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Chapter 1
Introduction

In this short chapter we describe what is generally understood by imperfect informa-
tion (section 1.1). After reading, the user should have insight in the different kinds
of imperfections in information. Furthermore, we explain what is meant by ‘fuzzy’
databases (section 1.2), flexible querying and ‘fuzzy’ querying (section 1.3). Hereby
we strive for general concept descriptions that are commonly acceptable. The last
section 1.4 summarizes the objectives of this book.

1.1 What is meant by imperfect information?

A significant part of all information collected by humans is inherentlyimperfect.
This imperfection follows from the way humans make use of natural language to
communicate, think, behave and work. The imperfect character of information does
not preclude us from successfully functioning in our society. For example, in order
to drive a car, nobody needs perfect information that ‘the next side-way is exactly
at 214,83 meter’, that ‘we should start using the brakes at exactly 1 minute and 43
seconds’, etc. It is just the human ability to make abstractions and to estimate for
example time and distance that allows us perform complex tasks such as driving a
car.

Imperfections in information can be classified as follows [17]1:

• Information isimpreciseif it is not specified as precise as it should be specified.
• Information isfuzzyif it is inherently vaguely described.
• Information isuncertainif it is not known with certainty.
• Information isincompleteif some data are missing.
• Information isinconsistentif there are two or more conflicting statements.

1 Motro has presented a similar classification [16] whereincompletenessis replaced byambiguity:
Information is said to beambiguousif its meaning is not completely (clearly) given such that more
interpretations and thus misinterpretations are possible.
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2 1 Introduction

In order to briefly describe these various forms of imperfection it is convenient to
consider the information on the value of an attribute of someobject. In what follows
we will use the height of a person as an example. It will be treated as a broadly
meant variableX.

1.1.1 Imprecision and vagueness

The concepts ofimprecisionandvaguenessdenote a restriction due to which infor-
mation can only be described approximately. The inability to give an exact descrip-
tion can for example be due to round off errors in calculations, to a lack of necessary
knowledge or to limitations of observation or measurement equipment.

If imperfect data are approximately modelled by precise boundaries like accept-
able deviations or fault margins, then one speaks aboutimprecision. In this way
the body length of a person could for example be given as ‘between 175 cm and
180 cm’ and the price of an object could be described as 500± 10 Euro. Such an
imprecise information may be formally represented as “X ∈ [175,180]”.

The conceptvaguenessis associated with the inability to describe information
approximately within precise boundaries and therefore represents some kind of in-
herent imprecision. To handle vagueness, people will typically use linguistic terms
to describe the inherent imprecision. Examples of vague descriptions for the height
of a person are the linguistic terms ‘short’, ‘rather short’, ‘tall’ and ‘very tall’. Exam-
ple of vague descriptions for price indications are the linguistic terms ‘very cheap’,
‘cheap’, ‘expensive’ and ‘unaffordable’. Such a vague information may be formally
represented as “X IS short”.

From a semantic point of view, such linguistic terms have aconjunctivenature
because they typically represent multiple candidate values. As such, there are for
example multiple lengths which at the same time correspond with the term ‘short’.
Moreover such linguistic terms areinherently vagueconcepts because not all can-
didates correspond to the same extent with the linguistic term. As such, a height of
‘200 cm’ corresponds to a larger extent with the term ‘tall’ than a height of ‘180
cm’.

1.1.2 Uncertainty

Like the concepts ofimprecisionandvagueness, the concept ofuncertainty denotes
a deficiency of information. Imprecise and vague information is not specific enough
but is assumed to be accurate. We will explicitly refer to information as uncertain if
the confidence in it is limited. An example of uncertain information is if John tells
us that Jack’s height is 175 cm but we do not fully believe if John is telling us the
truth. Such an uncertain information may be formally represented as “X = 175 is
probable”.
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There exists some affinity between the concepts of imprecision and vagueness on
the one hand and the concept of uncertainty on the other hand:with each of them the
exact information is not known. It is also very important to stress that imprecision
and vagueness areorthogonal to uncertainty: they can occur independently next to
each other or occur in combination.

An example can clarify this:

• The information on the height of a person can be imprecise: “X ∈ [175,180]”.
• The information can be uncertain: “X = 175 is probable”.
• The information on the height can also be both imprecise and uncertain: “X ∈

[175,180] is probable”

Orthogonality concerns also vagueness and uncertainty:

• The information on the height of a person can be vague: “X IS tall”.
• The information can be uncertain: “X = 175 is probable”.
• The information on the height can also be both vague and uncertain: “X IS tall is

probable”

Moreover the following relationship between imprecision/vagueness and uncer-
tainty is often considered and is relevant for the topics dealt with in this book. Learn-
ing an imprecise/vague information on the value of a variable one is uncertain as to
its actual value. The more imprecise the information the less certain one can be as
to this actual value. This is the essence of the relationshipbetween fuzzy sets theory
and possibility theory which are briefly presented in the next chapter 2.

1.1.3 Incomplete and missing information

With the concept ofincompletenessthe missing of (a part of the) information is de-
noted. Information ismissingif for some parts of it, no description is available, even
not an imprecise, vague or uncertain description. Note thatin case of imprecision,
vagueness or uncertainty also some information is missing,namely the information
that is necessary to give sufficient descriptions. However,in the remainder of this
book and in the classification under consideration, the concept ‘missing informa-
tion’ is used to denote only those cases where for the subjectunder consideration no
information is available at all.

Missing information can be due to different causes. In the ANSI/X3/SPARC ‘In-
terim Report’ [1], fourteen different sources of incompleteness have been identified.
In scientific research, these sources are usually reduced tothe following five:

• Datadoes not existsor isnot applicable. For example, the scores of an examina-
tion do not exist before the evaluation has been finished.

• Unknowndata. The data exists, but is not known to the person who has toprocess
it.

• No information. Nothing is known. It is possible that the data exist, but it is also
possible that this is not the case.
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• Data is known butcan not be entered. For example, due to security reasons.
• Data are onlypartially given. The data are completely known, but are only par-

tially entered in the system. For example, ABC codes for examination scores.

The fourth case of data that can not be entered will typicallybe handled by the
database management system. In the fifth case of data that areonly partially given,
the data typically result from some aggregation process andcan therefore be con-
sidered as derived data. Consequently, no extra modelling facilities are required for
to deal with these cases. Therefore, in the remainder of thisbook only the first three
cases are further dealt with.

1.1.4 Inconsistent information

Inconsistency(or ambiguity) describes a situation where two or more descriptions
are conflicting, e.g. ‘John is 1m 72’ and ‘John is larger than 1m 80’. In such cases,
there is no possibility to combine the data in such a way that acompromise arises.
A possible solution is to remove the information of the source that is least reliable
(under the assumption that this source is known). Such an inconsistent information
may be formally represented as, e.g., “X = 175 AND X = 185”.

1.2 What are fuzzy databases?

When using regular computer software for the processing andmanagement of in-
formation, users are almost always forced to describe data in a perfect way. This is
because data modelling is usually done by means of data structures and data models
that are developed to model information in a perfect way, taking into account the
limitations of the computer system. Which is of course a direct consequence of the
inherent binary nature of data storage and data processing.

Until some years ago the restrictions that come along with such an approach
were not worth mentioning. The more because also for examplein exact sciences
like physics, we observe that people strive for certainty and preciseness and suc-
cessfully make abstractions of reality to develop theorieswhich are based on perfect
information is an ideal world.

With the introduction of many-valued logics [2] (and later also [19]) a paradigm
shift happened, which among others constitutes the onset for the so-calledfuzzy sets
theory[21], possibility theory[23, 9] andfuzzy logic[22]. These theories are nowa-
days sufficiently advanced to provide a very convenient and adequate framework
for the formal handling ofimprecise, vagueanduncertain information. With the
introduction of ‘computing with words’ [24, 26], the ‘theory of fuzzy information
granulation’ [25] and the ‘computational theory of perceptions” [27] the foundations
are set to generalize all these theories into one single entirety.
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Fuzzy sets theoryis well suited for the modelling ofimpreciseandvagueinfor-
mation, whilepossibility theorycan be used for the handling ofuncertaininforma-
tion andincompleteinformation. The basic concepts of these theories are therefore
described in the next chapter 2. At the end of that chapter we also briefly introduce
the basic ideas behind ‘computing with words’, ‘fuzzy information granulation’ and
the ‘theory of perceptions’.

Databases are a very important component of computer systems as these are the
(structured) information sources for many applications. Traditional database man-
agement systems only allow to efficiently model and manage perfect information.
The developments in fuzzy sets theory, possibility theory and fuzzy logic have also
triggered research for advanced database models and database management tech-
niques that additionally can deal with imperfect information. This results in the so-
calledfuzzy databaseswhich intend to grasp imperfect information about a mod-
elled part of the world and represent it directly in a database, preferably as natural
as possible and preserving its semantics [4, 18, 7, 20, 3, 8, 15, 5].

Without fuzzy database techniques, one has to model imperfect information —
which is a significant part of all available information— approximately in a crisp
way. This very often goes hand in hand with simplification of semantics and thus
a loss of information, which may be critical in some situations. Finding adequate
solutions to the problem of imperfect information management has been identified
by database researchers as one of the challenges for the nearfuture [13].

1.3 What are flexible querying and fuzzy querying?

A widespread use of technologies for dealing with multimedia and large data col-
lections (e.g., GIS databases and biological databases) has resulted in very large
databases. Moreover, new developments in network and internet technology demand
for distributed databases that are connected with each other and build up larger log-
ical data sources. Because of the increasing number and volume of databases, good
and accurate accessibility to a database becomes even more important. A lot of re-
search has already been done to improve database access. In this research, many
aspects have been dealt with, among which we mention file organization, indexing,
querying techniques, query languages and other data accesstechniques.

Techniques that are meant to make database querying more flexible to users are
generally calledflexible querying techniques. These techniques include among oth-
ers:

• Self-correcting querying systems that can correct syntactic and semantic errors
in query formulations.

• Navigational querying systems that allow intelligent navigation through the
database.

• Cooperative querying systems that support ‘indirect’ answers like summaries,
conditional answers and contextual background information for (empty) results
[10].
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A specific kind of flexible querying techniques are based on fuzzy sets theory
[21] and its related possibility theory [23, 9] and can therefore be calledfuzzy
querying techniques. In general fuzzy querying techniques aim to enhance database
access by introducing fuzzy preferences in query formulations [6]. The introduction
of fuzzy preferences in queries can be done at two levels: inside query conditions
and between query conditions. Fuzzy preferences are introduced inside query con-
ditions via flexible search criteria and allow to express that some values are more
desirable than others in a gradual way. Fuzzy preferences between query conditions
are expressed via grades of importance assigned to particular query conditions in-
dicating that the satisfaction of some query conditions is more desirable than the
satisfaction of others.

The research on fuzzy querying has already a long history. Ithas been inspired
by the success of fuzzy logic in modelling natural language propositions. The use of
such propositions in queries, in turn, seems to be very natural for human users of any
information system, notably database management system. Later on, the interest in
fuzzy querying has been reinforced by the omnipresence of network based applica-
tions, related to buzzwords of modern information technology, such as e-commerce,
e-government, etc. These applications evidently call for aflexible querying capabil-
ity when users are looking for some goods, hotel accommodations, etc., that may
be best described using natural language terms like cheap, large, close to the air-
port, etc. Another amplification of the interest in fuzzy querying comes from de-
velopments in the area of data warehousing and data mining related applications.
For example, a combination of fuzzy querying and data mininginterfaces [11, 12]
or fuzzy logic and the OLAP (Online Analytical Processing) technology [14] may
lead to new, effective and more efficient solutions in this area.

1.4 What is this book about?

This book is meant as an introduction to the theory and practice of fuzzy querying
and fuzzy databases. The book is intended for everybody who has a basic knowledge
on database systems and can be used by master and PhD studentsas well as by
researchers who want to become familiar with the use of ‘fuzzy’ techniques within
information systems. The book is organized in such a way thatthe focus is on the
techniques. As such, readers do not only learn about advanced database modelling
and database access techniques, but also become familiar with the different ways
how these techniques could be applied in other contexts.
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Chapter 2
Preliminaries

In this chapter we give an overview of the basic concepts and definitions of fuzzy set
theory (section 2.1), possibility theory (section 2.2), and fuzzy logic (section 2.3).
This overview should allow the user to understand the mathematics that are behind
the ‘fuzzy’ database concepts that are described in this book. As this book deals
mainly with the application of ‘fuzzy’ techniques, a lot of attention is paid to prac-
tical aspects of dealing with these theories. In section 2.4we present the basics of
a possibilistic logic that works with so-called possibilistic truth values and can be
used as a logical framework for ‘fuzzy’ databases. Applications of this logic are
presented throughout the remainder of the book. The chapterends with an overview
of some novel developments in fuzzy set theory which might beuseful for the de-
velopment of future ‘fuzzy’ database modelling and ‘fuzzy’querying techniques
(section 2.5).

2.1 Fuzzy set theory

Fuzzy set theory(also called the theory of fuzzy sets) is a generalization ofclassical
set theory and was introduced in 1965 by L.A. Zadeh [22]. Since its introduction,
this theory has been steadily developed and nowadays a lot ofapplications of it exist
in several domains as for example informatics (logic programming, databases, data
mining, artificial intelligence, knowledge-based systems, image processing, . . . ),
linguistics, medicine, sociology, psychology, geography, musicology, economics,
etc. Fuzzy set theory is also at the basis of all the advanced database techniques
described in this book.

In what follows some basic concepts and definitions of fuzzy set theory are pre-
sented. More detailed reference works are among others [9, 11, 7].

9
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2.1.1 Definitions and notations

Central in fuzzy set theory is the conceptfuzzy set. A fuzzy set is a generalization
of the mathematical concept set.

To start with, we consider a universe of discourseU . Each mathematical setV
of elements ofU is fully characterized by its so-calledmembership function µV

which associates the value 1 with each element ofV and the value 0 with each other
element ofU , i.e.

µV : U → {0,1}
x 7→ 1 iff x∈V

x 7→ 0 iff x 6∈V

Hereby, 1 is given the meaning ‘belongs to the set’, whereas 0stands for ‘does not
belong to the set at all’.

For the definition of the concept fuzzy set, the discrete set{0,1} of the previous
mapping is extended to the unit interval[0,1]. The meaning of the value 0 remains
the same, the value 1 is interpreted as ‘fully belongs to the fuzzy set’ and an interme-
diate valuex ∈]0,1[ stands for ‘only partially belongs (to an extentx) to the fuzzy
set’. The closer the valuex is to 0, the smaller the extent to which the associated
element belongs to the fuzzy set.

Eachfuzzy setis characterized by a (generalized) membership function. This is
done as follows:

Definition 2.1 (Fuzzy set)A fuzzy set̃V over a universe of discourse U is defined
by means of a (generalized) membership functionµṼ which associates with each
element x of U a membership gradeµṼ(x) ∈ [0,1]. This is done as follows:

• µṼ(x) = 1 represents that x fully belongs tõV (with membership grade 1),
• µṼ(x) = 0 represents that x does not belong toṼ at all (and thus has a member-

ship grade 0), and
• µṼ(x) ∈ ]0,1[ represents that x only partially belongs tõV (with membership

gradeµṼ(x)).

�

From the previous definition it follows straightforwardly that a set is a special
case of a fuzzy set. Indeed, a set is a fuzzy set where each element that belongs to
the fuzzy set, fully belongs to the fuzzy set (i.e. has an associated membership grade
1).

A fuzzy setṼ over a universe of discourseU will in this work be generally
denoted as

Ṽ = {(x,µṼ(x))|∀ x∈U : µṼ(x)> 0}
By convention, elements with membership grade 0 are omittedin the notation. A
fuzzy setṼ with a finite number of elements will be denoted by



2.1 Fuzzy set theory 11

Ṽ = {(x1,µṼ(x1)),(x2,µṼ(x2)), . . . ,(xn,µṼ(xn))},n∈ N

whereN represents the set of all natural numbers. The empty fuzzy set will also be
represent by the symbol /0.

Definition 2.2 (Fuzzy powerset℘̃(U)) The set of all fuzzy sets that can be defined
over a universe of discourse U is itself defined by:

℘̃(U), {Ṽ|Ṽ satisfies definition 2.1}

and is called the fuzzy powerset of U.�

The membership function of a fuzzy set can bediscrete or becontinuous (cf.
figure 2.1). In the context of ‘fuzzy’ databases, a fuzzy set is often used to model a
linguistic term. As such, the fuzzy set which membership function is depicted on the
left of figure 2.1 could be considered as a model for the linguistic term ‘red touch’,
whereas the fuzzy set with the membership function on the right in the figure could
be considered as a mathematical model for the term ‘young (age)’. For such fuzzy
sets, the linguistic term can be used as anidentifier. With other words, in such a case
the linguistic term identifies (the membership function of)the fuzzy set.

0

1

colourorange

red

dark red

light red

rouge

purple

red touch

0

1

age25 35

young

0

1

colourorange

red

dark red

light red

rouge

purple

red touch

0

1

age25 35

young

Fig. 2.1 Discrete and continuous membership functions.

2.1.2 Basic concepts

Among the most important concepts of fuzzy set theory are theconceptα-level set
(α-cut) and its variantstrict α-level set(strict α-cut), that are defined as follows:

Definition 2.3 (α-level set and strictα-level set) If Ṽ is a fuzzy set which is de-
fined over a universe of discourse U andα is a real number taken from the unit
interval, i.e.α ∈ [0,1], then theα-level setṼα is by definition the (regular) set

Ṽα , {x|x∈U ∧µṼ(x)≥ α}



12 2 Preliminaries

and the strictα-level setṼᾱ is by definition the (regular) set

Ṽᾱ , {x|x∈U ∧µṼ(x)> α}

�

Two special cases of (strict)α-level sets of a fuzzy set̃V are thesupport supp(Ṽ)
of the fuzzy set̃V which is defined by:

supp(Ṽ), {x|x∈U ∧µṼ(x)> 0}

and thecorecore(Ṽ) of the fuzzy set̃V which is defined by:

core(Ṽ), {x|x∈U ∧µṼ(x) = 1}

A fuzzy set Ṽ is normalized if its core core(Ṽ) is a non-empty set, i.e. if
core(Ṽ) 6= /0. If the core of fuzzy set is a singleton then the fuzzy set iscalled to
beunimodal.

Thecardinality of a fuzzy set is defined as follows:

Definition 2.4 (Cardinality) Consider a fuzzy set̃V that is defined over a universe
of discourse U. If̃V has a discrete membership function, then the cardinalitycard(Ṽ)
of Ṽ is defined by:

card(Ṽ), ∑
x∈U

µṼ(x)

If Ṽ has a continuous membership function, then the cardinality card(Ṽ) of Ṽ is
defined by:

card(Ṽ),

∫

U
µṼ(x)dx

�

The cardinality of a fuzzy set results in a real number which reflects the global
membership of all elements of the fuzzy set and can thus not beconsidered as an
indication of the number of elements in the fuzzy set.

Thecomplementof a fuzzy set is defined by [22]:

Definition 2.5 (Standard complement)The (standard) complementṼ of a fuzzy
setṼ which is defined over a universe of discourse U is defined by:

Ṽ , {(x,1− µṼ(x))|∀ x∈U : 1− µṼ(x)> 0}

�
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2.1.3 Fuzzy relations

A concept that is closely related to the concept fuzzy set is the concept fuzzy rela-
tion. A fuzzy relation is a generalization of the classic mathematical conceptrela-
tion. Traditionally a relation

R : U1×U2×·· ·×Un →Y

over a finite number of universa

U1,U2, . . . ,Un,Y, n∈ N\ {0}

can be considered as being a subset of the Cartesian product

U1×U2×·· ·×Un×Y.

Like with regular sets, this subset can be defined by means of amembership function
µR which associates a value 1 with each (n+1)-tuple ofU1×U2×·· ·×Un×Y that
belongs to the relationR and associates a value 0 with all other (n+ 1)-tuples of
U1×U2×·· ·×Un×Y, i.e.

µR : U1×U2×·· ·×Un×Y → {0,1}
(x1,x2, . . . ,xn,y) 7→ 1 iff (x1,x2, . . . ,xn,y) ∈ R

(x1,x2, . . . ,xn,y) 7→ 0 iff (x1,x2, . . . ,xn,y) 6∈ R

A fuzzy relation is then defined as follows:

Definition 2.6 (Fuzzy relation) A fuzzy relation

R̃ : U1×U2×·· ·×Un →Y

over a finite number of universa

U1,U2, . . . ,Un,Y, n∈ N\ {0}

is defined by means of a (generalized) membership functionµR̃ which associates a
membership grade

µR̃((x1,x2, . . . ,xn,y)) ∈ [0,1]

with each(n+1)-tuple(x1,x2, . . . ,xn,y) of the product set U1×U2× ·· ·×Un×Y.
These membership grades have the following semantics:

• µR̃((x1,x2, . . . ,xn,y)) = 1 means that(x1,x2, . . . ,xn,y) is a full element of̃R,
• µR̃((x1,x2, . . . ,xn,y)) = 0 means that(x1,x2, . . . ,xn,y) does not belong tõR and
• µR̃((x1,x2, . . . ,xn,y)) ∈ ]0,1[ means that(x1,x2, . . . ,xn,y) only belongs to the

given extent tõR.

�
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A fuzzy relation
R̃ : U1×U2×·· ·×Un →Y

over a finite number of universaU1,U2, . . . ,Un,Y, n ∈ N \ {0} will generally be
denoted by

R̃= {((x1,x2, . . . ,xn,y),µR̃((x1,x2, . . . ,xn,y)))|
∀ (x1,x2, . . . ,xn,y) ∈U1×U2×·· ·×Un×Y :

µR̃((x1,x2, . . . ,xn,y))> 0}

Furthermore, from the previous definition it follows clearly that a classical relation
can be seen as a special case of a fuzzy relation.

2.1.4 Operations

The semantics of a fuzzy set are completed by the definition ofsome operations.
It is definitely not our intention to give a complete description of all operations in
this subsection. For this purpose we refer to the literature, including among others
[3, 12, 9, 7]. However, in this work we will pay attention to those operations that
are relevant within the scope of ‘fuzzy’ database technology. More specifically we
will deal with operations to compose fuzzy sets (union, intersection, difference and
aggregation operators), operations to compare fuzzy sets (inclusion and equality),
implication operators, quantifiers and extension principles for relations.

2.1.4.1 The composition of fuzzy sets

The traditional operations union, intersection and difference for regular sets could
be generalised for fuzzy sets in several ways. Beside of thatthere exist some other
operations to aggregate fuzzy sets. These allow to combine two or more fuzzy sets
into one single fuzzy set.

Intersection and union.

The standard definitions for intersection andunion, as originally presented by
L.A. Zadeh [22], are as follows:

Definition 2.7 (Standard intersection and union) With the understanding that̃V1

andṼ2 are two fuzzy sets that are defined over the same universe of discourse U, the
following definitions hold:

• (Standard) intersection.
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Ṽ1∩Ṽ2 , {(x,min(µṼ1
(x),µṼ2

(x)))|∀ x∈U : min(µṼ1
(x),µṼ2

(x))> 0}

• (Standard) union.

Ṽ1∪Ṽ2 , {(x,max(µṼ1
(x),µṼ2

(x)))|∀ x∈U : max(µṼ1
(x),µṼ2

(x)) > 0}

�

These definitions are only one of the many possibilities to define the intersection
and union operations for fuzzy sets. Generally, the intersection and union operations
are specified by means of a binary operation which is defined over the unit interval
[0,1] and satisfies some given conditions.

As such, theintersection of two fuzzy setsṼ1 andṼ2 —defined over the same
universe of discourseU— can generally be specified by means of a function

i : [0,1]× [0,1]→ [0,1]

which takes the membership grades of an elementx∈U in the fuzzy sets̃V1 andṼ2

as arguments and computes the membership grade ofx in the intersection of̃V1 and
Ṽ2, i.e.

∀ x∈U : µṼ1∩Ṽ2
(x) = i(µṼ1

(x),µṼ2
(x))

In order to be intuitively acceptable as an intersection function, the functioni must
moreover satisfy the following axioms:

• Axiom i1. ∀ a∈ [0,1] : i(a,1) = a (border condition).
• Axiom i2. ∀ a,b,d ∈ [0,1] : b≤ d ⇒ i(a,b)≤ i(a,d) (monotonicity).
• Axiom i3. ∀ a,b∈ [0,1] : i(a,b) = i(b,a) (commutativity).
• Axiom i4. ∀ a,b,d ∈ [0,1] : i(a, i(b,d)) = i(i(a,b),d) (associativity).

Functionsi that satisfy the previous specification and axioms are in thelitera-
ture known under the namet-norms. A such, each t-norm acts as an intersection
operator. In table 2.1 we give some examples of (classes of)t-norms. For a more
elaborated discussion and more examples we refer to [9].

Table 2.1: Examples of t-norms

Name Formulai(a,b) Parameter range
Zadeh [22] min(a,b)
Lukasiewics max(a+b−1,0)
Probabilistic ab
Yager [20] 1−min(1, [(1−a)ω +(1−b)ω]1/ω) ω > 0

Dubois [3]
ab

max(a,b,α)
α ∈ [0,1]

Weber [19] max(0,
a+b+λab−1

1+λ
) λ >−1



16 2 Preliminaries

The union of two fuzzy setsṼ1 and Ṽ2 —defined over the same universe of
discourseU— can also generally be specified by means of a function

u : [0,1]× [0,1]→ [0,1]

which takes the membership grades of an elementx∈U in the fuzzy sets̃V1 andṼ2

as arguments and computes the membership grade ofx in the union ofṼ1 andṼ2,
i.e.

∀ x∈U : µṼ1∪Ṽ2
= u(µṼ1

,µṼ2
)

In order to be intuitively acceptable as a union function, the functionu must satisfy
the following axioms:

• Axiom u1.∀ a∈ [0,1] : u(a,0) = a (border condition).
• Axiom u2.∀ a,b,d ∈ [0,1] : b≤ d ⇒ u(a,b)≤ u(a,d) (monotonicity).
• Axiom u3.∀ a,b∈ [0,1] : u(a,b) = u(b,a) (commutativity).
• Axiom u4.∀ a,b,d ∈ [0,1] : u(a,u(b,d)) = u(u(a,b),d) (associativity).

Functionsu that satisfy the previous specification and axioms are in thelitera-
ture known under the namet-conorms. As such, each t-conorm can act as a union
operator.

For t-norms and t-conorms the following inequalities hold:

i(a,b)≤ a≤ u(a,b)

i(a,b)≤ b≤ u(a,b)

Furthermore it holds that

i(a,b) = 1−u(1−a,1−b)

which corresponds with the laws of de Morgan (i.e.a∧b= a∨b anda∨b= a∧b).
Because of this, for each t-norm there exists a corresponding t-conorm. In table 2.2
we give the corresponding (classes of) t-conorms for the (classes of) t-norms of
table 2.1. For a more extensive discussion and more exampleswe refer to [9].

