.3 Possibilistic approaches

5.3.1 Modelling

The possibilistic approaches are based on possibilityr}hgd’, 11]. In these ap-
proaches the evaluation of the querying criteria resuttgeéeh involved object in a
possibility ‘Pos’ and anecessity'Nec’ which respectively denote to which extent
the the object possibly satisfies the criteria and to whitarebthe object necessarily
satisfies the criteria. With other wordscifs a querying condition aneldenotes the
evaluation function, then the evaluatieft)(r) of ¢ for a database recordresults
in a couple

e(c)(r) = (Pogc)(r),Ned(c)(r))

where Po&)(r) is the possibility that satisfiesc and Ne¢c)(r) is the necessity
thatr satisfiesc.

5.3.2 Evaluation of simple conditions

With fuzzy querying of ‘fuzzy’ databases two different kinfl simple conditions
exist:

e Conditions of the form
A6BL

whereA is a record fieldL is a constant —possibly modelled by means of a
fuzzy set— and represents a (‘fuzzy’) comparison operator or the compiayib
operator.
e Conditions of the form
A6B

whereA andB are record fields anél represents a (‘fuzzy’) comparison operator.

As with fuzzy querying of regular databases, the comparggmratorop, which
might be ‘fuzzy’ or not, can be modelled by means of a membjrfsimction piop
thatis defined over the Cartesian product of two domdors, anddony and which
denotes for each coup(ey, v,) of domain values; € dom andv, € dom to which
extent the operationp(v,v2) (or v1 0p W) is satisfied. Like with fuzzy querying
of regular databases, this approach allows to deal withadpes as for example
‘approximately equal to’ and ‘much larger than'.

Simple conditions of the formrA 6 L.

e (‘Fuzzy’) comparison operators (op). With this first form of ‘fuzzy’ compar-
ison operators, only one record field (or attribufels involved. Examples are
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‘Age is much lower tharmiddle-aged’ and ‘Value ispproximately equal to
3.000 Euro'.
If 117 represents the possibility distribution of the currentdfiedlue ofA in a
recordr of the ‘fuzzy’ databasey is the membership function for the allowed
values ofA given by the user in the query specification gnrg is the member-
ship function of the (‘fuzzy’) comparison operatop which is defined over the
Cartesian produatony x dom of the domairdomy, (of the data type of) with
itself, then the possibility measure and necessity measfukeop L are obtained
as:

e(AopL)(r) = (PogAop L)(r),NecAop L)(r))

where

— PogAop(r) = SURcdom, MiN(HL o op(X), TA(X))
— NeqAop L)(r) = infycgom, Max(HL o op(X), 1 — Ta(X))
with

Hioop(X) = SUP Min(Hop(%.X), kL (X)).

X' edomp

This last expression expresses that op is the fuzzy set of the elements of
domu which are in relatiorop with at least one element af
The possibility measure and necessity measure define tway &ets over the
result set of the comparison: the fuzzy set of records thasipty satisfy the
comparison and the fuzzy set of records that necessarigfysttte comparison.

e Compatibility operator (1S). As with the fuzzy querying of regular databases,
the compatibility operatolS allows it to check to which extent the values of a
given record field of database records are compatible witizzyfset of allowed
values that is specified by the user in the query conditionsadentually repre-
sented by means of linguistic term. In ‘fuzzy’ databases,rdtord field values
can be modelled by a possibility distributions. In generall&’-proposition is
of the form

AISL

whereA is a record field (or attribute) of the database and a fuzzy set of
allowed values foA which is given by the uset. can eventually be represented
by a linguistic term.

Examples of ‘IS’-propositions areValuel S expensive’,S peedS high’, ‘Period
IS old’ and WeightlS heavy'. HerebyValug Speed Period, andWeightare
record fields (or attributes) of record types stored in thelolse and ‘expen-
sive’, ‘high’, ‘old’ and ‘heavy’ are linguistic terms whictepresent the domain
values of the data type of the record field that by the user @msidered as be-
ing allowed values. Each of these linguistic terms are medddy a fuzzy set of
which the membership grades are interpreted as degreespitibility.

From a possibilistic point of view, the evaluation of an 4&oposition must
now be interpreted as follows [13]:is a fuzzy set andr, is the possibility dis-
tribution that represents the field valueAfThis possibility distribution models
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an interpretation space where each interpretation casrelspto the assignment
of one of the domain valuesto the record fieldA with possibility 77a(x). The
evaluation of the ‘IS’-proposition then corresponds todk&rmination of a pos-
sibility measure and necessity measure which togethertdeéaavhich extent it
is (un)certain that a given record satisfies the ‘IS’-prafims.

Again, the possibility measure and necessity measure defm&izzy sets over
the result set of the compatibility operation: the fuzzyafeecords that possibly
satisfy the ‘IS’-proposition and the fuzzy set of recordatthecessarily satisfy
the ‘IS’-proposition.

If i, represents the possibility distribution of the field valdefowhich is ob-
tained from a database recardndy is the membership function given by the
user that denotes the valuesfthat are considered to be adequate (or allowed)
with respect to the query result, then the possibility measimd necessity mea-
sure ofA IS Lare obtained as:

e(AIS(r) = (PogA IS D(r),Nec(A IS L)(r))
where

— PogAIS(r) = sugedowmin(m(x),uL(X))
— NedA IS L)(r) = infxedom, MaX(Tia(X), p (X))

Simple conditions of the form 6 B.

With this form of simple conditions two different record fisl (or attributesp and
B are involved. The operatd represents a (‘fuzzy’) comparison operator which
will further be denoted asp. In what follows it is for simplicity reasons assumed
thatA andB are independent attributes, i.e. the valuA & independent of the value
of B and inversely, of the same record type. Examples of suchittonsl are ‘the
exam result for the course databaseapproximately equal tthe exam result for
the course multimedia applications’ and ‘the exam resultie course databases is
much better thathe exam result for information management'.

If i, and 73 represent the possibility distributions of the field valué#\ and
B which are obtained from a database recogshd iy is the membership function
for the (‘fuzzy’) comparison operatarp and is defined over the Cartesian product
donmu x dony of the domainglom, anddong of the data types of respectively
andB, then the possibility measure and necessity measufeayf Bare obtained
as:

e(Aop B(r) = (PogA op B(r),NeA op B)(r))

where
i POiA op B)(I’) = ?qu,x/)edomAxdorng min(uop(K X’), T[q(X), T@(X/))
o Nqu op B)(r) = 'nf(x,x’)edormxdomg max(uop(x, X/), 1- m(X), 1- T@(X/))

As was previously the case, the possibility measure andssiéganeasure again
define two fuzzy sets over the result set of the comparis@nfukzy set of records
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that possibly satisfy the comparison and the fuzzy set adroscthat necessarily
satisfy the comparison.

5.3.3 Evaluation of composite conditions

In case no preferences between query conditions are spkcifimposite conditions
can be evaluated by means of the following computation rules

e Rule for negation:
If

&(c) = (Pogc),Neq(c))

then

&(—(c)) = (Pogc),Ned(c))
where the line above the fuzzy set denotes the complemenatopdor fuzzy
sets.
e Rule for conjunction:
If
e(c1) = (Pogcy),Ned(c;) ande(cz) = (Pogcz),Nedcy))
then
e(c1 A Cp)) = (Pogci) NPogcy),Nedci) NNedgcy))

wheren represents the intersection operator (t-norm) for fuzzty.se
e Rule for disjunction:
If

e(c1) = (Pogcy),Ned(c1) ande(cz) = (Pogcz),Ned(cz))

then
e(c1 V) = (Pogcy) UPoSC,),Nedcr) UNedc,))

whereU represents the union operator (t-conorm) for fuzzy sets.

In case we have to deal with preferences between query @@mslian approach
similar to the ones described in section 3.3.2.2 must be [U&3d

5.4 Similarity relation based approaches

5.4.1 Modelling

In the similarity based approaches as introduced in seeti@r? the uncertainty
involved in the query results is modelled by means of mentiyergrades which
are all interpreted as degrees of uncertainty [6, 15]. THusjs a database object
that is involved in the result of a que€y for which a querying condition must be
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evaluated, then the evaluation

e(c)(r) = Ha(r)

results in a membership degrgg(r) that indicates how (un)certain it is thasat-
isfies the quer@.

5.4.2 Query evaluation

In the basic similarity relation based model, a general fofrBoolean queries is
considered [15]. A query

Qar,a,...,a), keN

is hereby considered to be an expressiork ddictorsVy, Vs, ..., Vx combined by
disjunctive or conjunctive Boolean operators

Viop\Vop... op\.

In order to be well formed with respect to a (fuzzy) relatiohaving generalized
domainsdony, ,dom,,...,dom,, me N, each factoVj, 1 < j <k must be

1. adomain elemera, a € domy,, wheredomy;, is a generalized domain for or
2. a domain element modified by one or more linguistic modifieke e.g.NOT,
VERYor MORE.ORLESS

The relationr may be one of the original database relations or be obtaiged a
a result of fuzzy relational algebra operations. Fuzzy sgivs apply to both op-
erators and modifiers. An example of a query for a fuzzy rehatPainting’ with
attributesvalueandPeriodis

Q(cheaprecen) = MORE.ORLESS cheamnd NOT VERY VERY recent

where ctheap is an abbreviation of the ternValue= cheap and ‘recent is an
abbreviation of Period = recent. The use and interpretation of linguistic modifiers
is as described in section 3.2.1.2. The linguistic modWi&RY is hereby used to
strengthen the linguistic ternecent NOT is used to negatd/'ERY VERY receht
whereas  ORE_ OR LE SSs used to dilate or to weaken the linguistic tercheap.

A membership grade is assigned with each tuple in a respetetéonr, reflect-
ing the possibility that the tuple matches the query spetiios. Leta € donmy; be
an arbitrary element. The membership gradéb), b € domy, is defined based on

the similarity relatiorSy, (a,b) over the domairuif)rnrj . The query

Q(a17a27"'aak)a ke N

induces a membership gragdg(t) for a tuplet in the responseas follows:
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1. Each interpretation = [aj,ap, ..., &y] of t determines a grade, (aj) for each
domain elemend; of Q(ag, ay, ..., a).

2. Evaluation of the modifiers and operatorJ(e;, ay, ..., ax) over the member-
ship gradeg, (a/j) yields ug(a), the membership grade of the interpretation
with respect to the query.

3. Finally, Lg(t) = max{Lo(a)|a is an interpretation af}.

In short, the membership grade of a tuple represents therisshing interpre-
tation. The response relation is then the set of tuples gavim zero membership
grades. In practice, it may be more realistic to considey th#@ tuple with the high-
est grade.

Three methods for calculating tuple membership grades/aragingn-root and
weighted summation of membership grades [15].

5.5 Extended possibilistic approach

5.5.1 Modelling

In the extended possibilistic approach, the framework dase(extended) possi-
bilistic truth values ((E)PTVs) of chapter 3 is further disged. Uncertainty about
the results of a fuzzy query is hereby modelled by means d? T} [8]. Conse-

quently, an (E)PTV is associated with each objetttat is involved in the result of
a query for which a querying conditiamust be evaluated. Thus,

e(c)(r) = {(T, He(c)(r)(T)); (F; Heeyr) (F)), (L, Hereyry (L)) }

The membership grades of the elemehtd- and L in this EPTV hereby respec-
tively express to which extent it is possible that the objesatisfies conditio, to
which extent it is not possible that the objec$atisfies conditiore, and to which
extent it is possible that conditianis not applicable for the object i.e.

/Je(c)(r)(T) - Pos{e(c)(r) = T)
He(c)(r)(F) = Poge(c)(r) =F)

and
He(c)(r) (L) = Poge(c)(r) = L1).

The relationship between the possibilistic approach ardettiended possibilistic
approach follows from Néc)(r) = 1 — Pogc)(r), i.e.

® L) r)(T) =Poge(c)(r) =T) = Pogc)(r)
* g (F)=Poge(c)(r) =F) = Pogt)(r) = 1 - Neqc)(r).

Differently than with the possibilistic approach, in thaexded possibilistic ap-
proach the underlying logic allows it to explicitly reflediat some information
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might be inapplicable or non-existent: if for a given datdaecord some of the
querying conditions are not applicable, then this will beleitly reflected in the
resulting associated EPTV.

5.5.2 Evaluation of simple conditions

Also in the extended possibilistic approach a distinct®miade between simple
conditions of the formA 6 L (whereA is a record fieldL is a constant —possibly
modelled by a fuzzy set— anllrepresents either a (‘fuzzy’) comparison operator
or the compatibility operator) and simple conditions offitnen A 6 B (whereA and

B are record fields anfl represents a (‘fuzzy’) comparison operator).

The comparison operatoop, fuzzy or not, are again modelled by means of a
membership functiom,p which is defined over the Cartesian product of two do-
mainsdom, anddomy and which denote for each cougle,v2) of domain values
v € dom andv, € domy to which extent the operatiomp(vy, v (Or vi 0p w) is
satisfied.

Simple conditions of the formA 6 L.

e (‘Fuzzy’) comparison operators ©p). If 1 is the possibility distribution of the
current field value ofA in a ‘fuzzy’ database record pg is the membership
function for the allowed values fok specified by the user ang, is the mem-
bership function of the (‘fuzzy’) comparison operatgy which is defined over
the Cartesian produdtoms x domy, of the domairdony, (of the data type of)
with itself, then the (E)PTV oA op Lis obtained as:

e(AopL)(r) = {(TaIJe(Aop L)(I‘)(T))7 (F, HeAop L)(r)(F))a (J-aUe(Aop L)(r)(J—))}
where

— He(AopL)(r) (T)= Su&edomg\{Ldo,m} min(pL op(X), (X))
— He(AopL)(r) (F) =1- infxedorm\{J_dO,m} max(“L o op(X), 1- T’A(X))
— Heaopuyr) (L) = max(u (Ldom, ), Ta(Ldom))
with
HLoop(X) = sup min(top(X,X), pi(X)).
X' edomp
Hereby is is explicitly assumed that each donthimy contains a special domain
value Lgom, Which is used to model the inapplicability of a ‘regular’ daim
value.
e Compatibility operator ( 1S). The compatibility operatdiS allows it to compare
a field value from the database —which is eventually moddiled possibility
distribution— with a fuzzy set of allowed values that specifby the user and
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of which the membership grades are interpreted as degreesmgfatibility. This
fuzzy set can eventually be represented by means of a lingtgsm. From a pos-
sibilistic point of view, the evaluation of an ‘IS’-propaisin can in the extended
possibilistic approach be interpreted as follows [13]s a fuzzy set and is
the possibility distribution that represents the actuadifimlue ofA and models
an interpretation space. Each interpretation correspirtie assignment of one
of the domain valuez to the record field\. The possibility of the interpretation
is M (X). The evaluation of the ‘IS’-proposition corresponds todleéermination
of a possibility measure and its complement which respelgtidenote to which
extent it is possible that the stored field value is compatiath the given fuzzy
set —represented by the membership grade of the truth viales (T)— and to
which extent it is not possible that the stored field valueospatible with the
given fuzzy set —represented by the membership grade ofutievalue ‘false’
(F)—. Additionally, it is also computed to which extent it is ggible that the
‘|S’-proposition is not applicable for the given record éiel