Table 2.2: Examples of t-conorms

Name Formulau(a,b) Parameter range
Zadeh [22] max(a,b)
Lukasiewics min(a+b,1)
Probabilistic a+b−ab
Yager [20] min(1,(aω +bω)1/ω) ω > 0

Dubois [3] 1− (1−a)(1−b)
max(1−a,1−b,α)

α ∈ [0,1]

Weber [19] min(1,a+b− λ
1−λ

ab) λ >−1
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With respect to fuzzy databases, the Zadeh t-norm min and t-conorm max are
frequently used because of their simple computability.

Set difference.

As is the case for regular sets thedifference operator for fuzzy sets can be derived
by relying on the definitions of t-norm and complement. Indeed

µṼ1\Ṽ2
(x) = µ

Ṽ1∩Ṽ2
(x).

Definition 2.8 (Set difference)With the understanding thatṼ1 andṼ2 are two fuzzy
sets that are defined on the same universe of discourse U, it holds that:

Ṽ1\ Ṽ2 = {(x, i(µṼ1
(x),1− µṼ2

(x)))|∀ x∈U : i(µṼ1
(x),1− µṼ2

(x))> 0}

�

This results for example with the Zadeh t-norm min(a,b) in

µṼ1\Ṽ2
(x) = min(µṼ1

(x),1− µṼ2
(x))

and with the Lukasiewics t-norm max(a+b−1,0) in

µṼ1\Ṽ2
(x) = max(µṼ1

(x)− µṼ2
(x),0).

Aggregation operations.

An aggregation operationis used to combine two or more fuzzy sets in a desir-
able way into one single fuzzy set. An aggregation operationover a finite number
of fuzzy setsṼ1,Ṽ2, . . . ,Ṽn, n∈ N\ {0} —all defined over the same universe of dis-
courseU— can generally be specified by means of a function

h : [0,1]n → [0,1]

which takes the membership grades of an elementx∈U in the fuzzy sets̃V1,Ṽ2, . . . ,
Ṽn as arguments and returns the membership grade ofx in the fuzzy setṼ of the
aggregate, i.e.

∀ x∈U : µṼ(x) = h(µṼ1
(x),µṼ2

(x), . . . ,µṼn
(x))

In order to be a meaningful aggregation operator, such a function h minimally has
to satisfy the following axioms:

• Axiom h1.h(0,0, . . . ,0) = 0∧h(1,1, . . . ,1) = 1 (border conditions).
• Axiom h2.
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∀ (a1,a2, . . . ,an),(b1,b2, . . . ,bn) ∈ [0,1]n,∀ i ∈ {1,2, . . . ,n} :

ai ≤ bi ⇒ h(a1,a2, . . . ,an)≤ h(b1,b2, . . . ,bn)

(h is non-decreasing in all of its arguments).

If an aggregation operator satisfies the following axioms h3, h4 or h5, the operator
is respectively said to be continuous, symmetric or idempotent.

• Axiom h3.h is a continuous function (continuity).
• Axiom h4. For each permutationp of {1,2, . . . ,n} it must hold that

h(a1,a2, . . . ,an) = h(ap(1),ap(2), . . . ,ap(n))

(h is a symmetric function in all of its arguments).
• Axiom h5.∀ a∈ [0,1] : h(a,a, . . . ,a) = a (idempotency).

Examples of (classes of) aggregation operators are the so-called generalized av-
erages and the so-called ordered weighted averages (OWAs).

Thegeneralized averagesare defined by

h(a1,a2, . . . ,an;α),

(
aα

1 +aα
2 + · · ·+aα

n

n

)1/α

whereα ∈R0 is the parameter that distinguishes the different aggregation operators
and it must hold thatai 6= 0, i = 1,2, . . . ,n if α < 0.

Theordered weighted averagesare defined by

h(a1,a2, . . . ,an;w) , w1b1+w2b2+ · · ·+wnbn

wherew = (w1,w2, . . . ,wn) ∈ [0,1]n is called the weighting factor. It must hold
that ∑n

i=1wi = 1 and that for eachi ∈ {1,2, . . . ,n}, bi is the ith largest element of
a1,a2, . . . ,an, i.e. (b1,b2, . . . ,bn) is a permutation of(a1,a2, . . . ,an) where the ele-
ments are ordered as follows:

∀ i, j ∈ {1,2, . . . ,n} : i < j ⇒ bi ≥ b j .

2.1.4.2 The comparison of fuzzy sets

When comparing regular sets, the result is always expressedby means of a classical
Boolean truth value ‘true’ (T or 1) or ‘false’ (F or 0). For the comparison of fuzzy
sets two approaches are used: a standard approach where the result is a Boolean
truth value and a gradual approach where result of the comparison is expressed by
a real number between 0 and 1. The latter approach is more flexible and allows to
consider gradations of truth.
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Inclusion.

For regular setsV1 andV2 over a universe of discourseU the inclusion can be ex-
pressed with the help of the implication operator of the Boolean logic. This can be
done as follows:

(V1 ⊆V2)⇔ (∀ x∈U : (x∈V1)⇒ (x∈V2))

For fuzzy sets thestandard definitions for inclusion are based on the same princi-
ple and given as follows [22].

Definition 2.9 (Inclusion and strong inclusion) With the understanding that̃V1

andṼ2 are two fuzzy sets that are defined over the same universe of discourse U, it
holds that:

• (Standard) inclusion.(Ṽ1 ⊆ Ṽ2)⇔ (∀ x∈U : µṼ1
(x)≤ µṼ2

(x))
• (Standard) strong inclusion.(Ṽ1 ⊑ Ṽ2)⇔ supp(Ṽ1)⊆ core(Ṽ2)

�

The standard inclusion is illustrated in figure 2.2: in figure(a)Ṽ1 ⊆ Ṽ2 is satisfied;
in figure (b)Ṽ1 ⊆ Ṽ2 is not satisfied.
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Fig. 2.2 (Standard) inclusion.

With the standard strong inclusioñV1 ⊑ Ṽ2 it is expressed that if an element
belongs to the support of̃V1, then this element must necessarily belong to the core
of Ṽ2. This is illustrated in figure 2.3: it holds thatṼ1 ⊑ Ṽ2.
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Fig. 2.3 (Standard) strong inclusion.
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Considering thegradual approach, multiple definitions exist. A frequently used
method to find the truth value of̃V1 ⊆ Ṽ2 is to check to which extent the fuzzy setṼ1

‘matches’ the fuzzy set̃V1∩ Ṽ2. Hereby, the following considerations with respect
to inclusion of regular sets are used:

(V1 ⊆V2)⇔ ((V1∩V2) =V1)

or

(V1 ⊆V2)⇔ (
card(V1∩V2)

card(V1)
= 1)

which leads to the following definition for the truth value deg(Ṽ1 ⊆ Ṽ2) of Ṽ1 ⊆ Ṽ2.

Definition 2.10 (Gradual inclusion) With the understanding that̃V1 and Ṽ2 are
two fuzzy sets that are defined over the same universe of discourse U, it holds that:

deg(Ṽ1 ⊆ Ṽ2) =
card(Ṽ1∩Ṽ2)

card(Ṽ1)

�

For fuzzy sets with a discrete membership function the previous definition results
in

deg(Ṽ1 ⊆ Ṽ2) =
∑x∈U i(µṼ1

(x),µṼ2
(x))

∑x∈U µṼ1
(x)

wherei is a t-norm.
For fuzzy sets with a continuous membership function the definition becomes

deg(Ṽ1 ⊆ Ṽ2) =

∫
U i(µṼ1

(x),µṼ2
(x))dx

∫
U µṼ1

(x)dx

wherei is again a t-norm.

Equality.

Thestandard definition for theequality of two fuzzy sets which are both defined
over a universe of discourseU is given as follows [22].

Definition 2.11 (Standard equality) With the understanding that̃V1 and Ṽ2 are
two fuzzy sets that are defined over the same universe of discourse U, it holds that:

(Ṽ1 = Ṽ2)⇔ (∀ x∈U : µṼ1
(x) = µṼ2

(x))

�

A frequently usedgradual approach is based on the fact that for regular setsV1

andV2 over a universe of discourseU equality can be expressed as follows:
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(V1 =V2)⇔ ((V1 ⊆V2)∧ (V2 ⊆V1))

Analogously as with gradual inclusion we then obtain the following definition for
the truth value deg(Ṽ1 = Ṽ2) of Ṽ1 = Ṽ2.

Definition 2.12 (Gradual equality) With the understanding that̃V1 andṼ2 are two
fuzzy sets that are defined over the same universe of discourse U, it holds that:

deg(Ṽ1 = Ṽ2) = i(deg(Ṽ1 ⊆ Ṽ2),deg(Ṽ2 ⊆ Ṽ1))

where i is a t-norm.�

2.1.4.3 Implication operators

The implication operator of Boolean logic has already been mentioned with the
definition of inclusion. In essence the traditional implication (P⇒ Q) —if P, then
Q— is equivalent to the logical expression((¬P)∨Q). In a fuzzy framework, the
propositionsP andQ no longer take Boolean truth values, but more generally take
values from the unit interval[0,1]. Like with fuzzy intersection and fuzzy union, a
fuzzy implication operator ⇒ f can generally be defined by a function:

⇒ f : [0,1]× [0,1]→ [0,1]

(p,q) 7→ (p⇒ f q)

The more the function values are closer to 1 (resp. 0), the more the result of the
implication operator is true (resp. false). As with t-normsand with t-conorms, there
exist multiple families of fuzzy implication operators. Inwhat follows, three such
families which are frequently used within the context of ‘fuzzy’ databases, are de-
scribed: S-implications, R-implications and contrapositions of R-implications.

S-implications.

The nameS-implication stems from the fact that these kinds of implication op-
erations are based on a t-conorm. In the literature, a t-conorm is often denoted
with the symbol S. The definition of S-implications is based on the expression
(P⇒ Q)⇔ ((¬P)∨Q).

Definition 2.13 (S-implication) With P and Q two fuzzy propositions, the family of
S-implications (denoted by⇒S−i) is defined by:

(P⇒S−i Q) = u(1− p,q)

where u is a t-conorm.�

The most important S-implication functions are given in table 2.3.



22 2 Preliminaries

Table 2.3: Examples of S-implications

Name Definition Used t-conorm
Kleene-Dienes(P⇒K−D Q) = max(1− p,q) u(a,b) = max(a,b)
Lukasiewics (P⇒LuSQ) = min(1− p+q,1) u(a,b) = min(a+b,1)
Reichenbach (P⇒Rb Q) = 1− p+ p.q u(a,b) = a+b−a.b

As contraposition of an S-implication we receive the same S-implication be-
cause:

(¬Q⇒S−i ¬P) = u(1− (1−q),1− p)= u(q,1− p) = u(1− p,q)

= (P⇒S−i Q)

Furthermore, it can be proved that [9]

(P⇒K−D Q)≤ (P⇒Rb Q)≤ (P⇒Lu Q)

The largest S-implication is obtained by using the t-conormof Weber:

(P⇒WeQ) =





1− p iff q= 0

q iff p= 1

1 else.

R-implications.

The family ofR-implications is named in this way because their definition is based
on the principle ofresiduation, which is traditionally described as follows:

(P∧ (P⇒ Q))⇔ (P∧ (¬P∨Q))⇔ ((P∧¬P)∨ (P∧Q))⇔ (P∧Q)

from which it follows that
(p∧ (p⇒ q))≤ q

This leads to the following definition.

Definition 2.14 (R-implication) With P and Q two fuzzy propositions, the family of
R-implications (denoted by⇒R−i) is defined by:

(P⇒R−i Q) = sup
x∈[0,1]

{x|i(p,x)≤ q}

where i is a t-norm.�

An equivalent, more frequently used form for R-implications is:
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(P⇒R−i Q) =

{
1 iff p≤ q

f (p,q) else.

wheref is the function that characterizes the R-implication. The latter follows from
definition 2.14 and the fact that:

(∀ x∈ [0,1] : i(x, p)≤ i(1, p))

such that
(∀ x∈ [0,1] : i(x, p)≤ p)

If p≤ q one has thus:
(∀ x∈ [0,1] : i(x, p)≤ p≤ q)

Because we search for the largestx∈ [0,1] for which the inequality holds, we obtain
the value 1, what guarantees the alternative form:

(P⇒R−i Q) = 1 iff p≤ q

A special implication which can due to its form can be considered as being an
R-implication, is the implication of Rescher-Gaines

(P⇒R−G Q) =

{
1 iff p≤ q

0 else.

This implication always returns a Boolean value.
In table 2.4 we represent the most important R-implication functions.

Table 2.4: Examples of R-implications

Name Definition Used t-norm

Gödel (P⇒Go Q) =

{
1 iff p≤ q

q else
i(a,b) = min(a,b)

Lukasiewicz(P⇒LuR Q) =

{
1 iff p≤ q

1− p+q else
i(a,b) = max(a+b−1,0)

Goguen (P⇒Gg Q) =

{
1 iff p≤ q

q/p else
i(a,b) = ab

It cab be proved that [9]

(P⇒R−G Q)≤ (P⇒Go Q)≤ (P⇒Gg Q)≤ (P⇒lu Q)
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Contrapositions of R-implications.

A third family concerns the implications thatcorrespondto thecontrapositions of
R-implications. We hereby depart from the definition:

(P⇒cont R−i Q) = ((¬Q)⇒R−i (¬P))

For the Gödel R-implication this results in the following definition

(P⇒cont GoQ) =

{
1 iff p≤ q

1− p else

For the Goguen R-implication we obtain

(P⇒cont GgQ) =





1 iff p≤ q
1− p
1−q

else

For the Lukasiewics R-implication and the Rescher-Gaines R-implication is the con-
traposition the same as the original R-implication. Indeed,

(P⇒cont LuQ) = ((¬Q)⇒Lu (¬P))

=

{
1 iff (1−q)≤ (1− p)

1− (1−q)+ (1− p) else

=

{
1 iff p≤ q

1− p+q else

= (P⇒Lu Q)

and

(P⇒cont R−G Q) = ((¬Q)⇒R−G (¬P))

=

{
1 iff (1−q)≤ (1− p)

0 else

=

{
1 iff p≤ q

0 else

= (P⇒R−G Q)

2.1.4.4 Quantifiers

Fuzzy sets allow it to define a broad range of quantifiers [27].Indeed, beside the
universal quantifier (∀) and the existential quantifier (∃), we can consider quanti-
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fiers that are described by linguistic terms. A distinction is made betweenabsolute
quantifiers which denote a number or quantity like, e.g., ‘around twelve’, ‘around
six’, etc. andrelative quantifiers which refer to a total number and denote a pro-
portion of this total like, e.g. ‘most’, ‘a small number’, etc.

An absolute quantifierQA is modelled by means of a membership function

µQA : N→ [0,1] of µQA : R→ [0,1]

A relative quantifier by a membership function

µQR : [0,1]→ [0,1]

Hereby, the valueµQA(n) expresses the extent to which the numbern corresponds
to the quantifier; analogously, the valueµQR(p) expresses the extent to which the
proportionp corresponds to the quantifier.

Quantifiers play an important role in fuzzy queries where it is required that ‘Q
X satisfyC’, whereQ is a quantifier,C is a condition andX represents a collection
of elements. The intention is then to determine to which extent it is the case that
Q elements ofX satisfyC, or with other words to determine to which extent the
number of elements (resp. the proportion) ofX that satisfyC is compatible withQ.

2.1.4.5 Extension principles for relations

A (regular) relation
R : U1×U2×·· ·×Un →Y

which is defined over a finite number of universa

U1,U2, . . . ,Un,Y, n∈ N\ {0}

can be generalized to ageneralized relation

R̃ :℘̃(U1)×℘̃(U2)×·· ·×℘̃(Un)→℘̃(Y)

which acts on fuzzy sets that are defined over the universaU1,U2, . . . ,Un and results
in a fuzzy set that is defined over the universe of discourseY.

A method to obtain such a generalized relation is called anextension principle.
One of the best known extension principles is the extension principle of L.A. Zadeh
[23, 24, 25] which is defined as follows:

Definition 2.15 (Extension principle) With the understanding that U1,U2, . . . ,Un

and Y are universa of discourse(n∈ N\ {0}) and that

R : U1×U2×·· ·×Un →Y

is a regular relation, the generalized relatioñR of R is defined by:
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R̃ :℘̃(U1)×℘̃(U2)×·· ·×℘̃(Un)→℘̃(Y)

Ṽ1,Ṽ2, . . . ,Ṽn 7→ R̃(Ṽ1,Ṽ2, . . . ,Ṽn)

whereR̃(Ṽ1,Ṽ2, . . . ,Ṽn) is the fuzzy set over the universe of discourse Y that is defined
by:

R̃(Ṽ1,Ṽ2, . . . ,Ṽn) : Y → [0,1]

y 7→ sup
(x1,x2,...,xn)∈V(R,y)

min(µṼ1
(x1),µṼ2

(x2), . . . ,µṼn
(xn)),∀ y∈ range(R)

y 7→ 0,∀ y 6∈ range(R)

where range(R) is the value set of the relation R, i.e.

range(R) = {y|y∈Y∧∃ (x1,x2, . . . ,xn) ∈U1×U2×·· ·×Un :

R(x1,x2, . . . ,xn) = y}

and V(R,y) is the set of all n-tuples which mapped onto the value y by means of the
relation R, i.e.

V(R,y) = {(x1,x2, . . . ,xn)|(x1, . . . ,xn) ∈U1×U2×·· ·×Un ∧
R(x1,x2, . . . ,xn) = y}

�

In the previous definition of the extension principle of L.A.Zadeh the Zadeh t-
norm (cf. table 2.1) is used. By using other t-norms, other extension priciples can be
defined. An example is the extension principle of R.R. Yager [21] where the Yager
t-norm (cf. table 2.1) is used.

With respect to fuzzy databases, extension principles can be used to generalize
operators of regular data types. In such a way, the addition operator+ of the data
type Integer, which is used for the modelling of integer values, can for example be
generalized to an addition operator+̃ which acts on two fuzzy sets and results in a
fuzzy set that are all defined over the universe of discourseZ of integer numbers. A
major disadvantage is that in practice, the use of an extension principle is in most
cases very difficult to implement in software.

2.1.5 Shape functions and practical issues

A continuous membership function can be approached by a so-calledshape func-
tion. This might be very useful for practical modelling purposesfor software im-
plementations. Frequently used shape functions are: theS-function, theπ-function
and theΠ -function. Other shape functions, that are important in practice are the so-
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called trapezoidal and triangular membership functions. Each of these shape func-
tions is further described below. In figure 2.4 some examplesof them are illustrated.
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Fig. 2.4 Some examples of shape functions.

2.1.5.1 TheS-function

This function is characterized by two parameter valuesα and γ which are both
elements of the set of real numbersR, i.e.(α,γ) ∈ R

2. Furthermore, it holds that:

α < γ

Domain values that are strict smaller thanα are mapped onto the function value 0.
Domain values which are strict larger thanγ are mapped onto the function value 1.
A special domain value

β =
α + γ

2
has 0.5 as function value and is therefore called the ‘transition point’. For all other
domain values —that are element of the[α,γ]— the function value is obtained by a
quadratic interpolation (see example (a) in figure 2.4). For each(α,γ) ∈ R

2 : α < γ
andβ =

α + γ
2

, theS-function is formally defined by:
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S(.;α,γ) : U → [0,1]

x 7→





0 iff x∈ ]−∞,α[

2(
x−α
γ −α

)2 iff x∈ [α,β ]

1−2(
x− γ
γ −α

)2 iff x∈ ]β ,γ]

1 iff x∈ ]γ,∞[

2.1.5.2 Theπ-function

The π-function is a clock function which is constructed by ‘concatenating’ anS-
function with its mirrored image. Hereby two parameter values(β ,γ) ∈ R

2 must
be provided. The parameterβ is called the bandwidth and determines the distance
between the two transition points. Therefore it is requiredthatβ > 0. The parameter
γ denotes the domain value of the top (maximum) of the clock function (see example
(b) in figure 2.4). For each couple(β ,γ) ∈ R

2 with beta> 0, the π-function is
formally defined by:

π(.;β ,γ) : U → [0,1]

x 7→
{

S(x;γ −β ,γ) iff x∈ ]−∞,γ[
1−S(x;γ,γ +β ) iff x∈ [γ,∞[

2.1.5.3 TheΠ -function

This is a general shape function which is constructed using two functionsπ1 andπ3

and four parameter values(α,β ,γ,δ ) ∈ R
4.

The functionsπ1 andπ3 must both be continuous mappings from the unit interval
[0,1] onto itself, for which the following border conditions musthold:





π1(0) = 0 andπ1(1) = 1

x< y⇒ π1(x)≤ π1(y), with other wordsπ1 is increasing

π3(0) = 1 andπ3(1) = 0

x< y⇒ π3(x)≥ π3(y), with other wordsπ3 is decreasing

For the parameter values(α,β ,γ,δ ) ∈ R
4 it must hold that:

α ≤ β ≤ γ ≤ δ

For each pair of continuous mappingsπ1 andπ3 which satisfy the border conditions
and for each(α,β ,γ,δ ) ∈ R

4 : α ≤ β ≤ γ ≤ δ theΠ -function is formally defined
by:
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Π(.;α,β ,γ,δ ) : U → [0,1]

x 7→





1 iff (x< α)∧ (α = β = inf(U))

0 iff (x< α)∧ (α < β )

π1(
x−α
β −α

) iff (α ≤ x< β )∧ (α < β )

1 iff β ≤ x≤ γ

π3(
x− γ
δ − γ

) iff (γ < x≤ δ )∧ (γ < δ )

0 iff (x> δ )∧ (γ < δ )
1 iff (x> δ )∧ (γ = δ = sup(U))

Due to its generality, theΠ -function can, with adequate parameter values and
adequate choices for the functionsπ1 and π3, result in anS-function or in aπ-
function.

2.1.5.4 The trapezoidal functions

Trapezoidal functions are obtained by choosing the functionsπ1 andπ3 for the con-
struction of aΠ -function as follows:

π1 : [0,1]→ [0,1] and π3 : [0,1]→ [0,1]

x 7→ x x 7→ 1− x

Example (c) in figure 2.4 illustrates a trapezoidal shape function. Trapezoidal
shape functions are fully characterized by the four domain valuesα, β , γ andδ ,
which are defined as depicted in the figure. For defining a trapezoidal function it is
sufficient to provide these four values.

Due to their simplicity, trapezoidal shape functions are very frequently used in
‘fuzzy’ databases and ‘fuzzy’ querying.

2.1.5.5 The triangular functions

A triangular shape function is a special case of a trapezoidal shape function where
β = γ. Example (d) in figure 2.4 illustrates a triangular shape function. Although
triangular shape functions are characterized by only threedomain valuesα, β andδ ,
they are not frequently used in the context of ‘fuzzy’ databases due to their limited
modelling abilities.
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2.1.6 Interpretation of fuzzy sets

The membership gradesµṼ(x) of the elementsx∈U of a fuzzy setṼ can beinter-
pretedin three different ways [5]: as degrees of compatibility, asdegrees of truth, or
as degrees of uncertainty.

2.1.6.1 Degree of compatibility

In his original, historical oldest, interpretation a membership gradeµṼ(x) is con-
sidered to be a degree that expresses to which extent the element x is compatible
with the ‘prototype’-elements of̃V (i.e., is compatible with the elements that are
(or should be) full elements of̃V). Such a fuzzy set has intrinsically a conjunctive
interpretation: the fuzzy set represents a collection of elements which together are
representative for the concept that is being modelled.

Example 2.1.An example of a fuzzy set where the membership grades are inter-
preted as degrees of compatibility, is the fuzzy set of ‘expensive prices’ for paint-
ings. The membership function of this fuzzy set could for example be modelled by
means of shape function (a) of figure 2.4. From such a membership function we can
for example derive that the membership grade of 100.000, andthus also the extent
to which 100.000 is compatible with an expensive price, equals 0.42. ⋄

2.1.6.2 Degree of truth

With the naming ‘degree of truth’ we prefer to use the terminology of L.A. Zadeh
[29]. D. Dubois & H. Prade call this kind of interpretation ‘degree of preference’
[5]. With this interpretation, the membership gradeµṼ(x) expresses to which extent
the elementx of the fuzzy setṼ is true (or applies). Also in this case the fuzzy set
intrinsically has a conjunctive interpretation. With other words, all elements of the
fuzzy set together represent the concept that is being modelled.

Example 2.2.An example of a fuzzy set where each membership grade represents a
degree of truth is the fuzzy set that models the languages spoken by a person. This
fuzzy set can for example be specified by:

{(English,1),(French,0.6),(Spanish,0.8),(German,0.2)}

which represents a ‘perfect’ knowledge of English (highesttruth), a good knowledge
of Spanish, a moderate knowledge of French and a limited knowledge of the German
language. ⋄
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2.1.6.3 Degree of uncertainty

This interpretation has been presented by L.A. Zadeh with the introduction of the
possibility theory[26]. Hereby, the membership gradeµṼ(x) represents the extent to
which it is possible that a single-valued parameterp —of which it is known that the
parameter takes values in the universe of discourseU— equals the valuex. Thus the
fuzzy setṼ hereby represents all allowed values that are considered tobe possible
as value forp. Becausep is single-valued —due to whichp can take only one single
value at the same time— and because the fuzzy set is a representation of the actual
value ofp, the interpretation of the fuzzy setṼ is disjunctive.

Example 2.3.As example, we consider the pricep of a painting. Ifp is not exactly
known, but it is known that the painting is expensive, then the value ofp can be
modelled by a membership function like the one represented in figure 2.4 (a). The
interpretation of the membership function is now differentthan in example 2.1: if a
painting is for sale, we know that it has some price. The possible values of this price
are determined by the fuzzy set. As such, it is for example uncertain, but possible to
an extent 0.42 that the price of the painting is 100.000.⋄

Possibility theory will be described in the next section.

2.2 Possibility theory

Possibility theory [26, 4, 6] is closely related to fuzzy set theory. It is used for the
modelling of uncertainty and is thus an alternative for probability theory. Possibil-
ity theory departs from a more conservative approach, due towhich uncertainty is
modelled with less risk for errors, but also with less information for the user. This
makes the theory especially suited for the modelling of uncertainty in situations
where the user has no full control (over the experiment), what is mostly the case
with uncertainty modelling in the context of database applications. Possibility the-
ory should not be seen as a competitor ofprobability theory . In contrary, in cases
of full control (over the experiment) the use of probabilitytheory [15, 8] is better
because this provides the user with more information. Although possibility theory
is nowadays almost always used for the modelling of uncertainty in the context of
‘fuzzy’ databases, it is surely not excluded that in the future both theories will be
applied next to each other. In fact, the theory of imprecise probabilities [17, 18],
which acts as a uniform framework for both probability and possibility theory, and
the use of generalized constraints [28, 29], are first research steps in this direction.
In the remainder of this section we describe the basic concepts of possibility theory
in more detail.
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2.2.1 Fuzzy measures

The concept offuzzy measureis important for the modelling of the uncertainty
that can exist about the fact whether a given element of a universe of discourse is
element or is not element of a set of the set of all subsets of that universe. To model
such uncertainty a membership grade (∈ [0,1]), that is interpreted as a degree of
uncertainty, is associated with each subset. This degree ofuncertainty then denotes
to which extent it is certain that the element belongs to thatsubset.