If i, represents the possibility distribution of the field valdefowhich is ob-
tained from a ‘fuzzy’ database recaréndyy is the membership function given
by the user, denoting the values that considered to be atie(praallowed) for
A then the (E)PTV oA IS Lis obtained as:

e(AISD(r) = {(T, hetars ) (T)), (F, Hegars u(n) (F))s (L Heats pn (L))}
where

— Heals L)(r)(T) = SURedom, min(TCA(X)_v HL(x))
= Hears () (F) = SUBedomy\ { L gom, } MIN(TA(X), 1 = pi (X))
— Hears ) (L) = min(Ta( Laom, ), 1 — Hi(Ldomy))

Hereby it is again explicitly assumed that each donaiim, contains a special
domain valuel 4om, thatis used to denote the inapplicability or the non-existe
of a ‘regular’ domain value.

The formula above reflects that:

— If Alis possibly not applicablerf(Lgom,) > 0) and the labeL refers to the
value Lgom, (UL(Ldom,) > 0), then the truth valu@ is possible to the extent
that is calculated.

— The possibility of the truth valué is 1 if Ais possibly completely inapplica-
ble (Ta(Ldom,) = 1) and the label does not refer to the valugym, .

Example 5.2As an example, consider the evaluation of a propositionfadB80K
IS cheap’ for a record field ‘Value’ as illustrated in figur@ SHereby

— He('around30K IS cheap}(r)(T) is shortly denoted agr,
— MHe(rond30 1S jong)(r) (F) is shortly denoted agr, and
— He(*rond_30 ISjongj(r)(J—) =0.

<
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4
1 ucheap T[amund_30K
i -

] ~T 1_ucheap

Prices for
paintings

| |
-y
A |
Fig. 5.2 Example of the evaluation of an ‘IS’-proposition.

Simple conditions of the form 6 B.

Two different record fields (or attributeg) andB are involved in these kinds of
conditions. Furthermore, the operatmrepresents a (‘fuzzy’) comparison which
will further be denoted asp. For the sake of simplicity it is again assumed tAat
andB are independent attributes —the valuefo independent of the value &f
and inversely— of the same record type.

If iy and 1z represent the possibility distributions of thee field valoéA and
B which are obtained from a ‘fuzzy’ database record agg is the membership
function of the (‘fuzzy’) comparison operatop that is defined over the Cartesian
productdomu x dong of the domainglomy anddong of the data types of respec-
tively A andB, then the (E)PTV ofA op Bis obtained as:

e(AopB(r) = {(Tvue(Aop B)(r)(T))a (F, He(a op B)(r)(F))a (J-7Ue(Aop B)(r)(J-))}
where
i Ue(AopB‘)(r)(T):

sup mMin(Hop(X,X'), Ta(X), TB(X))
(%X )€doma\ { L domy } ¥ AOME\ { Ldom }

® gAop B‘)(r)(F) =

1— inf ma X,X),1—m(X),1— (X
(xX)€dOMR\{ Lo, }xdoms\{ Lgom } AHop(x.X) ) (<))
® Heaop B‘)(r)(J—) = max(Ta(Ldom,), TB(Ldoms))

Hereby it is explicitly assumed that the domaiom, contains a special domain
value Lgom, and the domaimony contains a special domain valugyom, for the
modelling of the inapplicability of a ‘regular’ domain vadu
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5.5.3 Evaluation of composite conditons

Because in the extended possibilistic approach all evahsbf simple conditions
resultin an EPTV the evaluation of composite conditionsaamslie done as has been
explained in sections 3.2.2.2. In case preferences betogugEy conditions have to
be taken into account, the evaluation can be done as dedanilsection 3.3.2.2.

5.6 Other approaches

As described in section 4.1.1 imprecise and vague infoonatan in a ‘fuzzy’
database be modelled by means of ‘interval-valued’ fuzty @®FS), ‘intuition-
istic’ fuzzy sets (IFS) or ‘two-fold’ fuzzy sets (TFS). Witthe handling of the
extended possibilistic approach in section 5.5 it is alyeaxplained how ‘IS’-
predicates of the form

AISL

with A a record field (or attribute) of the ‘fuzzy’ database dné fuzzy set of
allowed values forA, can be evaluated. In remainder of this section, we further
extend this approach in case the data are modelled by meainseo¥al-valued’,
‘intuitionistic’ or ‘two-fold’ fuzzy sets (cf. [9]).

5.6.1 Evaluation of the compatibility operator ‘IS’ with tl use of
‘intuitionistic’ fuzzy sets

First we deal with the case based on ‘intuitionistic’ fuzafss(IFS) because this
offers interesting extra querying facilities. At the onendat is assumed that the
values of the record field of an ‘I1S’-proposition are allowed to be modelled by an
‘intuitionistic’ possibility distribution (IPD)

(Thyp, Thp)-

At the other hand the linguistic terincan also be modelled by an ‘intuitionistic’
fuzzy set (IFS)
L={<xHL(X),vL(X) > |x€ dom}

with membership functiop. and non-membership function.

Casel

In the case where the value Afthat is obtained from the ‘fuzzy’ database record
is modelled by a regular possibility distribution
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T

and the linguistic ternh is given by means of an intuitionistic fuzzy set

{< X, uL(X)a VL(X) > |X6 dOITA}

the (E)PTV of the proposition
AISL

is defined by

e(AISL)(r) = {(T, Heats ur) (T)), (F Hears ur) (F)), (LHeais iy (L)) }
where

® Ueals L)(r)(T) = Sugedormmin( TA(X), UL (X))
. Ile(A|SL)<r)(F)—SUF&edom\\{Ldom}m'”( TA(X), V(X))
® Uearsyr) (L) =min(Ta(Ldom, ) VL(Ldom))

Example 5.3The same situation as in example 5.2, considering the el@tua the
proposition ‘aroundB0K IS cheap’ for a record field ‘Value’, is given in figure 5.3.
The linguistic term ‘cheap’ is hereby now modelled by an IFS:

4
1 ucheap T[amund_30K
b = -

e[ X"
153 Ity

I—
e 9 Pri_ce.s for
7 %  paintings

Fig. 5.3 Example of the evaluation of an ‘IS’-proposition withbeing an IFS.

By using an IFS, information about the non-membership ofmelats that are
denoted by the linguistic terrh is now more generally modelled by the non-
membership functiorv, instead of by the complement-1u;.. This allows for
example, as illustrated in figure 5.3, to consider pricesvbeh 30K and 50K as
being neither cheap, nor not cheap. This illustrates thatitionistic’ fuzzy sets al-
low for more flexibility in expressing non-membership and ba used in (database)
applications which demand for such a flexibility.
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Case 2

In the case where the value Afthat is obtained from the ‘fuzzy’ database record
is modelled by an ‘intuitionistic’ possibility distribugn (IPD)
(”uAv T[VA)

and the linguistic ternh is given by an ‘intuitionistic’ fuzzy set (IFS)
{< X UL(X),vL(X) > |x € dom}

the (E)PTV of the proposition
AlISL

is analogously defined by

e(AIS(r) = {(T, tears ) (T)): (F Hears vy (F)), (L Heais py (L))}
where

® Heaisy(r) (T)= SUBcdomy min("IJA(X)v KL (X))
® Heaisy(r) (F)= SuQ(EdOnh\{Ldonh} min(nUA(X)v vL(X))
® Heasyr (L) =min(7g, (Ldom,): VL (Ldom,))

The non-membership part,, of the IPD (m,,,m,) for A is not used for the
computation of the (E)PT¥(A IS L)(r). This is due to the fact that we are only in-
terested in the compatibility betwedrandL (andNOT(L)) and not in the compat-
ibility betweenNOT(A) andL (andNOT(L)). In cases where we have to compute
the (E)PTV of a proposition of the form

NOT(A) IS L

the partrs, can be meaningfully used as follows:

e(NOT(A) IS L)(r) = {(T, Hervor(ayis v (T)),
(F, tenotayis v (F)), (L HenoTayis ) (1))}
where

* Henot(a)is L) (T) = SUBecdom, MIN(T, (X), ML (X))
* Henor(a)is 1)) (F) = SUBedom\ { Lgom, } MIN(Tl, (X); V(X))
® LenoT(a)is U(r) (L) = Min(T5, (Ldom,)s Vi (Ldom))
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5.6.2 Evaluation of the compatibility operator ‘IS’ with ta use of
‘interval-valued’ fuzzy sets

On the one hand, ‘interval-valued’ fuzzy sets can be usedddelthe values of a
record fieldA in a ‘fuzzy’ database. This can be done by means of an intenlaked
possibility distribution (IVPD)

(10, T84).

In such a case, the record figddn an ‘I1S’-proposition
AISL

can also take an IVPD as value. On the other hand the linguéstinL in the ‘I1S’-
proposition can be modelled by means of an interval-valuey set (IVFS)

L = {< x4 (), u(x) > |x € domp}

with lower bound/.q'_ and upper boung/" for the membership function. Heretp;{fJ
can be seen as an optimistic approximation of the membeiftstgpion, whereag),
can be seen as a pessimistic approximation.

Casel

We first consider the case where the value of the record Aebtained from the
‘fuzzy’ database recordis modelled by a regular possibility distribution

Tl

and the linguistic ternh is given by means of an IVFS
L={<xu (x),u'(x) > |x € domp}.
In such a case and if we consider an optimistic approach BTV of the propo-
sition
AISL
is defined by

e(AISD(r) = {(T, Hears ) (T)): (F Hears vy (F)), (L Hears py (L))}
where

® lgals L)(r)(T) = Sug(gdonhmin(m(x)_v K (%)
* Heais 1)) (F) = SUBcdomy\{ Lygn, } MIN(TAMX), 1 — (X))
® Ueals L)(r)(J—) = min(T(Ldom), 1 — H'(Ldomy))
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Example 5.4Let us, consider the same proposition ‘arol88K IS cheap’ as in
examples 5.2 and 5.3. If the linguistic term ‘cheap’ is méateby an IVFS as
depicted in figure 5.2, the computation of the resulting ([BJ#s done as illustrated
in the figure. o

Prices for
paintings

Fig. 5.4 Example of the evaluation of an ‘IS’-proposition withan IVFS.

To determine the (E)PTV the (optimistic) upper boyrttds used to compute the
possibility of the truth valud, while the (optimistic) complement of lower bound
p' is used to compute the possibilities of the truth valkeand L. This allows
for more flexibility because imprecision in the modellingiofuistic terms can be
more adequately dealt with.

In the case of a pessimistic approach, the (E)PTV of the itipo

AISL
is defined by
e(AISD(r) = {(T, He(ars yr (T)): (F, Hears () (F)), (L He(ars yr) (L))}
where

® Ueals L)(r)(T) = Sug(gdonhmin(m(x)vull_(x))
* Hetais 1) (F) = SURedomy\ { Lo, } MIN(TA(X), 1 — ut (%))
® Ugaisym(L)= min(mu—dor‘r]g)al_ut(ldorm))

Case 2

Secondly we consider the case where the valuetbht is obtained from the ‘fuzzy’
database recomdis modelled by an interval-valued possibility distributio

(njAv "/li)
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and the linguistic ternh is given by means of an IVFS
L={<xu (x),u(x) > [x € domp}.

Also in such a case, either an optimistic or a pessimisticegh is possible for the
calculation of the (E)PTV of the proposition

AISL

With the pessimistic approach the (E)PTV is defined by

e(AIS(r) = {(T, tears ) (T)): (F Heais vy (F)), (L Heais iy (L))}
where
® HUeaisy(r) (T)= SURcdom, min(n'A(x), /J|I_ (x))
* Heais 1) (F) = SUBcdomy\ { Laon, } min(7g\(x), 1 — pf (X))
o Heais ) (L) =min(m(Laoms) 1 — Ml (Ldom))
Hereby, the (pessimistic) lower bound functin‘pis used.

Whereas with the optimistic approach the (E)PTV is defined by

e(AISD(r) = {(T, hetars ) (T)), (F, Hegars u(n (F))s (s Hears pn (L)) }
where

® Heaisy(r) (T)= SUBedom, min("}i(x)v HE(X))

* Heais 1)) (F) = SUBcdomy\ { Lgom, } MIN(TA(X), 1 — (X))
* Heais i) (L) = min(7x(Ldom), 1 — K (Ldom,))

Now, the (optimistic) upper bound functior is used.

5.6.3 Evaluation of the compatibility operator ‘IS’ with ta use of
‘two-fold’ fuzzy sets

If ‘two-fold’ fuzzy sets are considered, then it is an opttormodel the values of the
record fieldA of an ‘IS’-proposition by means of a ‘two-fold’ possibilitistribution

(TPD)
(TR T)-

Furthermore, it is also an option to model the linguistiertérby means of a ‘two-
fold’ fuzzy set (TFS)

L=({<xu"(x) > |xedom},{< x u(x) > [x € domn})

with membership functionu{ for the determination of the preferred values and
membership functiomf‘ for the determination of the satisfactory values. Hereby,
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uf can be seen as the preferred conformity for the membershgtién ofL, while
> can be interpreted as an allowed conformity for the membgfahction ofL.