Two specific types of fuzzy measures play an important role inthe possibility
theory: thepossibility measuresand thenecessity measures.

Definition 2.16 (Possibility measure)With the understanding that U is a universe
of discourse, a possibility measure over the power set℘(U) is defined by a function

Pos :℘(U)→ [0,1]

which satisfies the following axioms:

• Axiom p1.Pos( /0) = 0 andPos(U) = 1 (border conditions).
• Axiom p2.∀ A,B∈℘(U) : A⊆ B⇒ Pos(A)≤ Pos(B)

(monotonicity).

and for which it holds for each set

{Ak|k∈ K} ⊆℘(U)

with K an arbitrary index set, that

Pos

(⋃

k∈K

Ak

)
= sup

k∈K
Pos(Ak)

�

By definition each possibility measure has an associated necessity measure. The
relationship between both of them is as follows:

With the understanding thatU is a universe of discourse and Pos is a possibility
measure that is defined over the power set℘(U), the necessity measure Nec that is
associated with Pos is determined by

Nec :℘(U)→ [0,1]

A 7→ Nec(A) = 1−Pos(A)

A necessity measure can also be formally defined as follows:

Definition 2.17 (Necessity measure)With the understanding that U is a universe
of discourse, a necessity measure over the power set℘(U) is defined by a function
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Nec :℘(U)→ [0,1]

which satisfies the following axioms:

• Axiom n1.Nec( /0) = 0 andNec(U) = 1 (border conditions).
• Axiom n2.∀ A,B∈℘(U) : A⊆ B⇒ Nec(A)≤ Nec(B)

(monotonicity).

and for which it holds for each set

{Ak|k∈ K} ⊆℘(U)

with K an arbitrary index set, that

Nec

(⋂

k∈K

Ak

)
= inf

k∈K
Nec(Ak)

�

A possibility measure Pos which is defined over the power set℘(U) denotes
the extent Pos(A) to which it is considered to bepossiblethat an element of the
universe belongs to the setA ∈℘(U). A necessity measure Nec which is defined
over the power set℘(U) denotes the extent Nec(A) to which it is considered to be
necessaryor certainthat an element of the universe belongs to the setA∈℘(U).

From definitions 2.16 and 2.17 the following important properties can be derived:

• ∀ A,B∈℘(U) : Pos(A∪B) = max(Pos(A),Pos(B))
• ∀ A,B∈℘(U) : Nec(A∩B) = min(Nec(A),Nec(B))

Furthermore it can be proved that:

• ∀ A,B∈℘(U) : Pos(A∩B)≤ min(Pos(A),Pos(B))
• ∀ A,B∈℘(U) : Nec(A∪B)≥ max(Nec(A),Nec(B))

Only in the special case thatA andB are independent, i.e. ifA andB are sets that
are determined by independent events, it holds that:

• ∀ A,B∈℘(U) : Pos(A∩B) = min(Pos(A),Pos(B))
• ∀ A,B∈℘(U) : Nec(A∪B) = max(Nec(A),Nec(B))

BecauseA∪A=U we obtain furthermore that

max(Pos(A),Pos(A)) = Pos(A∪A) = Pos(U) = 1

so that we can derive that

Pos(A)< 1⇒ Pos(A) = 1

with other words, ifA is not fully possible, then its complementA is fully possible,
or also eitherA or its complementA is always fully possible. It also follows that
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Pos(A)+Pos(A)≥ 1.

Analoguously, based onA∩A= /0, we can find that

min(Nec(A),Nec(A)) = Nec(A∩A) = Nec( /0) = 0

from which we can derive that

Nec(A)> 0⇒ Nec(A) = 0.

It also follows that
Nec(A)+Nec(A)≤ 1.

Based on the relationship between possibility measures andnecessity measures it
can be proved that:

(Nec(A)> 0)⇒ (Pos(A) = 1)

and
(Pos(A)< 1)⇒ (Nec(A) = 0).

Indeed:

• Assume that Nec(A)> 0, then Nec(A) = 0, so that

Pos(A) = 1−Nec(A) = 1.

• Assume that Pos(A)< 1, then Pos(A) = 1, so that

Nec(A) = 1−Pos(A) = 0.

2.2.2 Possibility distributions

Each possibility measure Pos that is defined over the power set ℘(U) of a universe
of discourseU , is uniquely determined by a so-calledpossibility distribution

π : U → [0,1]

x 7→ Pos({x})

If U is a universe with a finite number of elements, then it holds that

∀ A∈℘(U) : Pos(A) = max
x∈A

π(x)

For a universeU with an infinite number of elements this is generalized as

∀ A∈℘(U) : Pos(A) = sup
x∈A

π(x)
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The possibility distributionπ thus completely determines the possibility measure
Pos and thus plays the same role as a probability distribution in probability theory.

From the relationship between possibility measure Pos and necessity measure
Nec it follows that a possibility distributionπ also completely determines a neces-
sity measure Nec as follows: For a universeU with a finite number of elements, it
holds that

∀ A∈℘(U) : Nec(A) = min
x6∈A

(1−π(x))

For a universeU with an infinite number of elements this is generalized as

∀ A∈℘(U) : Nec(A) = inf
x6∈A

(1−π(x)).

2.2.3 Possibility distributions and fuzzy sets

A possibility distribution can be derived form afuzzy setof which the membership
grades are interpreted as degrees of uncertainty.

Consider therefore the fuzzy set

Ṽ = {(x,µṼ(x))|x∈U ∧µṼ(x)> 0}

which is defined over a universe of discourseU and of which the membership grades
are interpreted as degrees of uncertainty. Such a fuzzy set can be associated with a
(single-valued) variableX, by which the fuzzy set puts a flexible constraint on the
actual value ofX. A membership gradeµṼ(x), x ∈ U hereby expresses to which
extent it is possible thatX = x. The possibilityπX(x) thatX = x is with other words
determined by the membership gradeµṼ(x), i.e.

∀ x∈U : πX(x) = µṼ(x).

The functionπX : U → [0,1] that is defined by the previous consideration is clearly
a possibility distribution overU , of which the associated possibility measure PosX

is for each setA∈℘(U) defined by:

PosX(A) = sup
x∈A

πX(x)

We say that the possibility distributionπX follows the membership functionµṼ [4].
If the fuzzy setṼ is normalized, then the associated necessity measure NecX can

for each setA∈℘(U) be derived from

NecX(A) = 1−PosX(A).

With this we are ready to clarify the more conservative nature of possibility the-
ory (compared to probability theory). We have also introduced enough concepts to
compare both theories to each other.
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For a discrete probability distributionPr the normalization condition requires
that the sum of all occurring probabilities must be equal to one [8], i.e.

∑
x∈U

Pr(x) = 1.

For a continuous probability distribution this is generalized as
∫

U
Pr(x)dx.

For possibility distributions the normalization condition is less stringent. Indeed the
only requirement is that at least one possibility must be equal to one. For a discrete
possibility distributionπ this is expressed by

max
x∈U

π(x) = 1.

For a continuous possibility distribution this is generalized as

sup
x∈U

π(x) = 1.

Possibilities express preferences, which implies that a single possibility is in fact
not informative, unless it is placed next to and compared with other possibilities. A
possibility degree that equals 1 can correspond as well to anevent that is completely
certain (if the opposite event is completely impossible, i.e. has an associated possi-
bility 0), as to an event that is not necessarily certain (if the opposite event is also
completely possible). Probabilities however express information with respect to the
relative occurrence of an event (the probability of an eventA is the frequency with
which A occurs). Due to the fact that the probability of the oppositeevent can be
derived from the probability of the event, there is no need for a second measure in
probability theory.

There exist several interrelationships between possibilities and probabilities. The
relationships proposed by L.A. Zadeh stem from the following ideas:

1. What is not possible, is also not certain.
2. What is certain, is also possible.

With the notation Prob(A) for the probability of an eventA, the previous ideas can
be translated as:

∀ A∈℘(U) : Prob(A)≤ Pos(A)

and
∀ A∈℘(U) : Nec(A)≤ Prob(A).

These and other relationships between both theories are described in more detail in
[16, 10, 9].
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2.3 Fuzzy logic

Fuzzy logic is an extension of Boolean logic where the classical truth values ‘true’
(T) and ‘false’ (F) are extended to fuzzy truth values which are elements of theunit
interval[0,1]. Hereby, the classical truth value ‘true’ (T) corresponds to 1, the truth
value ‘false’ (F) to 0. The intermediate values (∈]0,1[) denote a gradual truth: the
closer to 1, the more the truth value is true; the closer to 0, the more the truth value
is false. The semantics of a fuzzy truth valuex∈ [0,1] is are illustrated in figure 2.5.
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µtrue(x)

µfalse(x)
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1
true

1

false

x

µtrue(x)
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Fig. 2.5 Fuzzy truth values.

The truth values ‘true’ and ‘false’ can be seen as linguisticterms which are modelled
by the visualized membership functions that are defined overthe unit interval. The
membership gradeµtrue(x) denotes to which extentx is compatible with ‘true’ and
analogously the membership gradeµ f alse(x) denotes to which extentx is compatible
with ‘false’.

Taking into account the above mentioned relationship with fuzzy theory, the logi-
cal operators of conjunction (∧), disjunction (∨), negation (¬), implication (⇒) and
equivalence (⇔) are defined conform to their algebraic counterparts in fuzzy set
theory, i.e.

• Conjunction: ∀ x,y∈ [0,1] : x∧y= i(x,y).
• Disjunction: ∀ x,y∈ [0,1] : x∨y= u(x,y).
• Negation: ∀ x∈ [0,1] : ¬(x) = 1− x.
• Implication : ∀ x,y∈ [0,1] : x⇒ y= u(1− x,y).
• Equivalence: ∀ x,y∈ [0,1] : x⇔ y= i(u(1− x,y),u(1− y,x)).

Which can, with the use of the Zadeh t-norm min and Zadeh t-conorm max, be
concretised as:

• Conjunction: ∀ x,y∈ [0,1] : x∧y= min(x,y).
• Disjunction: ∀ x,y∈ [0,1] : x∨y= max(x,y).
• Negation: ∀ x∈ [0,1] : ¬(x) = 1− x.
• Implication : ∀ x,y∈ [0,1] : x⇒ y= max(1− x,y).
• Equivalence:

∀ x,y∈ [0,1] : x⇔ y= min(max(1− x,y),max(1− y,x)).
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2.4 (Extended) Possibilistic truth values

In the context of ‘fuzzy’ databases uncertainty (about truth) is mostly modelled
by means of possibility measures and necessity measures. This approach has some
disadvantages when considering logical operations. As such, with respect to a pos-
sibility measure, it always holds for the union operator that

Pos(A∪B) = max(Pos(A),Pos(B))

whereas for the intersection operator the equation

Pos(A∩B) = min(Pos(A),Pos(B))

only applies ifA andB are independent of each other. Analogously, with respect to
a necessity measure, it always holds for the intersection operator that

Nec(A∩B) = min(Nec(A),Nec(B))

whereas for the union operator the equation

Nec(A∪B) = max(Nec(A),Nec(B))

only applies ifA andB are independent of each other.
Another disadvantage is that possibility and necessity measures have some re-

strictions with respect to the modelling and handling of missing information, what
often occurs in databases1.

Among others because of the previous disadvantages the so-calledpossibilistic
truth values andextended possibilistic truth valueshave been developed. These
allow to model linguistic uncertainty about the truth valueof a proposition more
adequately. Linguistic uncertainty is the uncertainty that is contained in affirmative
propositions like for example ‘the painting is cheap’ and ‘the water temperature is
high’. The truth value of such a proposition gives information about for example
the temperature of the water without having complete knowledge about the actual
temperature of the water.

2.4.1 Extended truth values

By using classical two-valued Boolean propositional logiccases of doubt about the
truth value of a proposition can not adequately be modelled.This is due to the fact
that in two-valued logic it is explicitly assumed that each proposition can be evalu-
ated and is eithercompletely true, orcompletely false. This assumption is commonly
known as theprinciple of bivalenceand states that

1 The handling of missing information in databases is described in chapter 4.



2.4 (Extended) Possibilistic truth values 39

Each proposition is either true, or false.

Following this philosophy, atruth value can be associated with each proposition,
denoting whether the proposition is true (T) or false (F). With the understanding
thatP represents the universe of all propositions andI = {T,F} is a set with total
ordering relation

≤= {(F,F),(F,T),(T,T)},
a truth value can be formally defined by:

Definition 2.18 (Truth value) The truth value t(p) of a proposition p∈ P is for-
mally defined by means of the function t:

t : P→ I : p 7→ t(p)

t(p) equals T if p is true, i.e. if p corresponds to the reality. Else t(p) equals F.
�

Example 2.4.• t(‘2 is an even number’) = T
• t(‘Eddy Merckx was a famous basketball player’) = F

⋄

In database and information systems it occurs that data are missing2 due to the
fact that they relate to exceptions which have not been dealtwith explicitly in the
database design. Examples are the flying speed of penguins ina record of record
type ‘bird’, the number of habitants of the Eiffel tower in a record of record type
‘building’ and the salary of a retired person in a record of record type ‘person’. In
such cases data are missing because they do not apply. Modelling these cases with a
regular domain value will not allow us the track the cause of the missing and brings
along with it some kind of information loss which in some cases can cause annoying
side effects in query results. For example, when querying the database for ‘birds that
cannot fly fast’ or ‘buildings with few habitants’ or ‘persons with low salaries’ we
do not want penguins, monuments like the Eiffel tower and retired persons to be
treated as regular query answers.

To avoid such information loss and side effects it is required to use a seman-
tic richer logical framework which explicitly allows to reflect inapplicability. The
principle of bivalence is then replaced by theprinciple of trivalence which states
that

Each proposition either evaluates to true, false or inapplicable, where the latter
indicates that the truth value of the proposition is not defined.

To formally support the principle of trivalence, the concept extended truth value
has been introduced. Hereby, definition 2.18 is extended with an extra truth value⊥
which models ‘undefined’. Considering the extended setI∗ = {T,F,⊥}, an extended
truth value can be formally defined by:

2 The handling of missing information is more extensively described in chapter 4.
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Definition 2.19 (Extended truth value) The extended truth value t∗(p) of a propo-
sition p∈ P is formally defined by means of the function t∗:

t∗ : P→ I∗ : p 7→ t∗(p)

where

• t∗(p) = T, if p corresponds with reality, i.e. if p is true;
• t∗(p) = F, if p does not correspond with reality, i.e. if p is false;
• t∗(p) = ⊥, if proposition p is (partially) not applicable, undefined,not existent,

or not supported; in such cases it does not make sense to decide whether p cor-
responds with reality or not, i.e. p is then neither true, norfalse, but undefined.

�

Logical operators can be used to build a new proposition thatis composed of
other propositions. The following logical operators are provided:

• Negation:NOT : P→ P : p 7→ NOT(p)
• Conjunction:AND : P×P→ P : (p,q) 7→ p AND q
• Disjunction:OR: P×P→ P : (p,q) 7→ p OR q
• Implication:IF −THEN : P×P→ P : (p,q) 7→ IF p THEN q
• Equivalence:IFF : P×P→ P : (p,q) 7→ p IFF q

A proposition without logical operators is called asimple proposition. Examples
are ‘2 is an even number’, ‘Lance Armstrong is a famous basketball player’, ‘x is
larger than 1.000’, etc. A proposition that is obtained as a combination of other (sim-
ple) propositions and logical operators is called acomposite proposition. Examples
are ‘2 is an even number AND 2 is prime’, ‘Lance Armstrong is a famous basket-
ball player AND Lance Armstrong is an American’, ‘x is larger than 1.000 ORx is
smaller than 10’.

Theextended truth valueof a composite proposition can be computed by means
of the following computation rules:

• Rule for negation:
∀ p∈ P : t∗(NOT p) = ¬(t∗(p))

where¬ : I∗ → I∗ : x 7→ ¬(x) is defined by the truth table

x ¬(x)
T F
F T
⊥ ⊥

• Rule for conjunction:

∀ p,q∈ P : t∗(p AND q) = t∗(p)∧ t∗(q)

where∧ : I∗× I∗ → I∗ : (x,y) 7→ x∧y is defined by the truth table
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x y x∧y
T T T
T F F
T ⊥ ⊥
F T F
F F F
F ⊥ F
⊥ T ⊥
⊥ F F
⊥ ⊥ ⊥

• Rule for disjunction:

∀ p,q∈ P : t∗(p OR q) = t∗(p)∨ t∗(q)

where∨ : I∗× I∗ → I∗ : (x,y) 7→ x∨y is defined by the truth table

x y x∨y
T T T
T F T
T ⊥ T
F T T
F F F
F ⊥ ⊥
⊥ T T
⊥ F ⊥
⊥ ⊥ ⊥

• Rule for implication:

∀ p,q∈ P : t∗(IF p THEN q) = t∗(p)⇒ t∗(q)

where⇒: I∗× I∗ → I∗ : (x,y) 7→ x⇒ y is defined by the truth table

x y x⇒ y
T T T
T F F
T ⊥ ⊥
F T T
F F T
F ⊥ T
⊥ T T
⊥ F ⊥
⊥ ⊥ p⊥

Remark that:t∗(IF p THEN q) = ¬(t∗(p))∨ t∗(q)
= t∗(NOT p OR q)

• Rule for equivalence:
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∀ p,q∈ P : t∗(p IFF q) = t∗(p)⇔ t∗(q)

where⇔: I∗× I∗ → I∗ : (x,y) 7→ x⇔ y is defined by the truth table

x y x⇔ y
T T T
T F F
T ⊥ ⊥
F T F
F F T
F ⊥ ⊥
⊥ T ⊥
⊥ F ⊥
⊥ ⊥ ⊥

Remark that:

t∗(p IFF q) = (t∗(p)⇒ t∗(q))∧ (t∗(q)⇒ t∗(p))

= t∗((IF p THEN q) AND (IF q THEN p))

The operator¬ has precedence over the operators∧ and∨ and the operator∧
has precedence over the operator∨. The evaluation of an expression is from left to
right, unless brackets are used to enforce precedence.

Due to the previous calculation rules the resulting logicalframework is a strong
three-valued Kleene logic [14]. Kleene logics are truth functional, which means that
according to these logics the behaviour of each logical operator is reflected by a
logical function that combines Kleene truth values [1]. Thanks to this property the
extended truth valueof each composite proposition can be computed as a function
of the extended truth values of its original propositions.

The natural partial ordering relation relation≤ overI∗ that corresponds with the
algebraic structure(I∗,∧,∨) satisfies:

≤= {(F,F),(F,⊥),(F,T),(⊥,⊥),(⊥,T),(T,T)}

2.4.2 Extended possibilistic truth values

In reality, a lot of situations exist where we can not unambiguously determine
whether the truth value of a proposition is eithercompletelytrue,completelyfalse or
completelyundefined. Examples of such propositions are e.g., ‘the house is cheap’,
‘the car is fast’ and ‘the suspect is tall’. The extended truth values that have been
introduced in the previous section 2.4.1 —only— allow it to represent the actual
truth value of a proposition that is a priori considered to beeither completely true,
false or undefined. What is required, is a more epistemological representation of the
truth of a proposition which allows it to better reflect our knowledge about the actual
truth value.
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In his approach to obtain such a representation, Prade [13] uses a possibility mea-
sure to generalize classical two-valued truth values. Eachproposition then evaluates
to a so-called possibilistic truth value which is defined over the universe{T,F}.
This approach has been further developed in [1]. A basic overview of this is given
in the following subsection. Next, the concept extended possibilistic truth value is
described.

2.4.2.1 Possibilistic truth values

Definition.

By generalizing the classical truth values true (T) and false (F), the principle of
bivalence is replaced by a more generalprinciple of valence, which states that:

Each proposition has a (possibilistic) truth value.

For this generalization, the set̃℘(I) of all fuzzy sets that are defined over the
universeI = {T,F} is considered.

Definition 2.20 (Possibilistic truth value) The possibilistic truth valuẽt(p) of a
proposition p∈ P is formally defined by means of the functiont̃:

t̃ : P→℘̃(I) : p 7→ t̃(p)

which associates a fuzzy sett̃(p) with each p∈ P. The fuzzy set̃t(p) represents
a possibility distribution, i.e. its membership grades areinterpreted as degrees of
uncertainty:

∀ x∈ I : πt(p)(x) = µt̃(p)(x)

i.e.
∀ p∈ P : πt(p) = t̃(p)

�

A possibilistic truth value is thus a fuzzy set, that generally has the following form

t̃(p) = {(T,µt̃(p)(T)),(F,µt̃(p)(F))}.

Interpretation.

By definition 2.20 the possibilistic truth valuet̃(p) of a propositionp∈ P must be
interpreted as follows:

Pos(t(p) = {T}) = µt̃(p)(T)

and
Pos(t(p) = {F}) = µt̃(p)(F)
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where Pos represents a possibility measure.
Special cases of possibilistic truth values are:

Truth valuet̃(p) Interpretation
{(T,1)} p is true
{(F,1)} p is false
{(T,1),(F,1)} p is unknown

By using Zadeh’s standard equality definition for fuzzy sets(cf. definition 2.11),
the equality operator for possibilistic truth values can bedefined by:

Definition 2.21 (Equality) ∀ p, p′ ∈ P :

• t̃(p) = t̃(p′)⇔∀ x∈ I : µt̃(p)(x) = µt̃(p′)(x)
• t̃(p) 6= t̃(p′)⇔∃ x∈ I : µt̃(p)(x) 6= µt̃(p′)(x)

�

Example 2.5.The possibilistic truth value

t̃(‘the house is cheap’) = {(T,1.0),(F,0.7)}

of the proposition ‘the house is cheap’ has to be interpretedas

πt(‘the house is cheap’) = {(T,1.0),(F,0.7)}

i.e.
Pos(t(‘the house is cheap’) = {T}) = 1.0

Pos(t(‘the house is cheap’) = {F}) = 0.7

which states that it is completely possible (to an extent 1) that the house is cheap,
but on the other hand it is also less possible (to an extent 0.7) that the house is not
cheap.⋄

Calculus.

The computation rules for negation, conjunction, disjunction, implication and equiv-
alence are defined as generalizations of their counterpartsin classical two-valued
logic. For the generalization, Zadeh’s extension principle (cf. definition 2.15) can
be used:

• Rule for negation:
∀ p∈ P : t̃(NOT p) = ¬̃(t̃(p))

where¬̃ : ℘̃(I) → ℘̃(I) : Ṽ 7→ ¬̃(Ṽ) is obtained by applying Zadeh’s extension
principle to the operator¬:

µ¬̃(Ṽ)(T) = sup
x∈{x|x∈I∧¬(x)=T}

µṼ(x) = µṼ(F)
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and
µ¬̃(Ṽ)(F) = sup

x∈{x|x∈I∧¬(x)=F}
µṼ(x) = µṼ(T)

• Rule for conjunction:

∀ p,q∈ P : t̃(p AND q) = t̃(p)∧̃t̃(q)

where∧̃ :℘̃(I)×℘̃(I)→℘̃(I) : (Ũ ,Ṽ) 7→ Ũ ∧̃ Ṽ is obtained by applying Zadeh’s
extension principle to the operator∧:

µŨ∧̃Ṽ(T) = sup
(x,y)∈{(x,y)|(x,y)∈I×I∧(x∧y=T)}

min(µŨ(x),µṼ(y))

= min(µŨ(T),µṼ(T))

and

µŨ∧̃Ṽ(F) = sup
(x,y)∈{(x,y)|(x,y)∈I×I∧(x∧y=F )}

min(µŨ (x),µṼ(y))

= max




min(µŨ (T),µṼ(F)),
min(µŨ (F),µṼ(T)),
min(µŨ (F),µṼ(F))




• Rule for disjunction:

∀ p,q∈ P : t̃(p OR q) = t̃(p)∨̃t̃(q)

where∨̃ : ℘̃(I)×℘̃(I) → ℘̃(I) : (Ũ ,Ṽ) 7→ tildeU ∨̃ Ṽ is obtained by applying
Zadeh’s extension principle to the operator∨:

µŨ∨̃Ṽ(T) = sup
(x,y)∈{(x,y)|(x,y)∈I×I∧(x∨y=T)}

min(µŨ(x),µṼ(y))

= max




min(µŨ (T),µṼ(F)),
min(µŨ (F),µṼ(T)),
min(µŨ (T),µṼ(T))




and

µŨ∨̃Ṽ(F) = sup
(x,y)∈{(x,y)|(x,y)∈I×I∧(x∨y=F )}

min(µŨ (x),µṼ(y))

= min(µŨ(F),µṼ(F))

• Rule for implication:

∀ p,q∈ P : t̃(IF p THEN q) = t̃(p)⇒̃t̃(q)

where⇒̃ : ℘̃(I)×℘̃(I) → ℘̃(I) : (Ũ ,Ṽ) 7→ Ũ ⇒̃ Ṽ is obtained by applying
Zadeh’s extension principle to the operator⇒:
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µŨ⇒̃Ṽ(T) = sup
(x,y)∈{(x,y)|(x,y)∈I×I∧((x⇒y)=T)}

min(µŨ(x),µṼ(y))

= max




min(µŨ(T),µṼ(T)),
min(µŨ (F),µṼ(T)),
min(µŨ (F),µṼ(F))




and

µŨ⇒̃Ṽ(F) = sup
(x,y)∈{(x,y)|(x,y)∈I×I∧((x⇒y)=F )}

min(µŨ(x),µṼ(y))

= min(µŨ (T),µṼ(F))

Remark that:̃t(IF p THEN q) = t̃(NOT p OR q)
• Rule for equivalence:

∀ p,q∈ P : t̃(p IFF q) = t̃(p)⇔̃t̃(q)

where⇔̃ : ℘̃(I)×℘̃(I) → ℘̃(I) : (Ũ ,Ṽ) 7→ Ũ ⇔̃ Ṽ is obtained by applying
Zadeh’s extension principle to the operator⇔:

µŨ⇔̃Ṽ(T) = sup
(x,y)∈{(x,y)|(x,y)∈I×I∧((x⇔y)=T)}

min(µŨ(x),µṼ(y))

= max

(
min(µŨ(T),µṼ(T)),
min(µŨ (F),µṼ(F))

)

and

µŨ⇔̃Ṽ(F) = sup
(x,y)∈{(x,y)|(x,y)∈I×I∧((x⇔y)=F )}

min(µŨ(x),µṼ(y))

= max

(
min(µŨ(T),µṼ(F)),
min(µŨ(F),µṼ(T))

)

Remark that:̃t(p IFF q) = t̃((IF p THEN q)AND(IF q THEN p))

Partial ordering.