Casel

In the case where the value of the record figldbtained from the ‘fuzzy’ database
recordr is modelled by a regular possibility distribution

T

and the linguistic ternh is given by means of a TFS

L= ({<xpu () > [x € domn}, {< x, u3(X) > [x € domn})

both membership functions” and i can be used to compute the (E)PTV of the
proposition
AISL

With a progressive, optimistic approach, the (E)PTV candfamdd on the basis of
the membership functiop,:_3 that defines the allowed values, i.e.:

e(AIS(r) = {(T, tears ) (T)): (F Hears vy (F)), (L Heais iy (L))}
where
® Ueals L)(r)(T) = SURedom, min(TCA(X)vlJLS(X))
* Heais 1)) (F) = SURedomy\ { Lo, } MIN(TA(X), 1 — UE(x))
® lgals L)(r)(J—) = min(7a(Ldom,),1— IJLS(J-dorm))

With a rather conservative, pessimistic approach, the itiefinof the (E)PTV
can be based on the membership funcfifirthat defines the preferred values, i.e.:

e(AIS L)(r) = {(T, Hea1s () (T)) (Fs te(ats vy (F))s (L Hears pry (L))}
where

® Heaisy(r) (T)= SUBedomy min(7a(x), IJLP(X))
* Hetais 1)) (F) = SURecdomy\ { Lgom, } MIN(TA(X), 1 — uf (%))
o Ugaisyr (L) =min(ma(Laom). 1— M- (Ldoms))

Example 5.5In figure 5.5 the computation of the (E)PTV resulting from évalu-
ation of the proposition ‘around80K IS cheap’ is illustrated. For the sake of the
example we have chosen for the conservative approach. Bhedsfield value
‘around-30K’ is modelled by a regular possibility distribution, wieas the linguis-
tic term ‘cheap’ is modelled by the TFS with membership fioms ufheap and

S
“cheap ©
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>
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Fig. 5.5 Example of the evaluation of an ‘IS’-proposition withan IFS (conservative approach).

Case 2

In the case where the value of the record fidldbtained from the ‘fuzzy’ database
recordr is modelled by a ‘two-fold’ possibility distribution

(TR, 1)
and the linguistic ternh is given by means of a TFS
L= ({<xuf(x) > [x € domp},{< X, u3(x) > |x € dom})

we can again choose for an optimistic or a pessimistic aghrfta the computation
of the (E)PTV of the proposition
AISL

With a progressive, optimistic approach, the (E)PTV candfeed on the basis
of the membership functiom,f anduf‘ that depart from the allowed values, i.e.:

e(AISD(r) = {(T, hears ) (T)), (F, Hegars v (F))s (s Heats b (L)) }
where

® Ueals L)(r)(T) = Sugedonhmin(ng(x)aﬂf(x))
® Heaisy(r) (F)= Sug(gdomg\{Ldo,m} min(n,f‘(x), 1- IJLS(X))
* Ugaisymn (L) = min(”ﬁ(idorm)al—ul?(idorm))

With a conservative, pessimistic approach, the definitibthe (E)PTV can be
based on the membership functim,fsandu'_P that depart from the preferred values,
i.e.

e(AISL(r) = {(T7I1e(A|s L)(r)(T))v (F, Heats L)(r)(F))v (J—a“e(AIS L)(r)(J—))}

where
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hd Ue(AISI_)(r)(T):SUQ(edonhmin(nAP(X)aﬂLp(X))
. l"e(AISL)(r)(F):Sug(edorm\{i_do,m}min(nAP(X)al_uI_P(X))
o Heais (L) = mMin(7k(Ldomy ), 1 — M. (Ldomy))

5.7 ‘Fuzzy’ database querying in the presence of null values

As explained in section 4.1.3, the extended possibilighpreach provides extra
facilities for the handling of missing information. In trésbsection attention is paid
to the different cases and contexts where a null value canratith the handling
of selection conditions of flexible queries. The selectipamtor is the key operator
to deal with when handling null values. The handling of otbperators, like e.g.
projection and join —which is typical for relational datalea—, is not further dealt
with in this section.

For the sake of illustration, a ‘fuzzy’ database that cas$ one single record
type, called Poll’, is considered. With this record type (partial) infornwatiresult-
ing from a social neighbourhood research is stored in thebdae. Each recordf
the record type represents information about a registeagétjpant of the research
and is characterized by a unique participant identifldiD) —the key field—, a
field for the year of birth of the participanY éarof_birth), a salary field $alary)
and a field with the year of birth of the oldest child of the apiant Oldestchild).
As extra information a fieldEPTV) is added to represent the EPTV that is used to
express the extent to which it is (un)certain that the recaatisfies the predicate
of the record type (cf. subsection 3.4.1.2). For the sakéngplicity it is assumed
that all records initially have been assigned an ERTYV,1)}. The value{(T,1)}
can for example be the default value that is assigned witlrcardeon insertion.
Alternatively, in a more general situation the user couldalbewed to provide an
extended possibilistic truth value to express that thertecan not be considered as
fully satisfying (or ‘belonging to’) the record type.

In what follows it is also assumed for the sake of simplichattthe non-key
record fields are mutually independent of each other —theevaf a record field
is independent of the values of the other record fields anergaly—. Without this
restriction, the following description would be more compbecause dependencies
between record fields must be taking into account when hagndiissing informa-
tion: if a value is missing, but its dependent values are thety the missing value
can in some cases be (approximately )derived from its degregvalues. For exam-
ple, if the salary of a person is dependent of his or her ags ¢hmissing salary
value could be derived from the known year of birth of the pars

For the modelling of undefined information, the domadiasn of the associated
data typeg of the record fields are considered to contain a type spedificaih
value L;. The valuel is used to model those cases where a regular domain value of
t does not apply. Furthermore, for each donmaam three linguistic terms ‘UNK’,
‘UNA and ‘N/A are defined as described in subsection 4.2.3.
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PID Yearof_birth  Salary  Oldestchild EPTV

PO1 1969 2.600 2000 {(T.1)}
P02 1952 4.0081000 1976  {(T,1)}
PO3 1966 2.800 UNK {(T,l)}
P04 1930 N/A 1960 or 1961{(T,1)}
PO5 1965 3.008500 N/A  {(T,1)}
P06 1955 ‘notaverage’ N/A {(T,1)}
PO7 1962 UNK UNK  {(T,1)}
PO8 1958 UNK N/A  {(T,1)}
P09 1930 N/A N/A  {(T,1)}
P10 1980 UNA UNA {(T,1)}

Table 5.1 Examples of records of the record typell.

Table 5.1 contains a table representation of the record sle¢ oecord typd-oll
(each row represents a record). The values of 8addry and ‘Oldestchild’ fields
are all labels that are modelled by a possibility distribntihat is defined over the
domain of the data type of the record field. A label with a regnumber like 2.600’
corresponds with a possibility distribution that is chaesized by normalized mem-
bership function of which the support is a singleton. Congedly, labels like ‘1960
or 1961’ correspond with a possibility distribution whichdharacterized by a nor-
malized membership function with a discrete support. Lalike ‘4.000+1.000’
correspond with possibility distributions with triangutaembership functions. As
such, ‘4.008-1.000’ is for example modelled by the triangular distribatfunction

x3990 iff x € 30004000
14,000:1.000(X) = § 2928 iff x € [40005000
0 else

Analoguously, the possibility distributions that corresd with the labels ‘average’
and ‘notaverage’ are respectively defined by the trapezoidal Higinn function

X209 jff x € (1000 1500

ToveragdX) 1 alsx € [15002500
verag = .
3000 iff x € [2500:3000
0 else

and the distribution function

T’hot_average(x) =1- T’éverage(x)

Hereby the salary value of record ‘P06’ is either ‘lower'nha500, or ‘larger’ than
2.500, or ‘not applicable’ which can for example be due tofttet that participant
‘P06’ is not an employee or is retired.
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PID Salary EPTV
PO1 2.600 {(T,1)}
P04 N/A {(L,1)}

P05 3.00&500  {(T,0.2),(F,1)}
P06 ‘notaverage{(T,0.2),(F,1),(L,1)}

P07 UNK {(T,1),(F,1)}
P08 UNK {(T,2),(F,1)}
PO9  N/A {(L,1)}

P10 UNA {(T,1),(F,2),(L,1)}

Table 5.2 Result of Query 1.