The natural partial ordering relatioñ≤ over℘̃(I) that corresponds to the algebraic
structure(℘̃(I), ∧̃, ∨̃) is obtained by applying the following proposition [1]:

Proposition 1 The partial ordering relation≤̃ over the set℘̃(I) satisfies:

∀ Ũ ,Ṽ ∈℘̃(I)×℘̃(I) : Ũ≤̃ Ṽ ⇔
{

µŨ(T)≤ µṼ(T)
µŨ(F)≥ µṼ(F)
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◦

The proof of this proposition can be found in [1].

2.4.2.2 Extended possibilistic truth values

Definition.

In order to be able to efficiently deal with propositions of which the truth value is
(partially) undefined, the concept ‘extended truth value’ has been generalized based
on possibility theory [2]. The resulting truth values are called extended possibilistic
truth values (EPTVs) and allow for a more flexible representation of the knowledge
about the actual truth of a proposition. For the generalization the set℘̃(I∗) of all
fuzzy sets that are defined over the universeI∗ = {T,F,⊥} is considered.

Definition 2.22 (Extended possibilistic truth value) The extended possibilistic
truth valuet̃∗(p) of a proposition p∈ P is formally defined by means of the function
t̃∗:

t̃∗ : P→℘̃(I∗) : p 7→ t̃∗(p)

which associates a fuzzy sett̃∗(p) with each p∈ P. The fuzzy set̃t(p) represents
a possibility distribution, i.e. its membership grades areinterpreted as degrees of
uncertainty:

∀ x∈ I∗ : πt∗(p)(x) = µt̃∗(p)(x)

i.e.
∀ p∈ P : πt∗(p) = t̃∗(p)

�

An extended possibilistic truth valueis thus a fuzzy set, that generally has the
following form

t̃∗(p) = {(T,µt̃∗(p)(T)),(F,µt̃∗(p)(F)),(⊥,µt̃∗(p)(⊥))}.

Interpretation.

By definition 2.22 the extended possibilistic truth valuet̃∗(p) of a propositionp∈ P
must be interpreted as follows:

Pos(t∗(p) = {T}) = µt̃∗(p)(T)

Pos(t∗(p) = {F}) = µt̃∗(p)(F)

and
Pos(t∗(p) = {⊥}) = µt̃∗(p)(⊥)
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where Pos represents a possibility measure.
Special cases of extended possibilistic truth values are:

Truth valuet̃∗(p) Interpretation
{(T,1)} p is true
{(F,1)} p is false
{(T,1),(F,1)} p is unknown
{(⊥,1)} p is undefined
{(T,1),(F,1),(⊥,1)} p is unknown or undefined

By using Zadeh’s standard equality definition for fuzzy sets(cf. definition 2.11),
the equality operator for extended possibilistic truth values can be defined by:

Definition 2.23 (Equality) ∀ p, p′ ∈ P :

• t̃∗(p) = t̃∗(p′)⇔∀ x∈ I∗ : µt̃∗(p)(x) = µt̃∗(p′)(x)
• t̃∗(p) 6= t̃∗(p′)⇔∃ x∈ I∗ : µt̃∗(p)(x) 6= µt̃∗(p′)(x)

�

Example 2.6.The extended possibilistic truth value

t̃∗(‘the house is cheap’) = {(T,1.0),(F,0.7),(⊥,0.5)}

of the proposition ‘the house is cheap’ is interpreted as

πt∗(‘the house is cheap’) = {(T,1.0),(F,0.7),(⊥,0.5)}

i.e.
Pos(t∗(‘the house is cheap’) = {T}) = 1.0

Pos(t∗(‘the house is cheap’) = {F}) = 0.7

and
Pos(t∗(‘the house is cheap’) = {⊥}) = 0.5

which means that it is completely possible (to an extent 1) that the house is cheap,
it is less possible (to an extent 0.7) that the house is not cheap and on the other hand
it is also possible to even lesser extent 0.5 that it does not make sense to consider
prices for the house (e.g. because the house is not for sale).
⋄

Calculus.

The computation rules for negation, conjunction, disjunction, implication and equiv-
alence are defined as generalizations of their counterpartsfor extended truth values
(which are given in section 2.4.1). A possible approach is touse Zadeh’s extension
principle (cf. definition 2.15) for this purpose:
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• Rule for negation:
∀ p∈ P : t̃∗(NOT p) = ¬̃(t̃∗(p))

where¬̃ :℘̃(I∗)→℘̃(I∗) : Ṽ 7→ ¬̃(Ṽ) is obtained by applying Zadeh’s extension
principle to the¬:

µ¬̃(Ṽ)(T) = sup
x∈{x|x∈I∗∧¬(x)=T}

µṼ(x) = µṼ(F)

µ¬̃(Ṽ)(F) = sup
x∈{x|x∈I∗∧¬(x)=F}

µṼ(x) = µṼ(T)

µ¬̃(Ṽ)(⊥) = sup
x∈{x|x∈I∗∧¬(x)=⊥}

µṼ(x) = µṼ(⊥)

• Rule for conjunction:

∀ p,q∈ P : t̃∗(p AND q) = t̃∗(p)∧̃t̃∗(q)

where∧̃ : ℘̃(I∗)×℘̃(I∗) → ℘̃(I∗) : (Ũ ,Ṽ) 7→ Ũ ∧̃ Ṽ is obtained by applying
Zadeh’s extension principle to the operator∧:

µŨ∧̃Ṽ(T) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧(x∧y=T)}

min(µŨ(x),µṼ(y))

= min(µŨ(T),µṼ(T))

µŨ∧̃Ṽ(F) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧(x∧y=F)}

min(µŨ(x),µṼ(y))

= max




min(µŨ(T),µṼ(F)),
min(µŨ(F),µṼ(T)),
min(µŨ(F),µṼ(F)),
min(µŨ (F),µṼ(⊥)),
min(µŨ(⊥),µṼ(F))




µŨ∧̃Ṽ(⊥) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧(x∧y=⊥)}

min(µŨ (x),µṼ(y))

= max




min(µŨ(T),µṼ(⊥)),
min(µŨ(⊥),µṼ(T)),
min(µŨ(⊥),µṼ(⊥))




• Rule for disjunction:

∀ p,q∈ P : t̃∗(p OR q) = t̃∗(p)∨̃t̃∗(q)

where∨̃ : ℘̃(I∗)×℘̃(I∗) → ℘̃(I∗) : (Ũ ,Ṽ) 7→ Ũ ∨̃ Ṽ is obtained by applying
Zadeh’s principle to the operator∨:
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µŨ∨̃Ṽ(T) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧(x∨y=T)}

min(µŨ(x),µṼ(y))

= max




min(µŨ(T),µṼ(T)),
min(µŨ(T),µṼ(F)),
min(µŨ(T),µṼ(⊥)),
min(µŨ(F),µṼ(T)),
min(µŨ(⊥),µṼ(T))




µŨ∨̃Ṽ(F) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧(x∨y=F)}

min(µŨ(x),µṼ(y))

= min(µŨ(F),µṼ(F))

µŨ∨̃Ṽ(⊥) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧(x∨y=⊥)}

min(µŨ (x),µṼ(y))

= max




min(µŨ(F),µṼ(⊥)),
min(µŨ(⊥),µṼ(F)),
min(µŨ (⊥),µṼ(⊥))




• Rule for implication:

∀ p,q∈ P : t̃∗(IF p THEN q) = t̃∗(p)⇒̃t̃∗(q)

where⇒̃ : ℘̃(I∗)×℘̃(I∗) → ℘̃(I∗) : (Ũ ,Ṽ) 7→ Ũ ⇒̃ Ṽ is obtained by applying
Zadeh’s extension principle to the operator⇒:

µŨ⇒̃Ṽ(T) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧((x⇒y)=T)}

min(µŨ(x),µṼ(y))

= max




min(µŨ(T),µṼ(T)),
min(µŨ (F),µṼ(T)),
min(µŨ(F),µṼ(F)),
min(µŨ (F),µṼ(⊥)),
min(µŨ (⊥),µṼ(T))




µŨ⇒̃Ṽ(F) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧((x⇒y)=F)}

min(µŨ(x),µṼ(y))

= min(µŨ(T),µṼ(F))

µŨ⇒̃Ṽ(⊥) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧((x⇒y)=⊥)}

min(µŨ(x),µṼ(y))

= max




min(µŨ(T),µṼ(⊥)),
min(µŨ (⊥),µṼ(F)),
min(µŨ (⊥),µṼ(⊥))



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Remark that:̃t∗(IF p THEN q) = t̃∗(NOT p OR q)
• Rule for equivalence:

∀ p,q∈ P : t̃∗(p IFF q) = t̃∗(p)⇔̃t̃∗(q)

where⇔̃ : ℘̃(I∗)×℘̃(I∗) → ℘̃(I∗) : (Ũ ,Ṽ) 7→ Ũ ⇔̃ Ṽ is obtained by applying
Zadeh’s extension principle to the operator⇔:

µŨ⇔̃Ṽ(T) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧((x⇔y)=T)}

min(µŨ(x),µṼ(y))

= max

(
min(µŨ(T),µṼ(T)),
min(µŨ (F),µṼ(F))

)

µŨ⇔̃Ṽ(F) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧((x⇔y)=F)}

min(µŨ(x),µṼ(y))

= max

(
min(µŨ(T),µṼ(F)),
min(µŨ (F),µṼ(T))

)

µŨ⇔̃Ṽ(⊥) = sup
(x,y)∈{(x,y)|(x,y)∈I∗×I∗∧((x⇔y)=⊥)}

min(µŨ(x),µṼ(y))

= max




min(µŨ(T),µṼ(⊥)),
min(µŨ (F),µṼ(⊥)),
min(µŨ(⊥),µṼ(T)),
min(µŨ (⊥),µṼ(F)),
min(µŨ (⊥),µṼ(⊥))




Remark that:

t̃∗(p IFF q) = t̃∗((IF p THEN q)AND(IF q THEN p))

2.5 Further developments

With the mathematical frameworks presented in this chapter, a new trend in in-
formation processing is set. Fuzzy set theory and possibility are the onset for the
development of more advanced and more general frameworks and technologies like
for example the framework for ‘computing with words’ [28, 30] and the theory of
perceptions [31, 32]. These new developments create on their turn new opportuni-
ties for more advanced developments within the domain of ‘fuzzy’ databases. In this
section we briefly describe what is meant by ‘computing with words’ and by ‘fuzzy
information granulation’.

‘Computing with words’ [28, 30] refers to a recent trend in information process-
ing where one no longer uses numerical values in computations, but words that ‘de-
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scribe’ numerical values in a way that is closer to natural language. Usually, these
words correspond to the result of one or more (human) perceptions. The inspiration
of this stems from the remarkable human capacity to execute complex physical or
mental tasks (like e.g. driving a car in a garage box, playinggolf, or summarizing
a story) without a need for making numerical computations, but by just relying on
(the processing of) perceptions (like e.g. speed, time, direction, or colour). Contrary
to numerical values (which are precisely described or calculated), perceptions are
often imprecisely or vaguely described by means ofwords.

The basic idea behind ‘computing with words’ is that (the semantics of) such
words can be mathematically modelled by means of fuzzy set theory. Reasoning
can then for example be done by using deduction rules that acton such words —
fuzzy sets— and result in (new) words —fuzzy sets—, which on their turn can be
used in deduction rules. ‘Computing with words’ can especially be used in situations
where:

• The values are not adequately known, to justify a numerical representation.
• Precision is not required.
• The problem can not be solved, or the task can not be performedwith numerical

values.
• The concept is too complex for a numerical approach.

The ‘theory of fuzzy information granulation’ [29] forms the formal basis for
‘computing with words’. Central in this theory are the granulation of information,
the organization of information and the causual nature of information. Granulation
relates to the decomposition of a whole into different parts; organization deals with
the integration of parts in a whole; while the causual naturerelates to the association
of causes and consequences which are inherent to information.

An important concept in the ‘theory of fuzzy information granulation’, which is
also important in the context of fuzzy databases, is the concept generalized con-
straint that is defined as follows:

Definition 2.24 (Generalized constraint)With the understanding that X is a vari-
able that is defined over universe of discourse U (i.e. X can only contain a value of
U), the syntax of a generalized constraint is given as

X isr R

Hereby, R is the constraining relationship and isr is a variable copula with a discrete
variable r whose value defines the way how X is constrained by R. The semantics of
a generalized constraint are completely determined by the value of r.�

The most important kinds of generalized constraints and their corresponding value
for r are:

1. Theequality constraints, r = e. The semantics of an equality constraint

X ise a
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is defined byX = a.
2. Thepossibilistic constraints, r = blanco. In this case,X is interpreted as a dis-

junctive3 variable —i.e. a variable which at the same time can contain only one
value of the universe of discourseU—. Furthermore,

X is R

with R being a fuzzy set with membership functionµR : U → [0,1], means that
a possibility distributionπR is derived fromR. This possibility distribution is
considered to be the possibility distribution ofX and expresses that the possibility
thatX = x, x∈U is determined by

πR(x) = µR(x).

An example of a possibilistic constraint is

X is expensivewhich is equivalent withπexpensive(x) = µexpensive(x)

whereexpensiveis a linguistic term that represents the fuzzy set of expensive
prices.

3. Theveristic constraints, r = v. In such a constraint,X is interpreted as a con-
junctive4 variable —i.e. a variabele which at the same time can containmore than
one value of the universe of discourseU—. The semantics of

X isv R

with R being a fuzzy set with membership functionµR : U → [0,1], states that
the value ofX is the collection of elements ofRwhere the membership grades of
Rare interpreted as degrees of truth. An example of a veristicconstraint is

X isv{(English,1.0),(French,0.8),(German,0.6)}

which means thatX contains the values ‘English’, ‘French’ and ‘German’ with
respective truth 1.0, 0.8 and 0.6 (X can for example be a variable that is used to
represent the languages spoken by somebody).

4. Theprobabilistic constraints, r = p. Hereby,X is seen as a variable whose value
is uncertain (in statistical sense). Furthermore, the interpretation of

X isp R

is thatR is the probability distribution ofX. An example of a probabilistic con-
straint is

X isp N(m,σ2)

3 A disjunctive variable has also been named a possibilistic variable by Zadeh. This is also the
origin of the name possibilistic constraint.
4 A conjunctive variable has also been named a veristic variable by Zadeh. This also clarifies the
origin of the name veristic constraint.
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which means that the value ofX is modelled by a normal probability distribution
with mean valuem and varianceσ2. Analogously,

X isp{0.2/a,0.4/b,0.4/b}

that the value ofX is a, b or c with respective probabilities 0.2, 0.4 and 0.4.

Other, for this book less important, kinds of generalized constraints are the so-called
probability value constraints, the arbitrary set constraints and the fuzzy graph con-
straints [29].
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Chapter 3
Fuzzy querying of regular databases

Databases are a very important component in many information systems. Due to
their increasing number and volumes, effective and efficient access to data becomes
more and more important. A lot of research has already been done to enhance
database accessibility. This research focuses on different aspects like, among others,
file organization, indexing, query languages and access techniques.

In this chapter such access techniques, which are based on fuzzy set theory and
possibility theory and moreover support flexible database querying, are described
in more detail. These techniques will be calledfuzzy database querying tech-
niques. In this chapter we explicitly assume that the underlying databases are regu-
lar databases.

The core idea with fuzzy querying is that flexible preferences are introduced in
the query formulations [5]. This can be done at two levels:insideelementary query
conditions andbetweenquery conditions. This core idea forms the basis of this chap-
ter. Flexible preferences inside query conditions allow for flexible search criteria
which express to whatdegreeparticular attribute values are adequate for the result.
This is further described in section 3.2. Preferences between query conditions are
used to associate different grades of importance to different query conditions. This is
further handled in section 3.3. To support flexibility of preferences, query languages
like SQL and OQL and their underlying algebraic and logical frameworks have been
extended. Therefore, among others, more general definitions of the algebraic data
manipulation operators have been proposed [3, 28, 4, 29, 21]. Frameworks for fuzzy
querying are described in section 3.4.

There exist other flexible querying approaches than the onesdescribed in this
chapter. Examples are:

• Querying systems that are able to correct syntactical and semantic errors in the
query formulations.

• Querying systems that allow for an intelligent database navigation.
• Querying systems that support ‘indirect’ answers like summaries, conditional

answers and background information for (empty) queries [20].

These approaches are not dealt with in this book.

57
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3.1 Example database

Before we start with the description of flexible querying we present an example
database that will be used in the remainder of the book to illustrate techniques and
concepts. To keep generality, we assume that the database consists of a finite number
of records. Each record consists of one or more fields that contain data values. Each
field is defined by a name and an associated data type1; each field value must be an
element of the domain2 of the associated data type. Each record is constructed in
accordance with the specifications of itsrecord type. A record type is characterized
by a name and a set of field definitions. A database is typicallystored in one or more
record files which are kept in the memory of the database system. Although this is
not a requirement, a file can contain records of different record types. In practice
the number of records in a database can vary from just some records to millions of
records.

Example 3.1
Figure 3.1 contains a representation of the record types andrecords of the exam-
ple database for artworks. The database consists of a collection of records of three
record types: ‘Painting’, ‘Artist’ and ‘Owner’. For the sake of readability, the records
are ordered by record type and field names are repeated in the heading. ⋄

In the example database, the relationship between a painting and a painter is
modelled by means of the field ‘Artist’ of the record type ‘Painting’ and the field
‘Name’ of the record type ‘Artist’. A ‘painting’-record with field value ‘Monet’
for ‘Artist’ is hereby associated with the ‘artist’-recordwith the same field value
for ‘Name’. Whenever this is relevant, the example databasewill be translated to a
relational or object oriented database scheme.

3.2 Fuzzy preferences inside query conditions

In reality it happens that a database user describes only approximately what he or
she searches in the database. This could, among others, be due to the fact that the
user only has a limited knowledge about what is searched for or be due to the fact
that the user explicitly wants to allow some tolerance in thedatabase querying —
not only the exact results, but also results that are closelysimilar are tolerated in the
result—.

1 In a software context, a data type defines the structure and operations of a collection of data with
common characteristics.
2 The domain of a data type is considered to be the set of all the values that are allowed whenever
a value of that data type is expected.
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RECORDTYPE Painting (ID:CHAR(3); Name:CHAR(30); Artist:CHAR(30); 
Period:INTEGER; Value:REAL; Owner:CHAR(30))

RECORDTYPE Artist (Name:CHAR(30); First_name:CHAR(20);                                                        
Year_of_birth:INTEGER; Year_of_death:INTEGER)

RECORDTYPE Owner (Name:CHAR(30); Place:CHAR(20); Country:CHAR(20))

ID Name Artist Period Value Owner

P01 Fishermans house Monet 1882 Boijmans16.000.000

P02 The ballet course Degas 1872 Louvre8.500.000

P03 Mona Lisa Da Vinci 1499 Louvre75.000.000

P04 Afternoon in Ostend Ensor 1881 KMSK200.000

Name First_name Year_of_birth

Da Vinci Leonardo 1452

Degas Edgar 1834

Ensor James 1860

Monet Claude 1840

Year_of_death

1519

1917

1949

1926

Name Place Country

Boijmans Rotterdam The Netherlands

Louvre Paris France

KMSK Antwerp Belgium

RECORDTYPE Painting (ID:CHAR(3); Name:CHAR(30); Artist:CHAR(30); 
Period:INTEGER; Value:REAL; Owner:CHAR(30))

RECORDTYPE Artist (Name:CHAR(30); First_name:CHAR(20);                                                        
Year_of_birth:INTEGER; Year_of_death:INTEGER)

RECORDTYPE Owner (Name:CHAR(30); Place:CHAR(20); Country:CHAR(20))

ID Name Artist Period Value Owner

P01 Fishermans house Monet 1882 Boijmans16.000.000

P02 The ballet course Degas 1872 Louvre8.500.000

P03 Mona Lisa Da Vinci 1499 Louvre75.000.000

P04 Afternoon in Ostend Ensor 1881 KMSK200.000

Name First_name Year_of_birth

Da Vinci Leonardo 1452

Degas Edgar 1834

Ensor James 1860

Monet Claude 1840

Year_of_death

1519

1917

1949

1926

Name Place Country

Boijmans Rotterdam The Netherlands

Louvre Paris France

KMSK Antwerp Belgium

Fig. 3.1 Records of the example database ‘Artworks’.

Example 3.2
• As an example of the first situation we consider a museum visitor who remembers

only that the painting he is looking for dates from ‘around 1880’. To find the
painting the visitor can query the database for paintings from ‘around 1880’.

• The second situation occurs for example when a teacher queries his examn
database for students with a ‘high score’.
⋄

3.2.1 Modelling

3.2.1.1 Linguistic terms

Approximately indicating which values has to be searched for by the querying sys-
tem, is almost the same as indicating which values are more and which values are
less allowable as an answer. This can be modelled by fuzzy sets of which the mem-
bership grades are interpreted asdegrees of compatibility. Such a fuzzy set is thus
conjunctiveby its interpretation. As illustrated in the previous examples, it is more
practical to work withlinguistic terms. In such a case, the linguistic term is used
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as label for the underlying fuzzy set. In accordance with the description of the in-
terpretations of membership grades (cf. previous chapter), the membership grade
µṼ(x) of an elementx in a fuzzy setṼ with labelL denotes to which extendx is a
value that is typically represented by the linguistic termL. If the linguistic termL
identifies the fuzzy set̃V, then the membership functionµṼ will be denoted byµL.

Example 3.3
• The label ‘around 1880’ can be modelled by the fuzzy set:

{(1875,0.2),(1876,0.4),(1877,0.6),(1878,0.8),(1879,1),

(1880,1),(1881,1),(1882,0.8),(1883,0.6),(1884,0.4),(1882,0.2)}

• The label ‘high score’ can be modelled by the fuzzy set:

{(16,0.35),(17,0.65),(18,1),(19,1),(20,1)}

⋄

In general, linguistic terms could be associated with fuzzysets that are defined
on several domainsD1,D2, . . . ,Dn and thus have a membership function of the form
D1×D2×·· ·×Dn → [0,1]. Domains could be measurable (numerical) or not.

In practice fuzzy sets that are defined on only one domain are mostly used. If
this domain is measurable, then the fuzzy set will mostly be defined by means of a
trapezoidal membership function. Discrete membership functions are used in case
of unmeasurable domains.

The meaning of a linguistic term and its corresponding fuzzyset could be depen-
dent on the context and on the subjectivity of the user. As such, ‘expensive’ will for
example have a different meaning in the context of ‘paintings’ than in the context of
‘flowers’. Also, the linguistic term ‘young’ in the context of ages of persons will be
completely differently experienced by a child than by an older person.

3.2.1.2 Modification functions

The meaning of a linguistic term can be strengthened or weakened by the use of
adverbs. An example of an adverb that strengthens the linguistic term ‘expensive’
is ‘very’, whereas ‘more or less’ is an example of an adverb that weakens the term
‘expensive’. The impact of an adverb on a linguistic term canbe modelled mathe-
matically by means of so-calledmodification functions which are applied on the
corresponding membership function. One can make a distinction betweenpre mod-
ificationandpost modification.

In pre modification the membership functionµL is applied onto the modification
functionmpre. The membership function of the modified linguistic termLmod then
becomes

∀ x∈U : µLmod(x) = µL(mpre(x))
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Pre modification changes the shape and position of the membership function and is
therefore most suited in the modelling of vagueness and imprecision.

In post modification the modification functionmpost is applied onto the mem-
bership functionµL. The membership function of the modified linguistic termLmod

then becomes
∀ x∈U : µLmod(x) = mpost(µL(x))

Post modification only changes the shape of the membership function and is there-
fore most suited in the modelling of uncertainty.

Modification functions that are mostly used to strengthen linguistic terms are the
square function (.2) and the fourth power function (.4). The most popular weaken-
ing modification functions are the root function (√

.) and the fourth root function

(.1/4). Another interesting parametrized modification function, which is used in pre
modification and can be used for the modelling of as well strengthening, as weak-
ening adverbs is the so-called twofold, piecewise linear modification functionf α ,β

m

which is presented in figure 3.2. The functionf α ,β
m is completely characterized by
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Fig. 3.2 The twofold piecewise linear modification functionf α,β
m .

the parametersm (the domain value that corresponds with membership grade 0.5),
β (parameter for the angle of the first linear piece) andα (parameter for the angle
of the second linear piece).

The application of post modification and pre modification is illustrated in fig-
ure 3.3.
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Fig. 3.3 Post and pre modification applied onµL.
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3.2.1.3 Similarities

An alternative approach, that is especially useful to deal with unmeasurable do-
mains, is to work with similarities. To model the compatibility between two domain
values a grade of similarity is associated with any pair of domain values. Again, one
can work with grades that are elements of the unit interval[0,1]. Formally, similarity
is then characterized by a so-calledsimilarity relation which is defined as a binary
fuzzy relation

S: U ×U → [0,1]

that satisfies the following axioms:

• Axiom s1.∀ x∈U : S(x,x) = 1 (reflexivity).
• Axiom s2.∀ (x,y) ∈U2 : S(x,y) = S(y,x) (symmetry).

Optionally one can also consider a transitivity condition:

• Axiom s3.∀ (x,z) ∈U2 : S(x,z)≥ sup
y∈U

min(S(x,y),S(y,z))

(sup-min transitivity).

Given a domain valuex ∈ U and a similarity relationS, it is always possible to
construct a fuzzy set of compatible values ofx. The membership grades of this fuzzy
set are interpreted as degrees of compatibility. The domainvalue could be used to
label the fuzzy set. The fuzzy setṼx, representing (the similar values of) the domain
valuex∈U could be obtained as follows:

Ṽx = {(y,S(x,y))|y∈U}

Departing from such a fuzzy set, we can search for appropriate modification func-
tions to model the impact of strengthening and weakening adverbs. In this way
strengthening and weakening adverbs could be handled in thecase of unmeasur-
able domains.

Example 3.4
The following similarity relationScould be defined for the linguistic terms ‘green’,
‘light green’, ‘kaki green’ and ‘light brown’:

S greenlight greenkaki greenlight brown
green 1 0.8 0.6 0.2

light green 0.8 1 0.8 0.4
kaki green 0.6 0.8 1 0.6
light brown 0.2 0.4 0.6 1

On the basis of this similarity relation we can build the following fuzzy sets:

green= {(green,1),(light green,0.8),(kaki green,0.6),(light brown,0.2)}
light green= {(green,0.8),(light green,1),(kaki green,0.8),(light brown,0.4)}
kaki green= {(green,0.6),(light green,0.8),(kaki green,1),(light brown,0.6)}

light brown= {(green,0.2),(light green,0.4),(kaki green,0.6),(light brown,1)}



3.2 Fuzzy preferences inside query conditions 63

⋄

3.2.2 Evaluation

Considering flexible search criteria in query formulation brings along with it that a
database object could only partially satisfy the criteria.This cannot be adequately
handled by Boolean logic. Therefore there is a need for a framework that is based
on a many-valued logic. In this book we describe two such frameworks: a simple
approach that is based on fuzzy logic and fuzzy sets where membership grades
are interpreted as degrees of truth and a more advanced approach that is based on
(extended) possibilistic truth values. In both frameworks, the evaluation of a search
condition can be seen as the comparison of a value that is retrieved from the database
and the collection of allowed values that are specified in thequery formulation.