To illustrate database querying, a simple SELECT-FROM-\RIEEgrammar
will be used. In this grammar the selection conditions areereded with ‘IS’-
propositions which are evaluated as explained in sectibn/As an example of a
very straightforward query with a simple selection corditthe following query
specification can be considered :

Query 1
SELECTPID, SalaryFROM Poll WHERE Salary!S 2.600

This query selects the participant identifiei D) and salary $alary) of all par-
ticipants that have a salary that exactly equals 2.600. &pitnat the query is exe-
cuted on the database presented in table 5.1. The recotdkehabelong to the re-
sult of Query 1 are given in table 5.2. For each record in teeltethe corresponding
EPTV is computed as described in section 5.5. (Records withsaociated EPTV
{(F,1)} are omitted.) As with regular database querying, the exdémassibilistic
approach allows it to find records for which the correspogdinth value is either
completely true (record ‘P01’), or completely false (retotP02’ and ‘P03’). Ad-
ditionally, the approach also allows it to deal with recattust only partially satisfy
the selection condition (records ‘P05’ and ‘P06’). Casewloith it is known that a
regular salary value exists, but for which there is furthething known about this
salary value result in an EPTV representing ‘unknown (bytliapble)’ (records
‘P07’ and ‘P08). If it is known that a regular salary valuessmot apply for a given
participant, because this participant is for example natraployee or retired, then
the corresponding EPTV represents ‘not applicable’ (rdsd?04’ and ‘P09’). The
possibility of inapplicability can also occur in combir@tiwith the possibility of a
partial query satisfaction (record ‘PO6’). Finally, it caocur that absolutely nothing
is known about the salary value of a given record. In such @,¢hs corresponding
EPTV represents ‘not available’ (record ‘P10).

In a more complex query, the selection criteria can contiels which can not
be modelled by means of a regular set. For example, cons$ideraxt query with a
simple fuzzy selection condition:
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PID Salary EPTV

PO1  2.600 {(T,0.8),(F,0.2)}
P03  2.800 {(T,0.4),(F,0.6)}
P04  N/A {(L,1)}

PO5 3.00&500  {(T,0.5),(F,1)}
P06 ‘notaverage{(T,0.5),(F,1),(L,1)}

P07 UNK {(T,1),(F,1)}
P08 UNK {(T,2),(F,1)}
P09  N/A {(L,1)}

P10 UNA {(T,1),(F,2),(L,1)}

Table 5.3 Result of Query 2.

Query 2
SELECTPID, SalaryFROM Poll WHERE SalarylS average

This query selects the participant identifiei D) and salary $alary) of all par-
ticipants that have an average salary. Hereby it is assuhadaverage’ is a lin-
guistic term that representg1500—2500and is modelled by the trapezoidal distri-
bution function given above in the description of table Fhe records that belong
to the result if the query is executed on the database pexsantable 5.1 are given
in table 5.3. This result illustrates that EPTVs can medfiihgbe used to express
the uncertainty about query satisfaction and moreovewaitoadequately handle
missing information with fuzzy database querying. Morecsielly, EPTVs allow
to model those cases where the satisfaction of a selectioditcan is not com-
pletely certain (records ‘P01’, ‘P03’, ‘P05’ and ‘P06’). ¢an also occur that the
selection condition is completely not satisfied (record2B0As is the case with
regular queries, EPTVs also allow in fuzzy querying to adéely deal with un-
known information (records ‘P07’ and ‘P08’), the (poss)hleapplicability of in-
formation (records ‘P04’, ‘P06’ and ‘P09’) and the unavhildy of information
(record ‘P10").

With composite querying conditions the EPTVs in the restiét query are com-
puted from the EPTVs of the simple conditions of the compasitHereby, the
logical operators—", ‘ A’ and ‘V’, which are defined in subsection 2.4.2.2 can for
example be used. For the sake of illustration, we can congidecan consider the
following the query:

Query 3
SELECTPID, Salary, Oldestchild FROM Poll
WHERE (SalarylS 2.600) AND Qldestchild IS 2000)

This query selects the participant identifiei D), salary Galary), and year of
birth of the oldest child@ldestchild) of all participants that have a salary that is
exactly equal to 2.600 and of who the oldest child is born @ ykear 2000. The
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PID e(cy)(r) e(co)(r) e(cy)(r)Ae(c)(r)
PO1 {(T.1)} {(T.1)} {(T.1)}
P02 {(F,1)} {(F,1)} {(F,1)}
P03 {(F,1)} {(T,1),(F,1)} {(F.1)}
P04 {(L,1)} {(F.1)} {(F.1)}
P05 {(T,0.2),(F,1)} {(L,1)} {(F,1),(L,0.2)}
P06 {(T,0.2),(F,1),(L, 1)} {(L,1)} {(F,1),(L,1)}
PO7  {(T,1),(F.1)} {(T,1),(F,1)} {(T.1),(F,1)}
Po8  {(T.1),(F,1)} {(L, 1)} {(F,1), (L, 1)}
P09 {(L, 1)} {(L, 1)} {(L, 1)}
P10 {(T,1).(F1), (LD} {(T,1),(R1), (L1} {(T,1),(F1),(L,1)}
Table 5.4 Calculation of the EPTVs from the result of Query 3.

PID Salary OldesfChild EPTV

PO1 2.600 2000 {(T,1)}

P05 3.00&-500 N/A {(F,1),(L,0.2)}

P06 ‘notaverage’ N/A {(F,2),(L,1)}

P07 UNK UNK {(T,1),(F,1)}

P08 UNK N/A {(F,1),(L,1)}

P09 N/A N/A {(L,1)}

P10 UNA UNA  {(T,1),(F,1),(L,1)}

Table 5.5 Result of Query 3.

result of query 3, in case the query is executed on the exatiapddase presented in
table 5.1, is given in table 5.5. For each record of the rethdtassociated EPTV is
computed by applying the conjunction operatasn the EPTVs that result from the
evaluation of the respective criterta ='Salary IS 2.600" andt; ='OldestChild
IS 2000’, as presented in table 5.4. In general, the use ehded possibilistic
logic —based on the operatoks V and—— allows it to adequately handle missing
information in the case of composite querying conditions.

Records for which both criteria are completely certainlyssd (record ‘P01’)
certainly belong to the query result, whereas records fachvboth criteria are
completely certainly not satisfied (record ‘P02’) certgidb not belong to the query
result. If one of the criteria completely certainly is notiséed, then the record cer-
tainly does not belong to the query result, independentafakult of the evaluation
of the other criterion (records ‘P02’, ‘P03’ and ‘P04’). Thenjunction of a crite-
rion that is certainly satisfied and a criterion that is datyanot applicable results
in a truth value that is possibly undefined (records ‘P05’ &@b’). Cases where
both criteria either evaluate to an EPTV that representkriawn’ (record ‘P0O7’)
or an EPTV that represents ‘not applicable’ (record ‘PO@$pectively result in an
EPTV ‘unknown’ and ‘not applicable’. If nothing is known almiothe satisfaction
of both criteria, then the resulting EPTV represents ‘natilable’ (record ‘P10’).
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PID  Salary EPTV
P04 N/A {(T,1)}
P06 ‘notaverage’{(T,1),(F,1)}
P09  N/A {(T,1)}

P10 UNA  {(T,1),(F,1)}

Table 5.6 Result of Query 4.

The conjunction of an EPTV that represents ‘unknown’ and B that repre-
sents ‘not applicable’ results in an EPTV that represerdmigletely possible false
or completely possible not applicable’ (record ‘P08").