3.2.2.1 Approaches with satisfaction degrees

In these approaches, the evaluation of a query condition results for each database
object in an associated degree of truth. These degrees of truth are interpreted as
satisfaction degreesand are calculated by means of evaluation and aggregation
functions. Usually only objects with an associated degree that differs from zero are
considered in the result set of the query.

Evaluation of simple conditions.

In fuzzy querying, a query can contain both regular and flexible query conditions.
For the evaluation of a simple (or atomic) regular condition, classical Boolean logic
can be used. If the condition evaluates to true (T), then the corresponding satis-
faction degree should equal to 1, denoting that the databaseentry under considera-
tion completely satisfies the condition. Otherwise, if the condition evaluates to false
(F), then the corresponding satisfaction degree should be equal to 0, denoting that
database entry under consideration does not satisfy the condition at all.

The best known evaluation functions for simple (or atomic) fuzzy query condi-
tions are the comparison operators and the compatibility operator.

• Comparison operators (=, 6=, <, ≤, >, ≥).

– To model the equality operator=, Zadeh’s standard equality operator (cf. def-
inition 2.11) or the gradual equality operator (cf. definition 2.12) can be used.
Hereby, the regular attribute valuesa stored in the database need to be con-
verted to their corresponding fuzzy sets{(a,1)}.
· When using Zadeh’s standard equality operator:

· Equality corresponds with a satisfaction degree 1;
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· Inequality corresponds with a satisfaction degree 0.
· When using the gradual equality operator, the satisfactiondegree corre-

sponds to the resulting degree of equality.
– The comparison operators<, >, ≤ and≥ can for example be obtained by

applying Zadeh’s extension principle (cf. definition 2.15). Again, the regular
attribute valuesa stored in the database must be converted to their correspond-
ing fuzzy sets{(a,1)}. Given thatop∈ {<,>,≤,≥} andL being the fuzzy
set of acceptable values, the satisfaction degree is in caseof the operatorop
obtained by

sup
{x|x∈U∧a op x}

µL(x)

• Compatibility operator ( IS). In most cases a user will be rather interested in the
extent to which an attribute valuea that is retrieved from a databaseis compatible
with the allowed values that are specified in the query condition.In the simple
approach under consideration this degree of compatibilityis considered to be
the membership gradeµL(a) of a in the fuzzy setL of acceptable values that is
specified in the query condition. Thus, ifA is a database attribute anda is the
value ofA in the recordr, then the evaluatione(A IS L)(r) of A IS L for r is
defined by

e(A IS L)(r) = µL(a).

An even more flexible way to deal with comparison operators isto use ‘fuzzy’ com-
parison operators. ‘Fuzzy’ comparison operators can be modelled by means of a
membership functionµop which is defined over the Cartesian product of two do-
mains and which denotes for each couple of domain values to which extent the
operator is satisfied. In this way, we can for example define operators like ‘approxi-
mately equal to’ and ‘much larger than’. For the evaluation of a ‘fuzzy’ comparison
operator the same method as with the evaluation of the compatibility operator can
be used. Assume thatop represents the ‘fuzzy’ comparison operator, thata is the
value of attributeA that is stored in the database recordr and thatL is the fuzzy set
of allowed allowed values forA with membership functionµL that is specified in
the query condition. With these assumptions, the satisfaction degreee(A op L)(r) of
A op Lfor r is obtained as

e(A op L)(r) = µL ◦ op(a)

where
µL ◦ op(a) = sup

x∈domA

min(µop(a,x),µL(x)).

Evaluation of composite conditions.

Generally, a query condition consists of a logical expression that is composed of
simple conditions, logical operators (conjunction, disjunction and negation) and
brackets that are used to enforce precedencies on logical operators. The evaluation
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of a composite condition is completely analogously as in Boolean logic. Firstly,
the simple conditions are evaluated (each evaluation results in a satisfaction de-
gree). After that, the expression is evaluated. Brackets, if existent, are appropriately
dealt with. Negation (¬) has precedency over conjunction (∧) and disjunction (∨),
whereas conjunction (∧) has precedency over disjunction (∨). The evaluation of an
expression is from left to right, unless brackets are used toenforce precedency.

The conjunction, disjunction and negation operators for satisfaction degrees are
defined as follows:

• Conjunction. µp∧q = min(µp,µq).
• Disjunction. µp∨q = max(µp,µq).
• Negation.µ¬(p) = 1− µp.

Remark that other definitions for conjunction and disjunction can be used. In fact, it
is sufficient to replace the couple(min,max) by another (t-norm, t-conorm)-couple
(i,u).

3.2.2.2 Approaches with (extended) possibilistic truth values

Instead of using satisfaction degrees, one can also work with (extended) possibilistic
truth values ((E)PTV’s) to model query satisfaction. In such a case the definition of
a record type is considered to be a predicate. The records of the record type are
then propositions which for regular database querying on regular databases all have
to evaluate to true (T). When considering fuzzy querying the truth values of these
propositions could be gradual. To belong to the record set, the truth value of the
proposition of a record must differ from false (F).

(Extended) possibilistic truth values can be used to model agradation of truth. An
(E)PTV then expresses to which extent it ispossible(or impossible) that the propo-
sition under consideration is satisfied. In an approach with(E)PTV’s the evaluation
of a query condition always results in an(extended) possibilistic truth value. Here
also, query conditions are evaluated using appropriate evaluation functions.

Evaluation of simple conditions.

For the evaluation of simple (or atomic) regular conditionsthat are part of a fuzzy
query formulation classical Boolean logic can again be used. If a condition evaluates
to true (T), then the corresponding (E)PTV is{(T,1)}, which denotes that it is cer-
tain that the database entry under consideration completely satisfies the condition.
On the other hand, if the condition evaluates to false (F), then the corresponding
(E)PTV is{(F,1)}, denoting that for the considered database entry, the condition is
not satisfied at all.

For simple (or atomic) fuzzy query conditions the comparison operators and
compatibility operator are modelled as follows.

• Comparison operators (=, 6=, <, ≤, >, ≥).
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– The modelling of the equality operator= can again be based on Zadeh’s stan-
dard equality operator (cf. definition 2.11) or be based on the gradual equality
operator (cf. definition 2.12). Again, the regular attribute valuesa stored in
the database must be converted to their fuzzy counterpart{(a,1)}.
· When using Zadeh’s standard equality operator:

· Equality corresponds with an (E)PTV{(T,1)};
· Inequality corresponds with an (E)PTV{(F,1)}.

· When using the gradual equality operator, the resulting (E)PTV is com-
puted using the obtained degree of equality deg. This is doneas follows:

{(T, deg
max(deg,1−deg)

),(F,
1−deg

max(deg,1−deg)
)}

.
– The comparison operators<, >, ≤ and≥ can in a framework with EPTV’s

also be obtained by applying Zadeh’s extension principle (cf. definition 2.15).
The regular attribute valuesa stored in the database are first converted to their
corresponding fuzzy set{(a,1)}. With op∈ {<,>,≤,≥} and L being the
fuzzy set of acceptable values, the (E)PTV is in case of the operatorop then
subsequently computed by

{(T, µT

max(µT ,µF)
),(F,

µF

max(µT ,µF)
)}

where
µT = sup

{x|x∈U∧a op x}
µL(x)

and
µF = sup

{x|x∈U∧NOT(a op x)}
µL(x)

• Compatibility operator ( IS). The degree of compatibility between a stored
valuea of attributeA in the recordr and a given fuzzy setL of acceptable values,
specified in the query condition, thus the result of the evaluatione(A IS L)(r), is
obtained by

e(A IS L)(r) = {(T, µL(a)
max(µL(a),1− µL(a))

),(F,
1− µL(a)

max(µL(a),1− µL(a))
)}.

‘Fuzzy’ comparison operators can also in this framework be used as a more flexible
alternative for the modelling of comparison operators. Assume thatoprepresents the
‘fuzzy’ comparison operator that is modelled by the membership functionµop which
is defined over the Cartesian product of two domains and whichdenotes for each
couple of domain values the extent to which the operator is satisfied. Furthermore,
assume thata is the value that is stored for attributeA in the database recordr and
thatL is the fuzzy set of allowed values forA with membership functionµL which is
specified in the query condition. With these assumptions, the (E)PTVe(A op L)(r)
of A op Lfor r is obtained —in a similar way as in the approaches with satisfaction
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degrees— as follows:

e(A op L)(r) = {(T, µL ◦ op(a)
max(µL ◦ op(a),1− µL ◦ op(a))

),

(F,
1− µL ◦ op(a)

max(µL ◦ op(a),1− µL ◦ op(a))
)}

where
µL◦op(a) = sup

x∈domA

min(µop(a,x),µL(x)).

Evaluation of composite conditions.

The evaluation of composite conditions is analogous as in Boolean logic. The eval-
uation starts with the evaluation of the simple conditions (each evaluation results
in an (E)PTV’s). Subsequently, the composite condition is evaluated. Brackets, if
existent, are appropriately dealt with.

For the conjunction, disjunction and negation of (E)PTV’s we can use the com-
putation rules that are given in section 2.4.2.2. Alternative computation rules can
be used [13]. Below, two alternatives for the conjunction operator for possibilis-
tic truth values are described. Both alternatives are basedon a (t-norm,t-conorm)-
couple(i,u) and can be generally defined as follows (withI = {T,F}):

∧̃i :℘̃(I)×℘̃(I)→℘̃(I) : (Ũ ,Ṽ) 7→ Ũ ∧̃i Ṽ

where:

• µŨ∧̃iṼ
(T) = i(µŨ (T),µṼ(T))

• µŨ∧̃iṼ
(F) = u(µŨ(F),µṼ(F))

This definition reflects that the membership gradeµŨ∧̃iṼ
(T) is mostly ‘influenced’

by the worst (the smallest) of the membership gradesµŨ(T) andµṼ(T); furthermore
it is also reflected that the membership gradeµŨ∧̃iṼ(F) is mostly ‘influenced’ by the
worst (the largest) of the membership gradesµŨ(F) andµṼ(F).

Proposition 2 All operators∧̃i are truth functional, i.e.∀ p,q ∈ P : t̃(p ∧ q) =
t̃(p) ∧̃i t̃(q).

Proof:
This proposition is proved by a full case study of the modelling of the classical
logical conjunction:

i. If t̃(p) = {(T,1)} andt̃(q) = {(T,1)}, then it must hold that

t̃(p ∧ q) = {(T,1)}
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t̃(p) ∧̃i t̃(q) = {(T, i(1,1)),(F,u(0,0))}
= {(T,1)} (Axioms i1 and u1.)

= t̃(p ∧ q)

ii. If t̃(p) = {(T,1)} andt̃(q) = {(F,1)}, then it must hold that

t̃(p ∧ q) = {(F,1)}

t̃(p) ∧̃i t̃(q) = {(T, i(1,0)),(F,u(0,1))}
= {(F,1)} (Axioms i1, i3, u1 and u3.)

= t̃(p ∧ q)

iii. If t̃(p) = {(F,1)} ent̃(q) = {(T,1)}, then it must hold that

t̃(p ∧ q) = {(F,1)}

t̃(p) ∧̃i t̃(q) = {(T, i(0,1)),(F,u(1,0))}
= {(T,1)} (Axioms i1, i3, u1 and u3.)

= t̃(p ∧ q)

iv. If t̃(p) = {(F,1)} andt̃(q) = {(F,1)}, then it must hold that

t̃(p ∧ q) = {(F,1)}

t̃(p) ∧̃i t̃(q) = {(T, i(0,0)),(F,u(1,1))}
= {(F,1)} (Axioms i2, i1, u2 and u1.)

= t̃(p ∧ q)

◦

To obtain concrete definitions of conjunctive aggregation operators, we must
choose a (t-norm,t-conorm)-couple. Two examples are:

• Zadeh t-norm and t-conorm(min,max):

∧̃Zadeh:℘̃(I)×℘̃(I)→℘̃(I) : (Ũ ,Ṽ) 7→ Ũ ∧̃ZadehṼ

where:
µŨ∧̃ZadehṼ

(T) = min(µŨ (T),µṼ(T))

and
µŨ∧̃ZadehṼ

(F) = max(µŨ(F),µṼ(F))

• Probabilistisc t-norm and t-conorm(ab,a+b−ab):
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∧̃prob :℘̃(I)×℘̃(I)→℘̃(I) : (Ũ ,Ṽ) 7→ Ũ ∧̃prob Ṽ

where:
µŨ∧̃probṼ

(T) = µŨ(T).µṼ(T)

and
µŨ∧̃probṼ

(F) = µŨ(F)+ µṼ(F)− µŨ(F).µṼ(F)

Because of proposition 2, both alternatives are truth functional.
Analogously, we can define alternative computation rules for the disjunction. For

a (t-norm,t-conorm)-couple(i,u) andI = {T,F} one can find that:

∨̃u :℘̃(I)×℘̃(I)→℘̃(I) : (Ũ ,Ṽ) 7→ Ũ ∨̃u Ṽ

where:

• µŨ∨̃uṼ(T) = u(µŨ(T),µṼ(T))
• µŨ∨̃uṼ(F) = i(µŨ (F),µṼ(F))

Concrete definitions of disjunctive aggregation operatorsare then obtained by
choosing a (t-norm,t-conorm)-couple. Two examples:

• Zadeh t-norm and t-conorm(min,max):

∨̃Zadeh:℘̃(I)×℘̃(I)→℘̃(I) : (Ũ ,Ṽ) 7→ Ũ ∨̃ZadehṼ

where:
µŨ∨̃ZadehṼ

(T) = max(µŨ (T),µṼ(T))

and
µŨ∨̃ZadehṼ

(F) = min(µŨ(F),µṼ(F))

• Probabilistic t-norm and t-conorm(ab,a+b−ab):

∨̃prob :℘̃(I)×℘̃(I)→℘̃(I) : (Ũ ,Ṽ) 7→ Ũ ∨̃prob Ṽ

where:
µŨ∨̃probṼ

(T) = µŨ(T)+ µṼ(T)− µŨ(T).µṼ(T)

and
µŨ∨̃probṼ

(F) = µŨ(F).µṼ(F)

These alternative definitions for conjunction and disjunction have, among others, as
advantage that they are easier to implement and thus better suited for fuzzy querying
applications. A more elaborated discussion can be found in [14].
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3.3 Preferences between query conditions

Traditionally all simple conditions in a composite condition are considered to be of
equal importance. Nevertheless, it can occur that some conditions are more impor-
tant (or more relevant) for the user than others so that the impact of their evaluation
on the query result must be larger than others. This means in fact that the user puts
preferences between query conditions. Putting preferences between query condi-
tions is in most approaches realized by associatingweightswith the conditions.

Example 3.5
A visitor of the museum wants an overview of all paintings of Degas that are painted
‘around 1870’. Hereby, it is for the user more important thatthe painting is a Degas
than that the period matches.⋄

3.3.1 Modelling

Associating weights with query conditions can be modelled by coupling a real num-
ber, taken from the unit interval[0,1], to each condition. To obtain a semantic mean-
ingful interpretation of weights, these numbers must satisfy the following conditions
[17]:

Assume thatwi ∈ [0,1] is the weight that is associated with conditionci , where
wi = 0 denotes ‘totally not important’ andwi = 1 denotes ‘totally important’.

• In order to have a suited reference and scaling, it must hold that

max
i

wi = 1.

• If wi = 1 andci evaluates to ‘false’ (F), then the impact of the weight must be
equal to ‘false’ (F). With other words, ifci is fully satisfied andci is totally
important, then the weight may not change anything to the satisfaction ofci .

• If wi = 1 andci evaluates to ‘true’ (T), then the impact of the weight must be
equal to ‘true’ (T). With other words, ifci is fully satisfied andci is totally im-
portant, then the weight may not change anything to the satisfaction ofci .

• Finally, if wi = 0 then the impact of the weight must result in the neutral element.
The neutral element of the conjunction (∧) is ‘true’ (T), the neutral element of
the disjunction (∨) is ‘false’ (F). With other words, ifci is totally not important,
then the impact of the weight must be such that it seems likeci does not exist.
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3.3.2 Evaluation

To adequately model the impact of weights within the framework that is used to sup-
port fuzzy querying, implication operators can be used. Thetwo kinds of approaches
described in section 3.2 are further developed in the remainder of this subsection.

3.3.2.1 Approaches with satisfaction degrees

As described in section 3.2 in an approach with satisfactiondegrees, the evaluation
of a query condition results in a satisfaction degree (∈ [0,1]). A possible way to deal
with weights is as follows:

1. Evaluate the simple conditions as if there are no weights.This results for each
simple condition in a satisfaction degree. The weight of thesimple condition is
then associated with this satisfaction degree.

2. Consider an implication operator
∧⇒ f (resp.

∨⇒ f ) for conjunction (resp. disjunc-
tion).

3. Define an extended version∧w
i (resp.∨w

u) of the conjunction operator∧ (resp.

disjunction operator∨). Hereby, the implication operator
∧⇒ f (resp.

∨⇒ f ) is used.
The extended operators take as arguments the satisfaction degrees that must be
aggregated and their associated weights and result in an aggregated satisfaction
degree with an associated aggregated weight.

4. Define an extended version¬w of the negation operator¬. This extended operator
takes as arguments a satisfaction degree and its associatedweight and results
in the negation of the satisfaction degree and the same (unmodified) associated
weight.

5. Evaluate the composite query condition, hereby using theextended operators for
conjunction, disjunction and negation (∧w

i , ∨w
u and¬w).

For the definition of the implication operators for conjunction
∧⇒ f and disjunc-

tion
∨⇒ f a fuzzy implication⇒ f , as introduced in subsection 2.1.4.3, can be used.

In general, we then obtain as:

• Implicator operator for conjunction

∧⇒ f : [0,1]× [0,1]→ [0,1]

(w,v) 7→ (w⇒ f v)

• Implicator operator for disjunction

∨⇒ f : [0,1]× [0,1]→ [0,1]

(w,v) 7→ ¬(w⇒ f ¬(v))

Implicator operators that are useful in practice are:



72 3 Fuzzy querying of regular databases

• Kleene-Dienes: (P⇒K−D Q) = (max(1− p,q))
• Reichenbach: (P⇒Rb Q) = (1− p+ p.q)

• Gödel: (P⇒Go Q) =

{
1 alsp≤ q

q anders

The extended versions of the operators for conjunction (∧w
i), disjunction (∨w

u) and
negation (¬w) can be defined as follows:

• Extended operator for conjunction

∧w
i : ([0,1]× [0,1])2 → [0,1]× [0,1]

((w1,v1),(w2,v2)) 7→ (u(w1,w2), i(
∧⇒ f (w1,v1),

∧⇒ f (w2,v2)))

• Extended operator for disjunction

∨w
u : ([0,1]× [0,1])2 → [0,1]× [0,1]

((w1,v1),(w2,v2)) 7→ (u(w1,w2),u(
∨⇒ f (w1,v1),

∨⇒ f (w2,v2)))

• Extended operator for negation

¬w : [0,1]× [0,1]→ [0,1]× [0,1]

(w,v) 7→ (w,1− v)

With the choice for using a t-conorm in the computation of theweights in the defi-
nitions of the extended operators for conjunction and disjunction it is modelled that
the importance of a conjunction (resp. disjunction) can notbe less than the impor-
tance than its arguments.

3.3.2.2 Approaches with (extended) possibilistic truth values

In these approaches, the evaluation of a query condition results in an (E)PTV
(cf. 3.2). Weights can be modelled, completely analogouslyas in the approaches
with satisfaction degrees, by:

1. Evaluate the simple conditions as if there are no weights.This results for each
simple condition in an (E)PTV. The weight of the simple condition is then asso-
ciated with this (E)PTV.

2. Consider an implication operator
∧⇒ f (resp.

∨⇒ f ) for conjunction (resp. disjunc-
tion).

3. Define an extended version∧w
i (resp.∨w

u) of the conjunction operator∧ (resp.
disjunction operator∨). Hereby, the implication operator

∧⇒ f (resp.
∨⇒ f ) is used.

The extended operators take as arguments the (E)PTVs that must be aggregated
and their associated weights and result in an aggregated (E)PTV with an associ-
ated aggregated weight.
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4. Define an extended version¬w of the negation operator¬. This extended oper-
ator takes as arguments an (E)PTV and its associated weight and results in the
negation of the (E)PTV and the same (unmodified) associated weight.

5. Evaluate the composite query condition, hereby using theextended operators for
conjunction, disjunction and negation (∧w

i , ∨w
u and¬w).

For the definition of the implication operators for conjunction
∧⇒ f and disjunc-

tion
∨⇒ f the fuzzy implication operator⇒ f , as introduced in subsection 2.1.4.3, can

be used. In general, withI = {T,F} we then obtain:

• Implicator operator for conjunction

∧⇒ f : [0,1]×℘̃(I)→℘̃(I)

(w,Ṽ) 7→ ∧⇒ f (w,Ṽ)

where
µ ∧⇒ f (w,Ṽ)

(T) = (w⇒ f µṼ(T))

and
µ ∧⇒ f (w,Ṽ)

(F) = ¬(w⇒ f ¬(µṼ(F)))

• Implicator operator for disjunction

∨⇒ f : [0,1]×℘̃(I)→℘̃(I)

(w,Ṽ) 7→ ∨⇒ f (w,Ṽ)

where
µ ∨⇒ f (w,Ṽ)

(T) = ¬(w⇒ f ¬(µṼ(T)))

and
µ ∨⇒ f (w,Ṽ)

(F) = (w⇒ f µṼ(F))

Implication operators that are interesting in practice arealso here:

• Kleene-Dienes: (P⇒K−D Q) = (max(1− p,q))
• Reichenbach: (P⇒Rb Q) = (1− p+ p.q)

• Gödel: (P⇒Go Q) =

{
1 alsp≤ q

q anders

The extended versions of the conjunction (∧w
i ), disjunction (∨w

u) and negation (¬w)
operators can be defined as follows:

• Extended operator for conjunction

∧w
i : ([0,1]×℘̃(I))2 → [0,1]×℘̃(I)

((w1,Ṽ1),(w2,Ṽ2)) 7→ (u(w1,w2),
∧⇒ f (w1,Ṽ1)∧̃i

∧⇒ f (w2,Ṽ2))
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where∧̃i is a conjunction operator for possibilistic truth values —based on a
(t-norm,t-conorm)-couple(i,u))—, as described in subsection 3.2.2.2.

• Extended operator for disjunction

∨w
u : ([0,1]×℘̃(I))2 → [0,1]×℘̃(I)

((w1,Ṽ1),(w2,Ṽ2)) 7→ (u(w1,w2),
∨⇒ f (w1,Ṽ1)∨̃u

∨⇒ f (w2,Ṽ2)))

where∨̃u is a disjunction operator for possibilistic truth values —based on a
(t-norm,t-conorm)-couple(i,u))—, as described in subsection 3.2.2.2.

• Extended operator for negation

¬w : [0,1]×℘̃(I)→ [0,1]×℘̃(I)

(w,Ṽ) 7→ (w, ¬̃(Ṽ))

where¬̃ is the negation operator for possibilistic truth values, asdescribed in
subsection 2.4.2.1.

With the choice for using a t-conorm in the computation of theweights in the def-
initions of the extended operators for conjunction and disjunction it is also in these
frameworks modelled that the importance of a conjunction (resp. disjunction) can
not be less than the importance than its arguments.

Example 3.6
As an example, the definitions introduced above are worked out for the case where
Gödel’s implicator operator is used, i.e.

(P⇒Go Q) =

{
1 iff p≤ q

q elsewhere

With this operator, the implication operator for conjunction becomes:

∧⇒Go: [0,1]×℘̃(I)→℘̃(I)

(w,Ṽ) 7→ ∧⇒Go (w,Ṽ)

where

• µ ∧⇒Go(w,Ṽ)
(T) =

{
1 iff w≤ µṼ(T)

µṼ(T) elsewhere

• µ ∧⇒Go(w,Ṽ)
(F) =

{
0 iff 1−w≥ µṼ(F)

µṼ(F) elsewhere

The implication operator for disjunction becomes:

∨⇒Go: [0,1]×℘̃(I)→℘̃(I)

(w,Ṽ) 7→ ∨⇒Go (w,Ṽ)
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where

• µ ∨⇒Go(w,Ṽ)
(T) =

{
0 iff 1−w≥ µṼ(T)

µṼ(T) elsewhere

• µ ∨⇒Go(w,Ṽ)
(F) =

{
1 iff w≤ µṼ(F)

µṼ(F) elsewhere

Using the probabilistic t-norm and t-conorm

(ab,a+b−ab)

the extended versions of the conjunction (∧w
prob), disjunction (∨w

prob) and negation
(¬w) operators are defined as follows:

• Extended operator for conjunction

∧w
prob : ([0,1]×℘̃(I))2 → [0,1]×℘̃(I)

((w1,Ṽ1),(w2,Ṽ2)) 7→ (w1+w2−w1.w2,

(
∧⇒Go (w1,Ṽ1)) ∧̃prob (

∧⇒Go (w2,Ṽ2)))

• Extended operator for disjunction

∨w
prob : ([0,1]×℘̃(I))2 → [0,1]×℘̃(I)

((w1,Ṽ1),(w2,Ṽ2)) 7→ (w1+w2−w1.w2,

(
∨⇒Go (w1,Ṽ1)) ∨̃prob (

∨⇒Go (w2,Ṽ2)))

• Extended operator for negation

¬w : [0,1]×℘̃(I)→ [0,1]×℘̃(I)

(w,Ṽ) 7→ (w, ¬̃(Ṽ))

With these definitions, weights are interpreted as threshold values. To illustrate
this, consider the following:

• The choice for the Gödel implication function for the computation of the mem-
bership grade of ‘true’ (T) in the implication operator for conjunction models for
example that:

– If the proposition of the criterion is true with a possibility degreeµṼ(T) that
is larger than or equal to the weightw, then it is assumed that the proposition
is completely true, i.e. the modified possibility degree ofT becomes 1.

– In the other case it is assumed that the proposition is true with a possibility
degreeµṼ(T), i.e. the modified possibility degree ofT remainsµṼ(T).

• The choice for the Gödel implication function for the computation of the mem-
bership grade of ‘false’ (F) in the implication operator for conjunction reflects
that:
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– If the proposition of the criterion is false with a possibility degreeµṼ(F) that
is smaller or equal to the complement1−w of the weight, then it is assumed
that the proposition is completely false, i.e. the modified possibility degree of
F becomes 0.

– In the other case it is assumed that the proposition is falsewith a possibility
degreeµṼ(F), i.e. the modified possibility degree ofF remainsµṼ(F).

⋄

3.4 Frameworks for fuzzy querying

To apply the techniques that are introduced in this chapter in practice, it is necessary
to introduce some minimal extensions for traditional database models. These exten-
sions can be easily implemented in a database system. In thissection, we briefly
handle and describe the (required) extensions for the relational (section 3.4.1) and
object oriented database models (section 3.4.2).

3.4.1 Relational databases

Relational databases are constructed in accordance with the prescriptions of there-
lational database model, of which the fundamentals have been presented in 1970
[8, 9]. According to the relational database model, all dataare structured intables
that have a predefined form. A table is a representation form of the conceptdatabase
relation which on it turn is inspired by the abstract mathematical conceptrelation
[26, 18].

Characterizing for relational database relations is that they are all composed of
atomic data values, which means that these values are approached by the database
model as one single atomic unit and thus are not conceptuallyfurther subdivided in
components. Each relationR is defined by means of a relation schema

R(A1 : T1,A2 : T2, . . . ,An : Tn)

that consists of a nameR and a finite set of attributes{A1 : T1,A2 : T2, . . . ,An : Tn}.
Each attributeAi : Ti , 1≤ i ≤ n on its turn consists of an attribute nameAi which
has to be unique within the relation schema, and an associated (atomic) data type
which specifies the allowed values forAi (the values forAi are restricted to the
domain values ofTi). As such, each attribute corresponds with a column in a table.
The actual data in a relation are represented by means of a finite set of rows which is
called the extent of the relation. The extent of a relationR(A1 : T1,A2 : T2, . . . ,An : Tn)
is a finite set that consists ofm rows (also called n-tuples)

ti = (A1 : wi,1,A2 : wi,2, . . . ,An : wi,n), 1≤ i ≤ m.
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Each n-tupleti consists ofn (attribute name, value)-pairsA j : wi, j , 1≤ j ≤ n where it
must hold thatwi, j belongs to the domain of the atomic data typeTj . The valueswi, j ,
1≤ j ≤ n together represent (characteristics of) a real world entity. The number of
relation attributes is fixed and fully determined by the relation schema. The number
of rows, on the other hand, typically changes with the time depending on whether
entities are added or removed from the database.

The relational database model prescribes that a relationaldatabase schema con-
sists of a finite number of relation schema’s. Each relation schema can alternatively
be seen as a predicate. For a relation schemaR(A1 : T1,A2 : T2, . . . ,An : Tn) this pred-
icate states that ‘Rmodels real world entities that are characterized by the attributes
with namesAi , 1≤ i ≤ n of which the allowed values are determined by their cor-
responding data typeTi . The rows in the extent of the relation are then propositions
that satisfy the predicate. As such, the n-tuple(A1 : wi,1,A2 : wi,2, . . . ,An : wi,n) is in-
terpreted as being a proposition that states that ‘there exists a real world entity that
is characterized by the valuewi,1 for attributeA1, the valuewi,2 for attributeA2, . . . ,
and the valuewi,n for attributeAn’. This approach is also extended towards database
querying. According to the relational database model, the result of each query is
a relation, of which the rows are interpreted as being propositions that satisfy the
predicate imposed by the query.

To model relationships between rows of two relations, the concepts ‘candidate
key’ and ‘foreign key’ have been introduced. Acandidate keyof a relation is an
irreducible subset of attributes of that relation, whose attribute values uniquely iden-
tify the rows of the relation. This implies that a candidate key is fully characterized
by the following two properties:

1. Unicity: For each row of the relation, the combination of the values of the at-
tributes that belong to the candidate key must be unique within the relation.

2. Irreducibility: It should not be possible to remove an attribute from the candidate
key, without violating the unicity property. With other words, no attribute of the
candidate key should be redundant.

For each relation in the database schema, at least one candidate key must be defined.
One of the candidate keys will be denoted as being theprimary key of the relation.
The relationships between rows of two relations are then modelled by adding a can-
didate key (in practice usually the primary key) of one relation to the other relation.
In this latter relation, the extra added attributes form a so-calledforeign key. Re-
mark that a foreign key itself is not a candidate key, but onlyhas to contain values
that exist as candidate key values in the related relation. The latter constraint is gen-
erally known as the referential integrity constraint of relational databases.

In figure 3.4 it is illustrated how the database ‘Artworks’ ofexample 3.1 can
be modelled in accordance with the prescriptions of the relational database model.
The presented database schema consists of three relations ‘Painting’, ‘Artist’ and
‘Owner’. Because of the assumption that different artists can have the same first
name and name, the candidate key of relation ‘Artist’ is chosen to be

{Name,First name,Yearo f birth}.
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TABLE Painting candidate key: {PID}  foreign keys: {Artist} and {Owner}

TABLE Artist candidate keys: {AID} and {Name, First_name, Year_of_brith}

TABLE Owner candidate key: {Name}

PID:
STRING

Name:
STRING

Artist:
STRING

Period:
YEAR

Value:
INTEGER

Owner:
STRING

P01 Fishermans house A04 1882 Boijmans16.000.000

P02 The ballet course A02 1872 Louvre8.500.000

P03 Mona Lisa A01 1499 Louvre75.000.000

P04 Afternoon in Ostend A03 1881 KMSK200.000

Name:
STRING

First_name:
STRING

Year_of_birth:
YEAR

Da Vinci Leonardo 1452

Degas Edgar 1834

Ensor James 1860

Monet Claude 1840

Year_of_death:
YEAR

1519

1917

1949

1926

Name:
STRING

Place:
STRING

Country:
STRING

Boijmans Rotterdam The Netherlands

Louvre Paris France

KMSK Antwerp Belgium

A01

A02

A03

A04

AID:
STRING

TABLE Painting candidate key: {PID}  foreign keys: {Artist} and {Owner}

TABLE Artist candidate keys: {AID} and {Name, First_name, Year_of_brith}

TABLE Owner candidate key: {Name}

PID:
STRING

Name:
STRING

Artist:
STRING

Period:
YEAR

Value:
INTEGER

Owner:
STRING

P01 Fishermans house A04 1882 Boijmans16.000.000

P02 The ballet course A02 1872 Louvre8.500.000

P03 Mona Lisa A01 1499 Louvre75.000.000

P04 Afternoon in Ostend A03 1881 KMSK200.000

Name:
STRING

First_name:
STRING

Year_of_birth:
YEAR

Da Vinci Leonardo 1452

Degas Edgar 1834

Ensor James 1860

Monet Claude 1840

Year_of_death:
YEAR

1519

1917

1949

1926

Name:
STRING

Place:
STRING

Country:
STRING

Boijmans Rotterdam The Netherlands

Louvre Paris France

KMSK Antwerp Belgium

A01

A02

A03

A04

AID:
STRING

Fig. 3.4 An example of a relational database schema.

With this choice it is implicitly assumed that there never could be two artists stored
in the database who both have the same name, first name and yearof birth. An ex-
tra so-called surrogate key{AID} is added to uniquely identify artists in a more
convenient way on the basis of only one attribute. The only candidate key for re-
lation ‘Painting’ is{PID}, whereas the only candidate key for relation ‘Owner’ is
{Name}. The relationship between a painting and its painter is modelled by the
foreign key{Artist} in the relation ‘Painting’ that refers to the relation ‘Artist’;
the relationship between a painting and its owner is modelled by the foreign key
{Owner} in the relation ‘Painting’ that refers to the relation ‘Owner’.

The definition and manipulation of a relational database is done by means of
the SQL standard language (Structured Query Language) which is based on the
operators of the so-called relational algebra3 that all act upon relations. With that, the
relational model is the first database model that has the disposal of a mathematically
founded query language.

3 SQL has also been formalized by means of the so-called relational calculus which is a logical
approach.
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To come to a framework for flexible querying, the relational database model must
be extended. In the remainder of this section we present two possible approaches for
such an extension. In the first approach satisfaction degrees are used to model query
satisfaction, whereas in the second approach (extended) possibilistic truth values are
used.

3.4.1.1 Frameworks based on satisfaction degrees

Structural aspects.

In this approach, it is at least necessary to extend the resulting relations of queries
with one extra attribute that is suited to model the satisfaction degree of each re-
sulting tuple. This satisfaction degree then denotes to which extent the proposition
that corresponds with the tuple satisfies the predicate imposed by the query. Only
tuplest of relation r with satisfaction degreeµr(t) > 0 are included in the rela-
tion r. Optionally, the opportunity can be offered to the user to provide a threshold
value 0< τ ≤ 1 in the query specification. If this is the case, then only thetuples
t for which µr(t) ≥ τ holds, are included in the query result. Omitting such an ex-
tra attribute would result in an information loss as useful information about query
satisfaction would then be discarded.

Another extension is necessary, at least from a theoreticalpoint of view, if we
want to keep thecloseness propertyof the relational algebra, which states that each
operator of the algebra should act upon one or more relationsand should result in
a new relation such that the result of an operation can be usedas argument for an-
other operator and which allows it to build expressions. To guarantee this closeness
property, it is recommended to extend each relationR with such an extra attribute.
The relation schema of the extended counterpartR∗ of a relation

R(A1 : T1,A2 : T2, . . . ,An : Tn)

is then for example modelled by

R∗(A1 : T1,A2 : T2, . . . ,An : Tn,degree: real)

wheredegreedenotes the satisfaction degree of the tuples, which is represented by
a real number (of the unit interval[0,1]). The constraint that the real number must
belong to the unit interval can for example be modelled by adding an extra integrity
constraint to the definition of the relation. For regular relationsr it must necessarily
hold for all tuplest thatµr(t) = 1.

Operational aspects.

To be supportive for a flexible querying language, the operators of the relational
algebra must be adapted in such a way that (the computation of) the satisfaction
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degree is taking into account. The relational algebra, as originally presented by E.F.
Codd [10], consists of eight operators

• union
• intersection
• difference
• Cartesian product
• selection
• projection
• join
• division

of which the union, difference, Cartesian product, selection and projection form a
minimal subset, i.e. the other operators intersection, join and division can be derived
from the operators of this minimal subset.

With the understanding thatr and r ′ denote relations andt and t ′ respectively
denote tuples, the operators of the minimal subset can be extended by applying the
following computation rules for satisfaction degrees:

• Union.
µunion(r,r ′)(t) = max(µr(t),µr ′(t)).

• Difference.
µdifference(r,r ′)(t) = min(µr(t),1− µr ′(t)).

• Cartesian product.

µCart-prod(r,r ′)(tt
′) = min(µr(t),µr ′(t

′)).

• Selection.
µselect(r,c)(t) = min(µr(t),µc(t))

wherec is the (fuzzy) selection condition andµc(r) is the satisfaction degree
which results from the evaluation ofc with r.

• Projection.
µproject(r,V)(v) = max

r
µr(vw)

whereV is a subset of the setX of all attributes ofr, v is a subtuple consisting of
the values for the attributes ofV andw is a subtuple consisting of the values for
the attributes ofX \V.

Furthermore, for the intersection it holds that

µintersection(r,r ′)(t) = min(µr(t),µr ′(t)).

Remark that other extensions are possible and are obtained by considering another
(t-norm, t-conorm) couple than(min,max).

Moreover, we can also introduce asupport operator for extended relations
which transforms an extended relation into a regular relation that consists of all
tuples that belong to the extended relation, i.e.
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µsupport(r)(t) =

{
1 iff µr(t)> 0

0 else.

Implementations.

Extensions similar to the ones presented in previous paragraphs have been imple-
mented and used in several fuzzy querying applications. Among the implementa-
tions of fuzzy querying engines, we mention the FQUERY package that has been
built on top of the Microsoft Access database system [23] anduses a calculus for
quantified linguistic propositions that is based on fuzzy logic, the implementation
of the SQLf extension of SQL [4], the PRETI-platform which israther an experi-
mental environment for the exchange of expertise [11, 12] and the FuzzyQueries 2+
software for fuzzy querying of Oracle databases.

3.4.1.2 Frameworks based on with (extended) possibilistictruth values

Structural aspects.

In a approach that is based on a logic with (extended) possibilistic truth values it is
at least necessary to extend the resulting relations of queries with two —in the case
of possibilistic truth values— orthree extra attributes —in the case of extended
possibilistic truth values—. These extra attributes are then used to model the mem-
bership gradesµr̃t (T), µr̃t (F) andµr̃t (⊥) of the (E)PTV ˜rt that expresses to which
extent it is (un)certain that the predicate of relationr is satisfied with tuplet. Only
tuples for which it holds that ˜rt differs from{(F,1)} are included in relationr.

Additionally and for practical reasons, an ordering functionord for (E)PTVs can
be provided. This allows the user to better interpret results as these can now be
ordered on the basis of their associated certainty of query satisfaction.

• A possible ordering function for PTVs is:

ord :℘̃(I)→ R

{(T,µT),(F,µF)} 7→
µT +(1− µF)

2

whereR denotes the set of real numbers.
• A possible ordering function for EPTVs is:

ord :℘̃(I∗)→ [0,1]

{(T,µT),(F,µF),(⊥,µ⊥)} 7→
1+(µT − µF)(1−

µ⊥
2
)

2
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Other ordering functions exist [15]. Also here, the user canbe offered the possibility
to specify a threshold value 0< τ ≤ 1 in the formulation of a query. In this is the
case, then only tuplest for whichord(r̃t)≥ τ holds will be included in the result. As
an alternative, one can also work with three threshold values τT , τF andτ⊥ which
all act upon the membership grades from ˜rt . To be included in the query result, a
tuplet must satisfy 




µr̃t (T)≥ τT

µr̃t (F)≤ τF

µr̃t (⊥)≤ τ⊥
To keep thecloseness propertyof the relational algebra it is also recommended to
extend each relationR with two (or three) extra attributes. The relation schema of
the extended counterpartR∗ of a relation

R(A1 : T1,A2 : T2, . . . ,An : Tn)

is then for example in the case of three extra attributes modelled by

R∗(A1 : T1,A2 : T2, . . . ,An : Tn,µT : real,µF : real,µ⊥ : real)

whereµT , µF andµ⊥ respectively denote the membership grades of the truth values
T, F and⊥ within the EPTVs of the tuples ofR∗. Together the valuesµT , µF andµ⊥
then express to which extent it is (un)certain that the its corresponding tuple satisfies
the predicate imposed by the relation schema. Each of the valuesµT , µF andµ⊥ is
represented by a real number (of the unit interval[0,1]). Like in the approach with
satisfaction degrees, the constraint that the real number must belong to the unit
interval can for example be modelled by adding an extra integrity constraint to the
definition of the relation. For regular relationsr it must necessarily hold for all tuples
t thatµr(t) = {(T,1)}.

Operational aspects.

To obtain a framework for fuzzy querying the operators of therelational algebra
must be adequately adapted in such a way that (the computation of) the associated
(E)PTV of each tuple is taking into account.

With the understanding thatr andr ′ are relations andt andt ′ respectively denote
tuples and with the understanding that the notatione(op)(t) is used to denote the
evaluation of the operatorop for tuple t, the operators union, difference, Cartesian
product, selection and projection of the minimal subset of the relational algebra can
be extended by applying the following computation rules for(E)PTVs:

• Union.
e(union(r, r ′))(t) = r̃t ∨̃ r̃ ′t .

• Difference.
e(difference(r, r ′))(t) = r̃t ∧̃ ¬̃(r̃ ′t).
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• Cartesian product.

e(Cart-prod(r, r ′))(tt ′) = r̃t ∧̃ r̃ ′t′ .

• Selection.
e(select(r,c))(t) = r̃t ∧̃ c̃t

wherec is the (fuzzy) selection condition and ˜ct is the (E)PTV that results from
the evaluation ofc with t.

• Projection.
e(project(r,V))(v) = ∨̃

t
t̃vw

whereV is a subset of the setX of all attributes ofr, v is a subtuple consisting of
the values for the attributes ofV andw is a subtuple consisting of the values for
the attributes ofX \V.

Furthermore, for the intersection it holds that

e(intersection(r, r ′))(t) = r̃t ∧̃ r̃ ′t .

Remark that other extensions are possible and are obtained by considering oper-
ators for conjunction (̃∧), disjunction (̃∨) and negation ( ˜¬) of (E)PTVs (cf. sec-
tion 3.2.2.2).

Table 3.1 Intermediate querying result.

PID AID Value EPTV1 Year o f death EPTV2
P01 A04 3.2M{(T,0.67),(F,1)} 1926 {(T,0.89),(F,1)}
P02 A02 5M {(T,1)} 1917 {(T,1),(F,0.30)}
P03 A01 75M {(T,1)} 1519 {(F,1)}
P04 A03 1.3M {(F,1)} 1949 {(F,1)}

Example 3.7
For the relational database presented in figure 3.4 the following fuzzy query could
be considered:

Give the name of the painting and the name of the artist of all very expensive paint-
ings of artists who die at the beginning of the twentieth century, where the condition
on the year of death of the artist must have significant largerimpact on the query
result than the condition on the value of the painting.

This query can be translated to the following algebraic expression:
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pro ject(select(Cart− prod(Painting,Artist),

(Painting.Artist = Artist.AID,weight= 1) AND

(Painting.Value IS‘very expensive′,weight= 0.6) AND

(Artist.Year o f death IS‘beginningo f twentiethcentury′,weight= 1)),

{Painting.Name,Artist.Name})

where ‘veryexpensive’ and ‘beginningof twentiethcentury’ are linguistic terms
that are modelled by the fuzzy sets with membership functions

µvery expensive(x) =





0 iff x< 2M
x−2

3
iff 2M ≤ x≤ 5M

1 iff x> 5M

and

µbeginningo f twentiethcentury(x) =





1 iff 1900≤ x≤ 1910

0 iff x< 1900or x> 1940
1940− x

30
iff 1910≤ x≤ 1940

The Cartesian product results in a relation with 16 tuples, of which 4 satisfy the
join conditionPainting.Artist = Artist.AID. We can continue working with these 4
tuples because of the facts that the associated weight of thejoin condition is 1 and
that there are only conjunction operators in the composed query condition. When
the logical framework based on EPTVs is used, the evaluationof the simple fuzzy
conditions

Painting.Value IS‘very expensive′

and
Artist.Year o f death IS‘beginningo f twentiethcentury′

results respectively in the EPTVsEPTV1 enEPTV2 that are presented in table 3.1.
Using the extended conjunction operator∧w

prob from example 3.6 we obtain with
the given weightsw1 = 0.6 andw2 = 1 the intermediate aggregated querying result
that is presented in table 3.2. For each of the intermediate resulting tuples, the asso-
ciated aggregated weight isw= 1. The final querying result, which is obtained after

Table 3.2 Intermediate aggregated querying result.

SID AID EPTV1∧w
probEPTV2

P01 A04{(T,1),(F,1)} ∧̃w
prob {(T,0.89),(F,1)}= {(T,0.89),(F,1)}

P02 A02{(T,1)} ∧̃w
prob {(T,1),(F,0.30)}= {(T,1),(F,0.30)}

P03 A01{(T,1)} ∧̃w
prob {(F,1)}= {(F,1)}

P04 A03{(F,1)} ∧̃w
prob {(F,1)}= {(F,1)}
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projection, is given in table 3.3.⋄

Table 3.3 Final querying result.

Painting.Name Artist.Name µT µF µ⊥
‘Fishermans house’ ‘Monet’ 0.89 1 0
‘The ballet course’ ‘Degas’ 1 0.30 0

Implementations.

The extension presented above has been implemented in a DBMSindependent pro-
totype of a fuzzy querying engine for relational databases [16].

3.4.2 Object oriented approaches

Along with the success of the object oriented paradigm and object oriented program-
ming languages like C++, Smalltalk and Java came the need foradvanced database
facilities to managecomplex objects, with support for typical object oriented facili-
ties like, among others,object identity, encapsulation of structure and/or behaviour,
inheritanceandtype hierarchies, polymorphismandoperator overloading. To cater
for this extra need, several new database models have been developed. These models
can grosso modo be subdivided in two categories:

1. Database models that fully support the object oriented paradigm and are therefore
calledobject oriented database models. An (unsuccessful) attempt to standard-
ize these approaches resulted in the so-called ODMG model [6].

2. Database models that support, and are in fact extensions of, the relational
database model and are therefore calledobject relational database models.
These approaches have less object oriented facilities thantheir object oriented
counterparts, but are standardized in the SQL99 and more recent SQL3 stan-
dards.

Theobject oriented database modelsare proposed in the beginning of the 90’s
and are all built around pure object oriented concepts. By specifying data structures
in (almost) the same way in both the programming language andthe database model,
data can almost seamlessly be communicated between (application) programs and
databases. Common to all object oriented database models isthat they all support a
notion ofobjectswhich all have a unique identity and are defined by means of one
or more data types or object prototypes [24] wherein the structure and associated
behaviour of the object are defined. The structure of an object is typically defined
by means of attributes and (binary) relationships which allow to relate the object
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with other objects; the behaviour of an object is determinedby the operators that act
upon the object.

Due to the large diversity and differences of concept definitions in object oriented
data models and programming languages, there exists a largevariety of possible def-
initions and interpretations for the concept object. This has been resulted in a lack of
uniformity within the object oriented programming paradigm and a large diversity of
object oriented database models. This problem has already been identified and men-
tioned in 1989 [25, 1] and is until now one of the most important obstructions for
the standardization and commercial break through ofthe object oriented database
model. Although not commonly accepted, is it worth to mention the ODMG object
model (Object Database Management Group) [6] as a proposal for such a standard.

Figure 3.5 illustrates the modelling of the database for artworks of example 3.1
in accordance with the prescriptions of the ODMG object model. Objects are spec-

Artwork

Painting

Owner

Artist

belongs_to

owns

is_painted_by

painted

Artwork

Painting

Owner

Artist

belongs_to

owns

is_painted_by

painted

Fig. 3.5 An example of a graphical representation of an ODMG databaseschema.

ified by means of so-calledclasseswhich help to define the object definitions and
are represented in the figure by rectangles. In the figure classes are provided for the
specification of painting objects (‘Painting’), objects representing owners (‘Owner’)
and objects representing artists (‘Artist’). For the sake of illustration we have also
provided a more general class ‘Artwork’ which helps to determine, by means of
a mechanism called ‘inheritance’, the specification of a painting object (this is de-
picted in the figure by the fat arrow that is drawn from the morespecific class ‘Paint-
ing’ to the more general class ‘Artwork’). Association relations between objects are
specified by means of binary relationships that are defined between the classes of
these objects and are depicted in the figure by thin labelled two-sided arrows. To
specify the semantics of the binary relationship, a cardinality constraint is associ-
ated with each of the participating classes (a cardinality 1is depicted by a single
arrow, whereas a cardinalitymanyis depicted by a double arrow). Further, each thin
arrow is labelled with the names of the relation as specified in each of the partici-
pating classes. For example, the thin double-sided arrow between ‘Owner’ and ‘Art-
work’ represents that each artwork object belongs to (‘belongsto’) one owner and
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that each owner owns (‘owns’) one or more artwork objects. Analogously, the thin
double-sided arrow between ‘Painting’ and ‘Artist’ represents that each painting is
painted by (‘ispaintedby’) one artist and that each artist has painted (‘haspainted’)
one or more paintings.

Alternative, less rudimentary graphical modelling conventions can be used. In
this context UML [19, 2] is worth mentioning. UML allows it torepresent both the
structural and the behavioural characteristics of classes. However, according to some
database experts UML is too stringent and too closely connected to programming
languages and is therefore considered as being less suited for database modelling
purposes which should be database model independent. A goodalternative, which
is database model independent, but does not support the modelling of behaviour, is
the Enhanced Entity Relationship modelling technique [7, 27, 22].

The object relational database modelsare all extensions of the relational
database model. With theSQL3 standard the SQL standard has been evolved to-
wards a standard for object relational database models. SQL3 provides, among oth-
ers, in facilities

• to construct structured user defined data types that can be used for the construc-
tion of complex relations of which the attributes no longer need to be atomic;

• to associate operators with relations;
• to reuse specification of existing relations for the construction of a new relation

(inheritance);
• to support tuple-identity which allows to directly navigate from one tuple to its

associated tuples without the need of resource consuming join operations, and
• to support unstructured data types for the management of multimedia and textual

information.

The difference with the object oriented database models is that the standardized
object relational model is based on the relational databasemodel instead of on a
‘pure’ notion of classes and objects. Thanks to their underlying standardization,
their underlying commonly used relational structure, their relative simplicity and
their mathematically supported behaviour, object relational database systems can
continue profiting from the commercial success of the relational database systems.
Even stronger, they completely push out the object orienteddatabase systems from
the market. The most important commercial relational database systems are nowa-
days almost all evolved to an object relational system.

3.4.2.1 Structural aspects

The structural extensions that are required for flexible querying of object oriented
and object relational databases are analogous to these of relational databases: de-
pending on the chosen framework each database object must beassociated with a
satisfaction degree or an (E)PTV. From a theoretical point of view, this can be done
without the use of extra attributes: the satisfaction degree or (E)PTV can be seen as
an extra feature of the persistent object (or tuple) and directly be associated with the
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object identifier or tuple identifier (in case the latter doesnot exist, the primary key
can be used). These associated values, either satisfactiondegrees or (E)PTVS, must
be visible for the users. In practice, one can always provideextra attributes in some
system owned data types whose characteristics have to be inherited by all object
types that are part of a database schema.

3.4.2.2 Operational aspects

With respect to the operational extensions, two aspects must be considered:

1. Object relational databases use the SQL3 querying language. The basic operators
of this language are the same as in SQL and can thus be extendedanalogously as
with relational databases. Object oriented databases thatare compliant with the
ODMG model are queried using the OQL querying language. Thislanguage is
also based on SQL and can thus also be extended analogously aswith relational
databases.

2. Object oriented and object relational database models allow the user to provide
user-defined operators. These operators can then be used forthe querying and
manipulation of objects (or tuples) and can in fact be integrated in queries. The
facility of user-defined operators can skilfully be used forthe implementation of
a flexible querying engine.

3.4.2.3 Implementation

As far as we know there are no implementations of flexible querying engines that
are intended to act on exclusively on regular object oriented databases. However,
there exist implementations of flexible querying engines for ‘fuzzy’ object oriented
databases. These implementations are described in chapters 4 and 5.
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Chapter 4
Fuzzy databases

By providing also at the level of database modelling facilities to model imperfect
data as adequate as possible, even more flexibility in database systems could be
obtained. Such an approach results in databases that are semantically richer. If the
modelling of imperfections is based onfuzzy set theory[60] one speaks about a
‘fuzzy’ database.

Radecki was one of the firsts to recognize the power of fuzzy set theory with
respect to information management [47]. After Radecki, several other researchers
have proposed ‘fuzzy’ database models. As such, there existextensions and gen-
eralizations of the relational database model, the (Enhanced) Entity Relationship
model, object relational models and object oriented models. For an overview we
want to refer to [9, 44, 19, 59, 8, 38].

This chapter deals in more detail with the modelling of imperfect data in databases
and is subdivided in two sections. In the first section 4.1 we handle the data mod-
elling aspects. Hereby we subsequently describe techniques for the modelling of
imprecise, uncertain, incomplete, and inconsistent information. In the second sec-
tion 4.2 we present some fuzzy database models.