To end this section, we still consider three special typequaries where the
database is respectively queried for data that are cont@atith the predefined la-
bels ‘N/A, ‘UNK’ and ‘UNA. These queries respectively seh for data i) where
the attribute under consideration is not applicable, iipréthe attribute under con-
sideration is applicable, but there are no further resristimposed on the data,
and iii) where the attribute under consideration is eitt@trapplicable, or applica-
ble with no further restrictions on the data. Such queriespeeially the last one—
are clearly not very useful in practice, but are considerext o clarify the be-
haviour of the presented approach.

Query 4
SELECTPID, SalaryFROM Poll WHERE SalarylS N/A

With query 4, the database is explicitly queried for recdrdahich a regular
salary value is not provided. This means thaalarylS N/A" must be either in-
terpreted as ‘possibly no salary value existent’ or ‘pdgsito regular salary value
applicable’. The result of this query, if executed on theregke database presented
in table 5.1, is given in table 5.6. Records with a salary @aN/A" completely cer-
tainly satisfy the selection condition (records ‘P04’ aR®9’). Records for which
the salary value is possibly not applicable, possibly Batlse selection condition
—to the extent reflected by the EPTV— (records ‘P06’ and ‘B.J&N other records
certainly do not satisfy the selection condition.

Query 5
SELECTPID, SalaryFROM Poll WHERE SalarylS UNK

With query 5 the database is queried for records in whichdleg value icom-
patible with the label UNK'. This means that a regular attribute value for salary
must exist and there are no further restrictions imposedhisrvalue by the query,
i.e., the query searches for participants with a regulargatalue, whatever this
value is. Thus, it is important to notify that the query doesanly search for par-
ticipants in the database that have an unknown, but existdaity. Assume that the
query is executed on the example database presented irbtablEhe result of the
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PID Salary EPTV
P01  2.600 {(T,1)}
P02 4.00€:1000 {(T,1)}
P03 2.800 {(T,1)}
P04  N/A {(L,1)}
PO5 3.006500  {(T.1)}
P06 ‘notaverage’{(T,1),(L,1)}
PO7 UNK {(T,1)}
P08  UNK {(T,1)}
P09  N/A {(L,1)}
P10 UNA  {(T,1),(L,1)}

Table 5.7 Result of Query 5.

query is then given in table 5.7. Records for which the salatye completely dif-
fers from N/A’ completely certainly satisfy the selection conditiondoeds ‘P01’,

‘P02’, ‘P03, ‘P05, ‘P07’ and ‘P08’). For records with a saiy value ‘N/A the cor-

responding EPTV represents ‘not applicable’ (records *R@d ‘P09’). For records
with a salary value that is possibly not applicable, the ltegyEPTV is ‘possibly

true, possibly not applicable’ (records ‘P06’ and ‘P10’).

Query 6
SELECTPID, SalaryFROM Poll WHERE SalarylS UNA

With query 6 the database is finally queried for records incwhine salary value
is compatiblewith the label UNA'. Such a selection condition imposes no restric-
tions on the database, which means that all records compkatsfy the selec-
tion condition. This is due to the fact that all domain valaes completely cer-
tainly compatible with the uniform normalized possibiliystribution that is de-
noted by the labelJ NA which represents ‘no information available’ (or all vatue
are equally possible).

5.8 Frameworks for fuzzy querying

For the practical application of the querying techniquesotiuced in this chap-
ter, one must have an implementation of a ‘fuzzy’ databaseeainas for example
the ones that are presented in chapter 4. Such an implenoenig@also called a
‘fuzzy’ database management system. A requirement of ayfuzatabase man-
agement system is that it must be fine tuned and integratédtté underlying
logical framework that is chosen and used to express quéisfasaion. As an il-
lustration, we further describe ‘fuzzy’ querying of ‘fuZaglational databases in
subsection 5.8.1 and ‘fuzzy’ querying of ‘fuzzy’ object@mied databases in sub-
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section 5.8.2. For both the relational and an object oriedsgabase modelling, we
present as well the possibilistic approach as the extenoesliglistic approach.

5.8.1 ‘Fuzzy’ relational databases

5.8.1.1 Possibilistic approach

An example of a ‘fuzzy’ relational database model with a fukstic approach
is the possibilistic relational model as originally pretsehin [16], that we already
described in subsection 4.2.1.

Structural aspects.

As already has been described in subsection 4.2.1, in thabilestic relational
model all database and result relatioreze extended with two extra attributes with
names ‘Pos’ (possibility) and ‘Nec’ (necessity) of whicle thalues express mem-
bership grades? In this way, two fuzzy sets are defined oeealtituplest of r: a
fuzzy set with membership grades Pgét) which defines the tuples that possibly
satisfy the predicate of relationand a fuzzy set with membership grades (Mg(t)
which defines the tuples that necessarily satisfy the padeliaf relatiorr. This ex-
tension is required to be able to guaranteedbseness propertyf the generalized
relational algebra (see ‘operational aspects’ below).

Additionally, the users can be provided the option to spetifeshold values

with the query specification. If this is the case, then onlylés for which both
Pogr)(t) > tposand Negr)(t) > tnec hold, are preserved in the query result.

Operational aspects.

The operators

union

difference
Cartesian product
selection
projection

of the minimal subset of operators of the relational algeaseaoriginally presented
by E.F. Codd [7] could be generalized as follows:

e Union.
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e(union(r,r’))(t) = (Pogunion(r,r"))(t), Nec(union(r,r’))(t))
with

— Pogunion(r,r"))(t) = maxPogr)(t),Pogr’)(t))
— Nedunion(r,r’))(t) = maxNedr)(t),Nedqr’)(t))

wherer andr’ represent relationg, is a tuple ofr or r’, and Po§&)(t) and
Nedr)(t) respectively denote the degree of possibility and degreeeoéssity
thatt belongs ta'.

e Difference.

e(differencér,r’))(t) = (Pogdifferencér,r’))(t), Neq(differencér,r’))(t))
with

— Pogdifferencér,r’))(t) = min(Pogr)(t),1— Pogr’)(t))
— Neddifferencér,r’))(t) = min(Ned(r)(t),1— Nedr’)(t))

wherer andr’ represent relationg, is a tuple ofr or r’, and Po&)(t) and
Ned[r)(t) respectively denote the degree of possibility and degreeoéssity
thatt belongs ta'.

e Cartesian product

e(Cart-prodr,r’))(tt") = (PogCart-prodr,t’))(tt"), NeqCart-prodr,r’))(tt"))
with

— PogCart-prodr,r’))(tt") = min(Pogr)(t),Pogr’)(t"))
— NedCart-prodr,r’))(tt") = min(Ned(r)(t), Neq(r’)(t'))

wherer andr’ represent relations,is tuple ofr, t’ is a tuple ofr’ and Po$r)(t)
and Nec¢r)(t) respectively denote the degree of possibility and degreeoés-
sity thatt belongs ta.

e Selection.

e(selectiorfr, c))(t) = (Pogselectiorfr, c))(t), Neqselectiorir, c))(t))
with

— Pogselectiorr,c))(t) = min(Pogr)(t),Pogc)(t))
— Nedselectiorfr,c))(t) = min(Nedr)(t),Nedc)(t))

wherer represents a relatiohjs a tuple of this relatiors is a (fuzzy) selection
condition and Pag)(t) and Necc)(t) respectively denote the degree of pos-
sibility and degree of necessity thasatisfiesc. These degrees are computed as
described in section 5.3. Furthermore, Po&) and Ne¢r)(t) remain the degree
of possibility and degree of necessity théelongs ta.

e Projection.
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e(projectior(r,V))(v) = (Pogprojectior(r,V))(v), Nedprojectior(r,V))(v))
with

— Pogprojectior(r,V))(v) = max Pogr)(vw)
— Nedprojectiorir,V))(v) = max Nedr)(vw)

wherer represents a relatio¥, is a subset of seX of all attributes ofr, v

takes values frori¥ andw takes values fronX \ V. The values Pds)(vw) and

Ned(r)(vw) respectively represent the degree of possibility and adegfeeces-
sity thatt = vwbelongs ta.

Remark that the computation rules given above are only ampbaof a possible
way to generalize the operators of the relational algebsssueh, for the operators
union, difference and projection a strict equality openatior attribute values is
assumed, which implies that for the equality of fuzzy setepresenting possibil-
ity distributions— the standard equality operator (deimit2.11) is used to check
whether two tuples are redundant, so that one of them hasd@sbarded from the
result of the operation. An alternative, less stringentragph is possible here. Two
possibility distributionstand 17, that are both defined on the domain of an attribute
A, can hereby approximately be considered as being equdilafdis that

sup |7(x) — 77 (X)| < €dom,
xedomy

whereggon, is a given threshold value, specified to act on the valuediithate A.

5.8.1.2 Extended possibilistic approach

The structural and operational extensions for the appradgbhextended possibilis-
tic truth values that have been described in subsectio.2.4an be applied with
‘fuzzy’ querying of ‘fuzzy’ databases, on condition thaetheneralized evaluation
functions for ‘fuzzy’ querying conditions, described inctien 5.5, are taken into
account.

Example 5.6Considering the relational counterpart of the ‘fuzzy’ artiks database
presented in figure 5.1, the same ‘fuzzy’ query as in examfle&n be formulated,
i.e..

Give the name of the painting and the name of the artist ofeail expensive paint-
ings of artists who die at the beginning of the twentieth ggntvhere the condition
on the year of death of the artist must have significant laiggract on the query
result than the condition on the value of the painting.

This query results in the following algebraic expression:
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pro ject(selectCart — prod(Painting Artist),
(Painting Artist = Artist. Nameweight= 1) AND
(PaintingValue 1S very expensiveweight= 0.6) AND
(Artist.Yearof_death IS beginningo f_twentiethcentury, weight= 1)),
{PaintingNameArtist. Name)

where ‘veryexpensive’ and ‘beginningf_twentiethcentury’ are linguistic terms
that are modelled by the fuzzy sets with membership funstion

0 iff X< 10M
x—10 .
Hvery.expensivéX) = 0 iff 1I0M <x<20M
1 iff x> 20M
and
1 iff 1900< x <1910
o . _20 iff x <1900 orx > 1940
X) =
IJbeglnnlngof_twentlethcentury( ) 1940— x

iff 1910 < x <1940

30 -
The Cartesian product results in a relation with 16 tupld® first condition that
must be evaluated is the generalized join condition

Painting Artist = Artist.Name

This join condition is a simple condition of the fornB B with 8 being the equality
operator. Only 5 tuples satisfy this condition. These aes@nted as an intermediate
result in table 5.8 (for the sake of simplicity only the ditries representing the
artist of the paintingRaintingArtist) and the name of the artisAftist. Nam¢g —
which are involved in the join condition— and the resultinBT®/ (EPT\{) are
presented. Because of the fact that the join condition hassaaciated weight 1
and because of the fact that there are only conjunction tgreran the composite
selection condition, the query processing can be contitieparting with these 5
tuples.

Table 5.8 First intermediate results of the query processing.

Painting Artist Artist.Name EPTY
{(Monet 1)} Monet {(T,1)}
{(Degas1)} Degas {(T,1)}

{(DaVinci, 1)} Da Vinci {(T,1)}

{(Ensorl),(Permeke0.4)}  Ensor {(T,1)}
{(Ensorl),(Permeke0.4)} Permeke {(T,0.4),(F,0.6)}
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The evaluation of the other simple ‘fuzzy’ conditions
PaintingValue 1S very.ex pensive

and
Artist.Yearof_death IS beginningo f_twentiethcentury

respectively results in the EPT\EPT\bL andEPT\4 as presented in table 5.9. For
the computations of these EPTVs, the following definitiomisthe linguistic terms
have been used:

e Linguistic term ‘aboutl5M’;

X_0124'8 iff 14.8M < x < 15M
Tabout15M (X) = 15622_ X iff 15M < x < 15.2M
0 ' else

Linguistic term ‘morethan8M’:

1 iffx>8M

X) =
ThnorethansM (X) {0 else

Linguistic term ‘veryexpensive’:

0 iff x < 10M
x—10 .

Thery expensivéX) = 10 iff 1I0M <x<20M
1 iff x> 20M

e Linguistic term ‘atleast1K’:

1 iff x>1K
0 else

Tht least 1K (X) = {

Linguistic term ‘aroundl519":

X %517 iff 1517 < x < 1519
Thround1519(X) = 1522 —X iff 1519 < x < 1521
0 else

Using the extended conjunction operatdfy o, that is described in example 3.6
while considering the given weighig = 1, wp, = 0.6 andws = 1 allows us to find
the aggregated intermediate results that are presentalilen3.10. For each of the
obtained tuples, the associated aggregated weightidl..
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Table 5.9 Second intermediate results of the query processing.
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Artist.Name Value EPTY Yearof_death EPTY
Monet aboutl5M {(T,0.51),(F,0.51)} 1926 {(T,0.47),(F,0.53)}
Degas morghan8M  {(T, ),( 1)} 1917 {(T,0.77),(F,0.23)}

Da Vinci veryexpensive {(T, 1),(F O 5)}  around1519 {(F,1)}
Ensor atleast1K {(T,1),(F, )} 1949 {(F,1)}
Permeke  ateastlK {(T,1),(F,1)} 1952 {(F,1)}

Table 5.10 Aggregated intermediate results.

ArtistName EPTYAY probE PTVAAY pronEPT VS
Monet {(T,0.24),(F,0.77)}
Degas {(T,0.77),(F,1)}
DaVinci {(F,1)}
Ensor {(F, )}
Permerke {(F,1)}

The final result, which is obtained after applying the progt operator and
normalization of the resulting EPTV, is given in table 5.11.

Table 5.11 Final query result.
PaintingName ArtistName ur pr U

‘Fishermans house’ ‘Monet” 0.31 1
‘The ballet course’ ‘Degas’ 0.77 1

[ o]

5.8.2 ‘Fuzzy’ object oriented databases

Also the object oriented and object relational databaseefsdthve been extended
and generalized to ‘fuzzy’ database models. Hereby, astielbossibilistic as the
extended possibilistic approach have been used as thelayideramework. All
considerations with respect to both the structural and\iebeal aspects given in
subsection 3.4.2 remain valid.

An example of a ‘fuzzy’ object oriented database model thdtased on the
possibilistic approach is the FOOD-model [1, 14, 2, 3] thas been described in
subsection 4.2.3. The ‘fuzzy’ constraint based objecintei@ database model [10],
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presented in subsection 4.2.4, is an example of a databadel that is supported
by the extended possibilistic approach.
The FOOD-model has been implemented [4].
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