4.1 Data modelling

4.1.1 Dealing with imprecise and fuzzy information in databases

Possibility theory [62, 25] is the most commonly used methodology for the mod-
elling of imprecise and fuzzy data in databases. Another approach is to work with
similarity relations [10]. More recently, some other alternatives have been proposed,
making use of generalizations of fuzzy sets [22].

In each of these approaches the data types in the field definitions of the record
types areextendedor generalizedin such a way that the domain values could also
be fuzzy sets.

91
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In anextension, some extra data types like

FUZZYINTEGER, FUZZYREALandFUZZYSTRING

will be added to the database model. The domain of such an extra data type is defined
to be the fuzzy powerset of the domain of the corresponding regular data type. As
such, the domain

domFUZZY INT EGER=℘̃(domINT EGER)

will for example be the set of all fuzzy sets that could be defined over the domain of
the data type ‘INTEGER’.

In ageneralization, the existing regular data types are generalized in such a way
that their domains also contain fuzzy sets. The original domain valuesx are then
considered to be the same as the fuzzy set{(x,1)}.

Both approaches have their own advantages and disadvantages. With an exten-
sion we have the theoretical problem that we can model perfect information in two
ways: via the regular data types and via the extended data types. Moreover, the
database designer must decide in advance whether a record field can contain fuzzy
values or whether it is restricted to perfect values. The advantages of an extension
are that it is easier to implement and that it could be integrated in an easier way in
existing databases (because almost no database conversionis needed). Generaliza-
tions are a better solution from a theoretical point of view,but are more difficult to
implement.

4.1.1.1 Possibilistic approaches

In a possibilistic approach, the membership grades of the fuzzy sets are interpreted
as degrees of uncertainty. As such, the fuzzy set can be seen as a possibility distri-
bution that is associated with the record fieldA and therefore is denoted as

πA.

Because of imprecision, the exact value of the record field innot known with cer-
tainty. The possibility thatA = x is πA(x), x ∈ domt , with domt the domain of the
data type of the record field.

For a single-valued field, the possible valuesx∈ domt are represented by a possi-
bility distribution that is defined ondomt , which necessarily must consist of single-
valued elements. For a multi-valued field, the domaindomt consists of multi-valued
elements (collections). Each collectionx for which πA(x) differs from 0 then a can-
didate value for the fieldA, where the associated membership gradeπA(x) denotes
the possibility, i.e., the degree of (un)certainty, thatA has the collectionx as value.

Example 4.1
The value of the record field ‘Value’ of the record type ‘Painting’ of the exam-
ple database of example 3.1 could for a given record be vaguely described as
‘very valuable’ and be defined by the possibility distribution
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πValue(x) = µvery valuable(x) =





0 iff x< 10M
x−10

10
iff 10M ≤ x≤ 20M

1 iff x> 20M

⋄

4.1.1.2 Similarity-based approaches

In the similarity-based approaches [10] the basis domainsdomt of the data typest
of the fields of the record types are extended with a similarity relationS (cf. sub-
section 3.2.1.3) and generalized to power sets℘(domt). For some domains the sim-
ilarity relation will be the identity relationI , which is a special kind of similarity
relation and is defined by:

I : U ×U → [0,1]

(x,y) 7→ 1 iff x= y

(x,y) 7→ 0 else

Due to the generalization, all field values of a record field with data typet are sets
that are elements of℘(domt). The similarity relation defines the degrees of corre-
spondence, which denote to what extent the elements of the field value could be
used instead of each other. Several valid interpretations are associated with a record

[c1 : V1;c2 : V2; . . . ;cn : Vn],n∈ N\ {0},Vi ⊆U,1≤ i ≤ n

An interpretation
α = [c1 : a1,c2 : a2, . . . ,cn : an]

is obtained by choosing an elementai in each of the setsVi and by considering
these elements together. To be valid, an interpretation must moreover satisfy the
underlying semantics of the record type. As such, the interpretation

[Brussels,France]

of the record

[{Brussels,Warsaw,Paris},{Belgium,Poland,France}]

of the record type

Capital(City : CHAR(30);Country: CHAR(30))

is invalid.
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4.1.1.3 Other approaches

Different generalizations of the concept of ‘fuzzy set’ have been presented in litera-
ture for several reasons. Some of these generalizations have in essence been devel-
oped to deal simultaneously with both positive and negativeknowledge (bipolarity),
which in some situations can be beneficial because it allows to prevent information
loss.

Three such generalizations, which could be beneficial in thecontext of fuzzy
databases, are the so called‘interval-valued’ fuzzy sets(IVFS), the‘intuitionistic’
fuzzy sets(IFS) and the‘two-fold’ fuzzy sets(TFS). Each of these generalizations
allow to model the semantics of information in a more naturalway.

‘Interval-valued’ fuzzy sets.

An IVFS
F = {< u,µ l

F(u),µ
u
F(u)> |u∈U}

over a universeU is defined by two functions

µ l
F ,µ

u
F : U → [0,1]

such that
0≤ µ l

F(u)≤ µu
F(u)≤ 1,∀ u∈U.

For eachu∈U , the valuesµ l
F(u) andµu

F(u) respectively denote a lower and upper
bound for the membership grade ofu in F . It follows clearly from the special case
whereµ l

F = µu
F that ‘interval-valued’ fuzzy sets are generalizations of regular fuzzy

sets.
If an IVFS is used for the modelling of imprecise or vague datain a fuzzy

database, then the lower and upper bounds can be assigned a possibilistic inter-
pretation such that the IVFS becomes a representation of a generalized possibility
distribution [40]. An ‘interval-valued’ possibility distribution (IVPD) can be asso-
ciated with a record fieldA, in which case it could be denoted as

(π l
A,π

u
A)

and could be characterized by the functionsπ l
A andπu

A, such that

0≤ π l
A(u)≤ πu

A(u)≤ 1,∀ u∈U.

Furthermore,π l
A(u) is interpreted as a lower bound for the possibility thatA= u and

πu
A(u) is interpreted as an upper bound for the possibility thatA= u. In this way, a

IVPD makes it possible to model the imprecision of the data ina database as well
as the uncertainty that is inherently connected with this modelling.

An IVFS can also be used within the fuzzy querying of regular databases in cases
where the membership grades (of linguistic terms) could notbe exactly assigned.
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As an example, consider the case where a user wants to specifythat the age 30 is
compatible with the linguistic term ‘young’ with a degree between 0.4 and 0.6.

‘Intuitionistic’ fuzzy sets.

An IFS [2]
F = {< u,µF(u),νF (u)> |u∈U}

over a universeU is defined by two functions

µF ,νF : U → [0,1]

such that
0≤ µF(u)+νF(u)≤ 1,∀ u∈U.

For eachu ∈ U , the valuesµF(u) and νF(u) respectively represent the grade of
membership and the grade of non-membership ofu in F . Considering the special
case whereνF = 1− µF , it follows clearly that ‘intuitionistic’ fuzzy sets are gener-
alizations of regular fuzzy sets. Even more, by takingµ l

F = µF andµu
F = 1−νF it

follows that an IFS can formally be dealt with as an IVFS. A further study on this
correspondence is outside the scope of this book. In what follows, we are only inter-
ested in the interpretation and usability of both generalizations of fuzzy sets within
the context of fuzzy databases.

If an IFS is used for the modelling of imprecise or vague data in a fuzzy database,
then a possibilistic interpretation can be assigned to it such that also in this case a
kind of generalized possibility distribution is obtained.An ‘intuitionistic’ possibility
distribution (IPD) can be associated with a record fieldA, in which case it could be
denoted as

(πµA,πνA)

and could be characterized by the functionsπµA andπνA, such that

πµA(u)+πνA(u)≤ 1,∀ u∈U.

Furthermore, it is assumed thatπµA(u) defines the degree that it is possible that
A= u andπνA(u) defines the degree that it is impossible thatA= u. In the case of
a regular possibility distributionπA this degree of impossibility equals 1− πA(u)
and is thus completely determined byπA(u). The notion of impossibility is fairly
intuitive and also fits formally in the regular possibilistic context becauseνF(u) in
an IFS corresponds with 1−µF(u) in a regular fuzzy set. Consequently, 1−πµA(u)
andπνA(u) could be interpreted as the necessity thatA 6= u.

Example 4.2
The idea of using ‘intuitionistic’ fuzzy sets and their generalized possibility distri-
butions for the modelling of data in fuzzy databases can be illustrated as follows:
consider a database record type ‘Crime’ which is used among others to keep in-
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formation about possible perpetrators. For the sake of simplicity it is assumed that
each crime is committed by exactly one perpetrator, which isin a list of suspects. To
model this, the record type has a field ‘Perpetrator’. The values of this field could
be modelled by means of an IPD which is completely determinedby an IFS of sus-
pects. Such an IFS,F , can for example be constructed by means of the following
procedure. A group of experts studies the crimes and characteristics of the suspects
under consideration. After that, each expert votes for eachof the considered sus-
pects. Voting results in:

• ‘yes’ if the expert is convinced that the suspect is a potential perpetrator of the
crime;

• ‘no’ if the expert is convinced that the suspect is not a potential perpetrator of the
crime;

• if the expert cannot decide between ‘yes’ and ‘no’, he or she can abstain.

After the voting, the proportion of ‘yes’ and ‘no’ votes can respectively be used
to determine the membership functionsµF andνF of the IFSF . Finally, the cor-
responding IPD distribution denotes for each suspect how possible (πµF ) and how
impossible (πνF ) it is that he or she has committed the crime.⋄

An IFS can also be used in a more intuitive way in the fuzzy querying of regular
databases to denote which field values are preferable in the search —given via the
membership functionµπA— and which field values should be avoided —given via
the membership functionνπA.

Twofold fuzzy sets.

A TFS [24]

F = ({< u,µFP(u)> |u∈U},{< u,µFS(u)> |u∈U})

over a universeU is defined as a couple of fuzzy sets

FP = {< u,µFP(u)> |u∈U} andFS= {< u,µFS(u)> |u∈U}

overU , such that
supp(FP)⊆ core(FS).

Consequently, it holds that

0≤ µFP(u)≤ µFS(u)≤ 1,∀ u∈U.

From the special caseµ l
F = µFP andµu

F = µFS and the special caseµF = µFP and
νF = 1− µFS, it follows clearly that a TFS can formally be dealt with as a special
case of respectively an IVFS or an IFS set. In what follows, weare only interested
in the interpretations and usability of twofold fuzzy sets in the context of fuzzy
databases.
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A TFS can be used in the querying of regular databases to denote which field val-
ues are satisfactory (allowed, acceptable, not rejected) and which of these values are
really preferred, cf. [27]. The membership grades of the preferred values correspond
with µFP, the membership grades of the satisfactory values withµFS.

Due to the correspondence between on the one hand twofold fuzzy sets and on
the other hand both interval-valued fuzzy sets as well as intuitionistic fuzzy sets,
twofold fuzzy sets could also be used to model imprecise or vague data in databases.
In such cases, a TFS can be assigned a possibilistic interpretation, by which another
kind of generalized possibility distribution is obtained.A twofold possibility distri-
bution (TPD) can then be associated with a record fieldA, in which case it could be
denoted as

(πP
A ,π

S
A)

and could be characterized by the functionsπP
A andπS

A, such that

0≤ πP
A(u)≤ πS

A(u)≤ 1,∀ u∈U.

Herewith, it is assumed thatπP
A(u) defines the possibility thatu is a preferred value

for A and thatπS
A(u) defines the possibility thatu is a satisfactory value forA. In

this way,πP
A puts a ‘hard’ constraint on the possible values forA, whereasπS

A puts a
‘soft’ constraint on these values.

4.1.2 Dealing with uncertain information in databases

To deal with uncertain information in databases we can usepossibility theory[62,
25] in a completely analogous way as with the handling of imprecise and vague
information. On the other hand, if one has more control on thedata that has to
be modelled, as explained in section 2.2, then one can also use probability theory
[51, 28]. In both approaches, uncertainty is modelled by means of an uncertainty
distribution, which associates with each candidate value avalue that expresses to
what extent it is certain (or uncertain) that the candidate value would be the effective
value. The way how these associated values are interpreted and must be processed
is completely defined by the used theory. Beside probabilityand possibility theory,
there exist other theories for the modelling of uncertain information. An overview
can be find in the work of Peter Walley [56, 57].

In the simplest approaches based onprobability theory , a probability is asso-
ciated with each database record (a tuple if the relational database model is used
[58, 45] or a persistent object of an object type if an object oriented database model
is used [33]). These probabilities form a probability distribution which in turn is
used in the query processing to model to which extent it is certain (or uncertain) that
the record represents a correct answer to the query. In case of the relational database
model, probability distributions could also be used to model uncertain attribute val-
ues [3, 35]. The same holds for object oriented database models where there exist
also proposals to model uncertain inheritance with probability distributions [33].
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In fuzzy databases, uncertainty is in most cases modelled bymeans ofpossibil-
ity theory . This is in essence due to the more conservative character ofthe theory,
which results, among others, in a less stringent normalization condition (cf. sec-
tion 2.2), that is better suited in practice. When using possibility theory, uncertainty
is modelled by means of possibility distributions, which inmost cases could be
derived from a fuzzy set with discrete membership function.Possibility distribu-
tions can be associated with attributes in order to model uncertain attribute values of
database tuples or database objects [46]. Furthermore, degrees of uncertainty could
be associated with database tuples [54] and database objects [53]. In such a case,
the associated degree of uncertainty denotes to which extent it is certain or uncer-
tain that the tuple (resp. object) belongs to the extent of the relation (resp. object
type). Possibilistic uncertainty can also be considered inobject oriented inheritance
[53].

Because of the fact that imprecision and vagueness are both orthogonal with re-
spect to uncertainty (cf. section 1.1.2), it could happen that a possibility distribution
for the modelling of uncertainty is defined on a universe of possibility distributions
for the modelling of imprecision or vagueness. In such a case, the possibility distri-
bution is derived from a so-calledlevel-2 fuzzy set[21].

A level-2 fuzzy set˜̃V over a universeU [61, 30] can informally be described as
a fuzzy set of which the elements are regular fuzzy sets that are all defined overU .
This can formally be defined as follows:

Definition 4.1 (Level-2 fuzzy set)A level-2 fuzzy set̃̃V over a universe U is defined
by

˜̃V = {(Ṽ,µ ˜̃V(Ṽ)|∀ Ṽ ∈℘̃(U) : µ ˜̃V(Ṽ)> 0}

where each regular fuzzy setṼ is defined by

Ṽ = {(x,µṼ(x))|∀ x∈U : µṼ > 0}

�

Example 4.3
Suppose that it is only known that the value of a painting is either ‘most probably
about 2M’, or ‘less probably3.2M’. This information can for example be modelled
by a possibility distribution which is derived from a level-2 fuzzy set

{(about 2M,1),({(3.2M,1)},0.7)}

where{(3.2M,1)} is a possibility distribution and ‘about2M’ is a linguistic term,
that is modelled by the possibility distribution

πValue(x) = µabout 2M(x) =





0 iff x< 1.8M or x> 2.2M
x−1.8

0.2
iff 1 .8M ≤ x≤ 2M

2.2− x
0.2

iff 2M ≤ x≤ 2.2M
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⋄

By applying the extension principle (cf. section 2.1.4), the operators for regular
fuzzy sets can be generalized to operators for level-2 fuzzysets [21]. More details
on this are beyond the scope of this book.

4.1.3 Dealing with incomplete information in databases

In regular databases, missing information is in most cases modelled by means of
a pseudo description callednull , which denotes that the actual database value is
missing [13, 55, 52, 4, 50, 31, 63, 14, 32]. As soon as null values are allowed in a
database, it is also necessary to define their impact on the database manipulation and
the database querying [39]. In Codd’s approach, the relational calculus is extended
using an underlying three-valued logic [13, 14] to formallydefine the semantics of
null values in relational databases. This approach is beingcriticized a lot due to the
fact that the law of excluded middle does not hold in a three valued logic [15, 16, 17].

As an alternative, Date proposed to avoid using null values by defining an ap-
propriate, so-calleddefault value for each record field which could contain missing
information. The default value must be an element of the domain of the data type of
the record field. Whenever data is missing in those fields, this data will be approx-
imately represented by the default value [15, 18]. Default values have as disadvan-
tage that they can give a misrepresented view of reality, what especially can cause
problems in statistical querying.

Both the approach with null values and the approach with default values have
been generalized for fuzzy databases. In the framework of possibility theory the
problems with null values can be solved to a large extent. In what follows, we only
describe such a generalization of a null value approach. Fora description of a gen-
eralization of a default value approach we refer interestedreaders to [1, 42, 43].

In order to assign correct semantics to null values it is important to make a dis-
tinction between two main sources of missing information indatabases (see also
section 1.1.3). As originally presented by Codd [14] missing information can occur
because:

• Data areunknownto the users. In such a case, the data exist but they cannot be
entered in the database because they are unavailable at the moment they has to
be entered.

• Data are missing because they are related to a property that does not apply for the
database record under consideration. In such a case one speaks aboutundefined
data.

To illustrate these two cases, we consider a database that contains informa-
tion about birds. For each bird type the fly speed is among other registered in the
database. The first case, unknown data, occurs for example ina situation where it is
known that the birds of that type can fly, but extra observations are still necessary
to know the fly speed. The second case, undefined data, occurs when it is known
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that birds of the type under consideration cannot fly, as for example is the case with
penguins (fly speed is not applicable for penguins).

The truth values in Codd’s original three-valued logic are respectively ‘true’ (T),
‘false’ (F) and ‘unknown’ (⊥null). Hereby, the truth value ‘unknown’ is used to
model logical expressions involving either unknown or undefined data. Furthermore,
this logic is a strong Kleene logic [48] (cf. section 2.4.1),which means that the
computation rules for negation, conjunction and disjunction of section 2.4.1 hold.

The law of excluded middle does not hold in a strong Kleene logic. This can be
seen in

⊥null ∧¬(⊥null) =⊥null 6= F

and
⊥null ∨¬(⊥null) =⊥null 6= T.

Furthermore, ‘unknown’ denotes theuncertaintyone has about the fact whether the
proposition is ‘true’ or ‘false’. This completely differs from the underlying principle
of many-valued logics that states that different grades of truth are considered: grades
of uncertainty and grades of truth are from the semantic point of view completely
different concepts [26]. So, using an extra truth value to model ‘unknown’ does
not make sense from such a point of view. These observations explain partly the
motivations behind the criticism of Date on the use of null values [15, 16, 17]. In
the modelling approach described in the next paragraphs, unknown information –
more specifically uncertainty, due to unavailibility, about the actual values of record
fields – is modelled by means of possibility theory, which is in fact meant for the
modelling of uncertainty [62, 25].

4.1.3.1 The modelling of unknown information

In fuzzy databases, ‘unknown’ can be modelled by means of a normalized possibil-
ity distribution which is characterized by a fuzzy set with amembership function
that takes the value 1 for all regular domain values. An extranull value for the mod-
elling of unknown data is meaningless and thus not required in fuzzy databases.

0

1

domt

‘unknown’

0

1

domt

‘unknown’

Fig. 4.1 Value unknown.
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Example 4.4
If the value of a given painting is unknown, this can be modelled by a possibility
distribution which is characterized by a fuzzy setunknownwith membership func-
tion

µunknown: domvalue→ [0,1]

x 7→ 1

This is illustrated in figure 4.1.⋄

4.1.3.2 The modelling of undefined information

A specific null value is still required for the modelling of undefined information.
This null value is then strictly interpreted as ‘not applicable’. Thus for the modelling
of missing information in fuzzy databases one kind of null value is sufficient. To
allow for a distinction between inapplicability in the context of different data types,
the domaindomt of each data typet is extended with an extra, domain specific null
value⊥t which is used to model missing undefined data in that domain [49]. Domain
specific null values allow to distinguish between undefined values of different data
types in such a way that the available information about the data type of the record
field is not neglected. As such, for example, inapplicability where one expects an
integer value differs from inapplicability where one expects a character string value,
and will explicitly be modelled by the null values⊥INT EGERand⊥STRING.

To obtain an adequate logic for the handling of null values, athree-valued logic
with truth values ‘true’ (T), ‘false’ (F) and undefined (⊥) can be enriched with
possibilistic uncertainty. This is the approach taken in the development of extended
possibilistic truth values (EPTVs) [20] (cf. subsection 2.4.2).

When we consider domain specific null values, three linguistic terms ‘UNK’,
‘UNA’ and ‘N/A’ can be defined for each domaindomt . These are respectively mod-
elled by:

• The term ‘UNK’ stands for ‘unknown (but applicable)’ and corresponds with the
rectangular possibility distribution

πUNK(x) = 1, iff x∈ domt \ {⊥t}
= 0, iff x=⊥t

• The term ‘N/A’ stands for ‘not applicable’ and corresponds with the possibility
distribution

πN/A(x) = 0, iff x∈ domt \ {⊥t}
= 1, iff x=⊥t

• The term ‘UNA’ stands for ‘not available’ and corresponds with the possibility
distribution
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πUNA(x) = 1,∀x∈ domAi

These possibility distributions are visualized in figure 4.2.

0

1

domt

‘UNK’

⊥t

0

1

domt

‘N/A’

0

1

domt

‘UNA’

⊥t

⊥t

0

1

domt

‘UNK’

⊥t

0

1

domt

‘N/A’

0

1

domt

‘UNA’

⊥t

⊥t

Fig. 4.2 Linguistic terms for the modelling of missing information.

The use of a special null value for the handling of undefined information still
brings along with it a problem of incomplete truth functionality [16]. Indeed, if we
use extended possibilistic truth values (EPTVs), we are still not able to adequately
deal with the two special casest̃∗(p AND NOT p) and t̃∗(p OR NOT p). In order
to have correct query results in these cases too, the database system has to handle
them explicitly.

4.1.4 Dealing with inconsistent information in databases

In order to obtain a consistent database, some integrity rules must be defined on the
database. This could be done by means ofconstraints[41]. Furthermore, there exist
more advanced techniques to detect and to solve inconsistencies in databases. Their
description falls outside the scope of this book.

4.2 Database modelling

The techniques described in the previous section 4.1 form the basis of several ad-
vanced database models for the management of imperfect information. Each of these
models is an extension or generalization of a traditional database model. As already
mentioned at the beginning of this chapter there exist extensions and/or generaliza-
tions of the relational database model, the (E)ER-model, object relational models
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and object oriented models. In what follows, the modelling aspects of four repre-
sentative ‘fuzzy’ database models are described in more detail. The first and second
are based on the relational database model, the third and fourth are based on an
object oriented database model. The data manipulation and querying aspects are
described in chapter 5.

4.2.1 Possibilistic approaches

The possibilistic relational model, as presented in [46], is a generalization of the
relational model [12]. For the generalization, possibility theory is used [62].

At the basis of the model is the generalization of the domainsof the data types
that are associated with the attributes of a relation. For the generalization, these
domains are firstly extended with an extra domain value⊥ –which is used to denote
that the attribute is not applicable for the tuple– and then secondly generalized to
a set of fuzzy sets which all characterize possibility distributions. Thus, for each
database relation with schema

R(A1 : T1,A2 : T2, . . . ,An : Tn)

with attributesAi : Ti , 1≤ i ≤ n the domainsdomTi are generalized to

˜domT =℘̃(domTi ∪{⊥})

where each element of the new domaiñdomT characterizes a possibility distribution
πAi .

Example 4.5
As an example consider a database in which information aboutcompany cars is
registered. As such, for each employee, among others, the age of his/her company
car is stored. With respect to the age of Peter’s company car,the following situations
are possible:

• We don’t know if Peter has a company car and if he has one, we don’t know the
age of this car. This can be modelled by the domain value

πCar age(Peter)(x) = 1,∀ x∈ domT ∪{⊥}

whereT is the data type of the attributeCar age.
• It is completely possible that Peter has no company car, but it is also possible

with a possibilityλ > 0 that Peter has a company car that is more than five years
old. This can be modelled by the domain value

πCar age(Peter)(x) =





1 iff x=⊥
λ iff x> 5

0 iff x≤ 5
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• It is completely certain that Peter has no company car. This can be modelled by
the domain value

πCar age(Peter)(x) =

{
1 iff x=⊥
0 otherwise

• It is completely possible that Peter has a new company car, although there is also
a possibilityλ > 0 that he has none. This can be modelled by the domain value

πCar age(Peter)(x) =

{
λ iff x=⊥
µnew(x) otherwise

whereµnew is the membership function that is used to represent the fuzzy predi-
cate ‘new’.

• It is completely certain that Peter has a company car, but there is no information
available about the age of this car. This can be modelled by the domain value

πCar age(Peter)(x) =

{
0 iff x=⊥
1 otherwise

• It is completely certain that Peter has a company car which isbetween two and
four years old. This can be modelled by the domain value

πCar age(Peter)(x) =

{
1 iff x∈ [2,4]

0 otherwise

• It is completely certain that Peter has a new company car. This can be modelled
by the domain value

πCar age(Peter)(x) =

{
0 iff x=⊥
µnew(x) otherwise

• It is completely certain that Peter has a two years old company car. This can be
modelled by the domain value

πCar age(Peter)(x) =

{
1 iff x= 2

0 otherwise

⋄

All possibility distributions are assumed to be normalized. This corresponds to nat-
ural expectations becausedomTi ∪{⊥} describes all the possible alternatives. Fur-
thermore, in the approach it is assumed that all attributes are single-valued. This
conforms with the atomicity property of attributes in the relational database model.

The uncertainty on the data in the database —data modelled bya normalized
possibility distribution which is not restricted to a singleton— propagates to the
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manipulation and querying of the database. In order to modelthat a tuple does not
belong with complete certainty to a query result, all database (and result) tables are
extended with two extra columns ‘Pos’ (possibility) and ‘Nec’ (necessity) which
contain membership grades. In this way, two fuzzy sets are defined on the rows of
each table. Because of the fact that column definitions of a table could be seen as
a predicate, these fuzzy sets respectively denote which rows possibly satisfy this
predicate and which rows necessarily satisfy this predicate. The membership grades
then respectively correspond with the values of a possibility measure and the values
of a necessity measure.

In the model, the operators of the relational algebra are allgeneralized. This is
done in such a way that each operator additionally computes the associated values
for Pos and Nec for each row in its result set. This guaranteesthe closeness property
of the generalized relational algebra. Querying of ‘fuzzy’databases is described in
chapter 5.

Example 4.6
Generalizing the relation ‘Painting’ in the ‘artworks’-database of example 3.1 by
means of the possibilistic relational database model results for example in the
‘fuzzy’ relation that is represented in table 4.1 (for the sake of the representation,
the attribute ‘Name’ has been omitted). The attributes ‘Period’, ‘Value’ and ‘Owner’

Table 4.1 ‘Fuzzy’ relation ‘Painting’.

PID Artist Period Value Owner Pos Nec
P01 A04 1882 about15M {(Boijmans,1),(KMSK,0.6)} 1 1
P02 A02 around1870 morethan6M {(Louvre,1)} 1 1
P03 A01 veryold very expensive{(Louvre,1)} 1 1
P04 A03 1881 atleast100K {(KMSK,1)} 1 1

have a generalized data type. The values of the attributes ‘Period’ and ‘Value’ are
represented by linguistic terms which are all modelled by a possibility distributions.
Remark that attributes that belong to a candidate key are notallowed to contain
imprecise or uncertain values. Attributes that belong to a foreign key can have an
uncertain value (e.g., attribute ‘Owner’). It is assumed bydefault that all rows cer-
tainly belong to the table, i.e., for each rowPos= 1 andNec= 1. ⋄

4.2.2 Similarity relation based approaches

An alternative for the possibilistic model is thesimilarity based relational model
as originally presented in [10]. In this approach the domainsdomT of the data types
T that are associated with the attributes of a relation are extended with asimilarity
relation ST (cf. subsections 3.2.1.3 and 4.1.1) and generalized to
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˜domT = {V|V ∈℘(domT) ∧ V is a finite discrete set}∪{⊥null}

where℘(domT) denotes the power set ofdomT and the extra domain value⊥null is
used for the modelling of both unknown and undefined information. The setdomT

is called the basic set of the domain.
Thus for each database relation with schema

R(A1 : T1,A2 : T2, . . . ,An : Tn)

with attributesAi : Ti , 1≤ i ≤ n the domainsdomTi of the attributes are generalized
to a couple

( ˜domTi ,STi ).

Example 4.7
As an example, one can consider a generalized domain that is associated with an ex-
tra attributeDominantColour that is added to the schema of the relation ‘Painting’
of the ‘artworks’-database of example 3.1. This domain is for example defined as

( ˜domT ,ST)

where the basic setdomT is scalar and defined by

domT = {white,green,blue, red}

and the associated similarity relationST is given by the similarity matrix that is
presented in table 4.2. Remark thatwhiteis only considered to be similar with itself.

Table 4.2 Similarity relationST .

ST white green blue red
white 1 0 0 0
green 0 1 0.5 0.3
blue 0 0.5 1 0.3
red 0 0.3 0.3 1

⋄

Due to the generalization of the domains, each tupleti , 1≤ i ≤ m of a relation

R(A1 : T1,A2 : T2, . . . ,An : Tn]

has the following form

(A1 : Wi,1,A2 : Wi,2, . . . ,An : Wi,n)

whereWi, j ⊆ domTj , 1≤ j ≤ n. The possible interpretations
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α = [a1,a2, . . . ,an]

of a tuple are obtained by taking an elementa j in each of the setsWi, j . Also in
this approach, each tuple is interpreted as being a proposition that should satisfy the
predicate imposed by the relation schema. Thus, in order to be a valid interpretation,
the interpretation must satisfy the predicate imposed by the relation schema.

Furthermore, the database model prescribes that asimilarity threshold valueis
associated with each attributeA : T of a relation. This threshold value is by definition
obtained as:

THRES(A) = min
V∈t[A]

(min
x,y∈V

(ST(x,y)))

wheret[A] denotes the set of all values (sets)V (∈ ˜domT) of the attribute with name
A that occur in a tuplet of the relation. For regular databases the cardinality ofV is
always equal to 1 andST(x,y) = 1, such thatTHRES(A) = 1, for all attributesA of
the relation. These similarity threshold values play a rolein the database querying.

For querying purposes, the operators of the relational algebra are extended in
such a way that the user can specify a minimal similarity threshold value for each of
the attributes involved in the query. The result of the queryis then built up in such a
way that no extra tuples can be added without exceeding at least one of the minimal
threshold values. If the user did not specify threshold values then these are implicitly
considered to be equal to 1. Threshold values could also be represented by linguistic
terms in which case each linguistic term is associated with an exact threshold value.
Querying in similarity relation based approaches is further described in section 5.4.

Example 4.8
Using the similarity based relational model, the relation ‘Owner’ of the ‘artworks’-
database of example 3.1 can be generalized to a ‘fuzzy’ relation as presented in
table 4.3. For this relation, the following algebraic expression can be considered

Table 4.3 ‘Fuzzy’ relation ‘Owner’.

Name Place Country
{Boijmans} {Rotterdam,Amsterdam} {The Nederlands,Holland}
{Louvre} {Paris} {France}
{KMSK} {Antwerp,Mechlin,Bornem} {North Belgium,Flanders}

pro ject(Owner,{Place,Country})
WITH THRES(Place)≥ 0.75

AND THRES(Country)≥ 0.80

The result of this operation consists of a new relation whichis obtained by remov-
ing the attribute ‘Name’. In order to obtain the resulting tuples, the tuples of the
remaining intermediate relations are combined, if possible. The idea behind this is
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that in a regular database it is not allowed to have identicaltuples in the same re-
lation and identity is now ‘weakened’ to similarity. Two tuples can be combined if
application of the union operator for sets does not result ina crossing of one of the
given threshold values.⋄

A similar, similarity based object oriented database modelhas been presented in
[29].

4.2.3 The fuzzy object oriented FOOD database model

The FOOD-model [5, 36, 6, 7] is an extension of the ‘on graphs based’object
model of Lucarella [37], where as well thedatabase schemaas its instancesare
represented by directed labelled graphs and where the database manipulations are
defined in terms of graph transformations.

The conceptual schemaΣ of Lucarella’s model is defined by a quintuple

(C,T,A,H,P)

where:

• C is a finite set of(object) classes;
• T is a finite set of primitivetypes. Each typet ∈ T has an associated setV(t) of

allowed values;
• A is a finite set ofattributes. Each attribute has an associated domain. The domain

of a primitive attribute is a primitive typet ∈T, the domain of a complex attribute
is aclass c∈C;

• H ⊆ C×C is the inheritance relation. This is a partial ordering relation, where
(ci ,c j) ∈ H means thatci is a subclass ofc j ;

• P⊆C×A× (C∪T) is theproperty relationwhich denotes the attributes that are
associated with a class. If(ci ,a,c j) ∈ P, this means thatci has an attributea with
domainc j .

The conceptual schemaΣ is represented by means of a directed labelled graph

G(Σ) = (N,E)

where:

• N =C∪T is the set of all nodes of the graph. Each classc∈C is represented by
a rectangular node with labelc, each (primitive) typet ∈ T is represented by an
oval node with labelt;

• E = H ∪P is the set of all labelled edges of the graph. Each element(ci ,c j) ∈ H
is represented by an arrow that is directed fromci to c j and has a label ‘is a’,
whereas each element(ci ,a,c j) ∈ P is represented by an arrow that is directed
from ci to c j and has a labela.
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An object oriented databaseS is finally defined by a quadruple

(Σ ,O, I ,L)

where:

• Σ is the conceptual schema that has been defined above;
• O is the set of all objects that are present in the database;V(T) is the (sub)set of

all primitive values:V(T) =
⋃

t∈T
V(t);

• I ⊆ (O×C)∪(V(T)×T) is the instance relation; each objecto∈O is an instance
of a classc∈C and each valuev∈V(T) is an instance of a primitive typet ∈ T;

• L ⊆ O×A× (O∪V(T)) is the reference relation;(oi ,a,o j) ∈ L means thato j is
the value fora in theobject oi .

The instance relationI allows it to construct an instance graph for a schema graph
G(Σ). At each time, the nodes of an instance graph correspond to the objects and
values that are present in the database.

For the FOOD-model the following extensions have been established:

1. Definition offuzzy attribute values. Fuzzy attribute values are modelled by means
of possibility distributions that are defined on the domain of the attribute. For this
reason, a so-called set offuzzy types Tv is added. This is done by extending the
set of primitive types to an extended setTe = T ∪Tv. For this set it holds that:
V(Te) =V(T)∪V(Tv).

2. Definition offuzzy classes. A so-called set of fuzzy classesCf is introduced. This
is done by extending the set of classesC to an extended setCe =C∪Cf .

3. Definition ofuncertain property and reference relations. Uncertainty about the
association of a value to an attribute of an object is formalized by means of the
uncertain property relation

Pu ⊆Ce×A× (Ce∪Te)

and the uncertain reference relation

Lu : Oe×A× (℘(Oe)∪℘(V(Te)))→ [0,1]

whereOe is the extended counterpart of the setO.
4. Definition of ‘strengthened’ (imprecise) property and reference relations. Inde-

pendently of dealing with uncertainty it can also happen that we have to deal with
imprecision when associating a value to an attribute of an object. This is formally
dealt with by means of the ‘strengthened’ property relation

Ps ⊆Ce×A× (Ce∪Te)

and the ‘strengthened’ reference relation

Ls ⊆ Oe×A× (℘(Oe×T(Strength))∪℘(V(Te)×T(Strength)))
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whereT(Strength) = {none,very low, low,high,very high, f ull} is the set of the
allowed linguistic terms for the linguistic variableStrength. Imprecision can also
occur within the elements of an uncertain property relationor an uncertain refer-
ence relation. Therefore the uncertain ‘strengthened’ property relation

Psu⊆Ce×A× (Ce∪Te)

and the uncertain ‘strengthened’ reference relation

Lsu : Oe×A× (℘(Oe×T(Strength))∪℘(V(Te)×T(Strength)))→ [0,1]

are introduced.
5. Definition of the‘strengthened’ (imprecise) instance relation. This concept is

introduced to make it possible that an object is only partly (to a given extent) an
instance of a class and is defined by

I f ⊆ Oe×Cf ×T(Strength).

6. Definition offuzzy class hierarchies. An extended inheritance relation

H f ⊆Cf ×Cf ×Modi f iers

allows it to express, by means of the setModi f iersof modifiers, to which extent
an object of a subclass belongs to a superclass.

These extensions are used for the formal definition of the extended conceptual
schemaΣe and the so-called fuzzy object oriented multimedia systemM which can
be graphically represented by means of an adapted representation [6, 7].

4.2.4 The constraint based object oriented database model

The fourth ‘fuzzy’ database model that is described in more detail in this chapter is
based ongeneralized constraints, as introduced by L.A. Zadeh (cf. subsection 2.5)
[23]. Generalized constraints can be used to specify the semantics and integrity of
the databases and to state the selection criteria in queries. As underlying logical
framework, a logic based onextended possibilistic truth values(EPTVs) is used (cf.
subsection 2.4.2.2). Furthermore, the model is, as far as its regular components are
considered, in conformity with theODMG data model[11].

The basis of the database model is formed by a so-called type system —that states
the supported data type definitions— and a so-called constraint system —that states
the allowed constraint definitions. Starting from data types and constraints, object
schemas and database schemas are specified. The database model is completed with
data definition and data manipulation operators.
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4.2.4.1 Data types and type system

Like in the ODMG data model [11], the common characteristicsof objects are spec-
ified by class properties which on their turn are built up ofdata types. Each data
typet is a generalization of an ODMG data type and is among others characterized
by a domaindomt and a set of operatorsOt which all operate on the domain values
of the data type. Each domain contains a domain specific value⊥t which is used
to represent ‘undefined’ information (cf. subsection 4.1.3.2). The data types sup-
ported by the database model are defined by atype system. To be conform with the
ODMG data model, the type system supports definitions forliteral types(∈ Tliteral )
and object types(∈ Tob ject). Additionally, there are also definitions forreference
types(∈ Tre f erence). Reference types allow it to refer to instances of object types and
are used to model the binary relationships that can exist between object types in a
database schema.

Thereference typesare subdivided in:

• Single-valued reference types, which are denoted byRe f(t) wheret is an object
type.

• Multiple-valued reference types, which are denoted byRe fSet(t), Re fBag(t) or
Re fList(t) wheret is an object type.

The literal types are subdivided in:

• Basic types, like e.g.Integer, Real, Boolean, andString.
• Collection types, like e.g.Set(t), Bag(t), List(t), andArray(t) wheret is a literal

type.
• Structured types. In general a structured type is specified as

Struct id(id1 isr1 t1; id2 isr2 t2; . . . ; idn isrn tn)

whereid is the name of the type and

(id1 isr1 t1, id2 isr2 t2, . . . , idn isrn tn)

are the components of the type. Each componentidi isri ti , 1≤ i ≤ n represents
a (generic) generalized constraint that acts on a variableidi with associated data
type ti ∈ Tliteral ∪Tre f erence. The variable copulaisri can take the following val-
uesisri ∈ {ise, is, isv}. The semantics of these constraints can be described in a
simplified way as:

– If isri = ise, then the allowed values foridi are restricted to the values of the
domaindomti of the associated data typeti of idi.

– If isri = is, thenidi is interpreted as a (disjunctive) possibilistic variable.The
allowed values foridi are in this case restricted to the fuzzy sets that are de-
fined over the domaindomti . The membership grades of these fuzzy sets are
interpreted as degrees of uncertainty. With other words, such a fuzzy set rep-
resents a possibility distribution.
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– If isri = isv, thenidi is interpreted as a (conjunctive) veristic variable. The al-
lowed values foridi are in this case restricted to the fuzzy sets that are defined
over the domaindomti and of which the membership grades are interpreted as
degrees of truth.

With a view on the specification of theobject typesthe concept operator signa-
ture is introduced. In general, an operator signature is specified as:

• Signat(( )→ t ′)
• Signat((id′

1 isr1 t ′1; id′
2 isr2 t ′2; . . . ; id′

p isrp t ′p)→ t ′)

Hereby,t ′ is the data type of the result values. It holds thatt ′ ∈ Tliteral ∪Tre f erence∪
{Void} with Void being a data type that is used in situations where no further,more
specific, type specification can be given [11] (which might, e.g., be the case if the
operator produces no results). Furthermore,id′

i isri t ′i , 1≤ i ≤ p are the parameters
of the operator. Each parameter is represented by a (generic) generalized constraint
that acts on a variableid′

i that has to take values of the domain of the associated
data typet ′i . Again, the variable copulaisri is allowed to one of the following values
isri ∈ {ise, is, isv} where the different options are interpreted as described above.

In general, an object type is specified as follows:

• Class id(id1 isr1 s1; id2 isr2 s2; . . . ; idn isrn sn)

• Class id: îd1, îd2, . . . , îdm( )

• Class id: îd1, îd2, . . . , îdm(id1 isr1 s1; id2 isr2 s2; . . . ; idn isrn sn)

Hereby,id denotes the name of the object type, the identifiersîd i , 1≤ i ≤ m indicate
the parent types of the object type (if these exist) —hereby the ODMG type-subtype
inheritance mechanism is considered [11]— and

(id1 isr1 s1; id2 isr2 s2; . . . ; idn isrn sn)

are thecharacteristicsof the object type. A characteristicidi isri si , 1≤ i ≤ n is:

• anattribute if si is a literal type or an object type;
• a (binary) relationshipif si is a reference type;
• amethodif si is an operator signature.

Each characteristic is represented by a (generic) generalized constraint that acts on a
variableidi with associated specificationsi . The allowed copula are also in this case
isri ∈ {ise, is, isv} with the same semantics as explained above. For methods, the
generalized constraints puts a restriction on the allowed result values of the operator.
Beside the characteristics that are explicitly represented in the specification of the
object type, an object type also inherits the characteristics of its parent typeŝid i ,
1≤ i ≤ m (if these exist and are specified in the object type specification).

The type systemTS, which defines all data types that are supported by the
database model, is defined as a quadruple:

TS≡ [ID,T,↔,≺]

where
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• ID is the set of all valid identifiers,
• T is the set of all supported type specifications, i.e.

T ≡ {Void}∪Tre f erence∪Tliteral ∪Tob ject

• ↔: Tob ject×Tob ject → {True,False} is a partial relation that defines the binary
(association) relationships between object types.

• ≺: Tob ject×Tob ject→ {True,False} is a partial ordering relation that defines the
on inheritance based type-subtype relationships between object types.

Example 4.9
The type systemTS allows it to specify the following (simplified) types for the
modelling of employees. With the structured types

• Struct TAddress(Street ise String;City ise String)
• Struct TCompany(Name ise String;Location ise String)
• Struct TWorks(Company ise TCompany;Percentage is Real)

and the enumeration literal type

Enum TLanguage(French,English,Spanish, Italian)

the object typesTPersonandTEmployeecan be defined as follows:

Class TPerson(Name ise String;

Year o f birth is Integer;

Address ise TAddress;

Languages isv TLanguage;

Children ise SetRe f(TPerson);

Add child ise Signat((Newchild ise TPerson)→Void))

Class TEmployee: TPerson(EmployeeID ise String;

Works f or ise Bag(TWorks))

⋄

The instances of the reference types and literal types are respectively calledref-
erence instancesandliterals. These are defined as a couple[t,v], wheret is a ref-
erence type or a literal type andv∈ domt .

Depending on its lifetime an object is either transient or persistent. Transient
objects are not stored in a database. They only temporarily exist, as long as the
application that created them runs. Persistent objects arestored in a database and
remain in the database until they are explicitly removed by auser or application
program. Atransient object is defined by a triplet

o≡ [t,v, t̃∗(‘o is an instance oft ’)]
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where

• t ∈ Tob ject is the type of the object,
• v∈ domt is the state of the object and
• t̃∗(‘o is an instance oft ’) is the EPTV that expresses the truth value of the propo-

sition ‘o is an instance of thet objecttypet ’.

A persistent objectis defined as a quintuple

o≡ [oid,N, t,v, t̃∗(‘o is an instance oft ’)]

where

• t ∈ Tob ject is the type of the object,
• v∈ domt is the state of the object,
• oid is a unique object identifier,
• N is a (finite) set of object names which act as access points to the object in the

database and
• t̃∗(‘o is an instance oft ’) is the EPTV that expresses the truth value of the propo-

sition ‘o is an instance of the object typet ’.

The unicity of the object identifier must be enforced over thecomplete database.
The object identifieroid is used to refer to (the state of) the object. The set of object
namesN can be empty.

The set of all instances of an object typet ∈ Tob ject is denoted asV instance
t . If t is a

subtype of another object typêt, then it holds thatV instance
t ⊆V instance

t̂
. The extent of

an object typet is denoted asVextent
t and defined as the set of all persistent objects

of t that occur in a given database. Ift is a subtype of another object typet̂, then it
holds thatVextent

t ⊆Vextent
t̂

.

Example 4.10
The instances of the object typeTPersonof example 4.9 are eitherTPersonobjects,
or TEmployeeobjects (becauseTEmployeeis a subtype ofTPerson). Examples of
persistentTPersonobjects are:

[oid1,{},TPerson,

(Name ise‘Ann’ ;

Year o f birth is Around1993;

Address ise(Street ise‘Church street, 12’;City ise‘Paris’);

Languages isv{(French,1),(English,0.4)};

Children ise Set()),{(T,1)}]

and
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[oid2,{},TPerson,

(Name ise‘Tom’ ;

Year o f Birth is Around1990;

Address ise(Street ise‘Church street, 12’;City ise‘Paris’);

Languages isv{(French,1),(English,0.5),(Spanish,0.7)};

Children ise Set()),{(T,1)}]

An example of a persistentTEmployeeobject is:

[oid3,{},TEmployee,

(Name ise‘Johan’;

Year o f birth is {(1965,1)};

Address ise(Street ise‘Church street, 12’;City ise‘Paris’);

Languages isv{(French,1),(Spanish,0.8),(English,1)};

Children ise Set(oid1,oid2);

EmployeeID ise‘ID25’ ;

Works f or ise Bag((Company ise(Name ise‘XYZ’ ;

Location ise‘Paris’);

Percentage is{(100,1)}))),{(T,1)}]

⋄

4.2.4.2 Constraints and constraint system

Constraints can formally be seen as relations that must be satisfied. With respect to
databases, constraints are an important and adequate meansto define the data(base)
semantics and to guarantee the data(base) integrity [34]. As such, constraints can be
used to specify the semantics of an object type. An object type for the modelling
of persons can then be extended with constraints that define the full semantics of
the allowed domain values of attributes like ‘Yearof birth’, ‘Height’, and ‘Weight’
of persons. Other constraints can specify the valid transitions, from the old to the
new value, of attributes like ‘Salary’ (e.g. a salary can never decrease) and ‘Marital
status’ (e.g. one can never be divorced without first being married, so a transition
from ‘unmarried’ to ‘divorced’ is not allowed). Other constraints can enforce still
other integrity constraints. A persistent instance of an object type then belongs to
the database to the extent that all of the applicable constraints of the object type are
satisfied for the instance.

Remark that in some object oriented database models there isno explicit sup-
port for constraints. In such models, the underlying assumption in that constraints
should be dealt with in the implementation of the class methods and that an object
attribute is only accessible via adequate methods that return (read), insert (write)
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or modify (overwrite) the actual attribute value. In the constraint based object ori-
ented database model this assumption is not made and supportfor explicit constraint
specifications is provided.

Constraints can also be used to specify selection conditions in queries. In such a
case, each constraint states a condition. In order to belongto the result set of a query
an instance must satisfy the constraints imposed by the query and belongs to the
result to the extent that it satisfies these constraints. As such two constraints could
be used to search for all persons that are around twenty yearsold and live in the
environment of Paris: a constraint to find all persons that around twenty years old
and a constraint to find all persons that live in the environment of Paris.

Eachconstraint is characterized by a specification and a logical function that
acts on an object and results in an EPTV. The constraints supported by the database
model are fully determined by aconstraint system. To make a distinction between
the (generic) generalized constraints that are used in the type specifications, the
constraints that are derived from the constraint system arecalled specific constraints
(or constraints for short).

In the constraint system four categories of constraints arebeing distinguished.
Hereby, a first distinction is made on the basis of whether theconstraint is defined
over the instances ofone single object type, or is defined over the instances of mul-
tiple object types (single-type dependent vs. multi-type dependent). A second dis-
tinction is made on the basis of whether thecomplete extentof an object type is
involved in the evaluation of the constraint, or not. The four resulting categories are
respectively denoted asCs

i , Cs
e, Cm

i andCm
e and are described as follows:

• The setCs
i consists ofsingle-type dependent constraints that are not defined

over the complete extent of an object type. Examples of constraints of this
category are:

– ‘Not null’ constraintswhich impose that null values are not allowed for the
specified attribute or relationship.

– Value constraintswhich impose a restriction on the allowed domain values
of the specified attribute or relationship. Furthermore, only one object type is
involved in the specification of the constraint.

– Transition constraintswhich impose a restriction on the allowed transitions
(from the old value to the new value) of the specified attribute or relationship.
Again, only one object type is involved in the specification of the constraint.

• The setCs
e consists ofsingle-type dependent constraints that are defined over

the complete extent of an object type. Examples of constraints of this category
are:

– Key constraintswhich put an unicity constraint and an irreducibility constraint
on a specified subset of attributes and relationships of the specified object
type. Unicity means that no two objects of the extent of the object type are
allowed to have the same values for each of the attributes andrelationships
in the specified set. Irreducibility means that no attributeor relationship is
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superfluous and can be removed from the specified set without violating the
unicity constraint.

– Aggregation constraintswhich impose a condition that contains at least one
aggregation operator that acts on the specified object type.Only one object
type is involved in the specification of the constraint.

• The setCm
i consists ofmulti-type dependent constraints that are not defined

over the complete extent of an object type. Examples of constraints of this
category are:

– Value constraintswhich impose a restriction on the allowed domain values of
the specified attribute or relationship. More than one object type is involved
in the specification of the constraint.

– Transition constraintswhich impose a restriction on the allowed transitions
(from the old value to the new value) of the specified attribute or relation-
ship. Again, more than one object type is involved in the specification of the
constraint.

• The setCm
e consists ofmulti-type dependent constraints that are defined over

the complete extent of an object type. Examples of such constraints are:

– Unicity constraintswhich put an unicity constraint on the object identifiers
and object names that are associated with objects in the extents of the specified
object types. No two object in the union of these extents are allowed to have
the same object identifier or object name.

– Referential constraintswhich guarantee referential integrity for the specified
relationships. Referential integrity imposes that that the objects that are re-
ferred to must always exist in the database.

– Aggregation constraintswhich impose a condition that contains at least one
aggregation operator that acts on at least one of the specified object types.
More than one object type is involved in the specification of the constraint.

The constraint systemCS, which defines all valid (explicit) constraints that are
supported by the database model, is defined as a triple:

CS≡ [ID,E,C]

where

• ID is the set of all valid identifiers,
• C is the set of all supported constraint specifications, i.e.

C≡Cs
i ∪Cs

e∪Cm
i ∪Cm

e

• E is the set of all valid characterizing logical functions forconstraints. Each
logical function maps an object of each of the involved object types onto an
EPTV, which denotes to which extent the objects satisfy the constraint.
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Example 4.11
With respect to the object typesTPersonandTEmployeethat have been introduced
in example 4.9, the following constraints can be considered:

• c1 = cnot null
{TEmployee.EmployeeID}[ ]

• c2 = cvalue
{TEmployee.Year o f birth}[ around1930≤ TPerson.Yearo f birth ≤ 1990]

• c3 = cvalue
{TEmployee.Works f or.Percentage}[ 0≤

TEmployee.Works f or.Percentage≤ 100]
• c4 = ckey

{TPerson}[ TPerson.Name]

• c5 = coid
{TPerson,{TPerson,TEmployee}}[ ]

• c6 = cname
{TPerson,{TPerson,TEmployee}}[ ]

• c7 = coid
{TEmployee,{T Person,TEmployee}}[ ]

• c8 = cname
{TEmployee,{T Person,TEmployee}}[ ]

• c9 = cre f erence
{TPerson.Children}[ ]

Hereby,c1 is a ‘Not null’ constraint,c2 andc3 are value constraints,c4 is a key
constraint,c5, c6, c7 andc8 are unicity constraints andc9 is a referential constraint.
⋄

4.2.4.3 Object schemas and database schemas

The semantics of an object is described by itsobject schema. This schema com-
pletely defines the object and contains the definitions of allspecific constraints that
are defined for the object type of the object. Each object schemaos is defined as a
quadruple

os= [id, t,M,Ct ]

where

• id ∈ ID represents the name of the object schema.
• t ∈ Tob ject is the type of the object schema.
• M describes the ‘meaning’ of the object schema.M is provided to add comments

and is usually a description in natural language.
• Ct ∈ ℘̃(Cs

i ) is a normalized fuzzy set of explicit constraints that all have to act
on the objects of typet. The membership grades ofCt are interpreted as weights
and denote the relative importance of the constraints within the object schema.

The set of all existing object schemas is denoted asOSand is defined to be the set
of all quadruples that satisfy the above definition.

An instanceo of the object typet is by definition also an instance of the object
schemaos= [id, t,M,Ct ], if and only if it satisfies (with a EPTV that differs from
{(F,1)}) all constraints ofCt and all constraints of the fuzzy setŝĈt of the object
schemas

[îd, t̂,M̂,Ĉ̂t ]
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that are defined for the super typest̂ of t. In this way, inheritance has an impact on
the constraints that has to be satisfied. The set of all instances of an object schema
os is denoted asV instance

os , while the set of all persistent instances ofos is denoted as
Vextent

os . Clearly, it holds thatV instance
os ⊆V instance

t andVextent
os ⊆Vextent

t .

Example 4.12
With respect to the object typesTPersonandTEmployeethat have been introduced
in example 4.9 and the constraintsc1,c2, . . . ,c9 from example 4.11 the following
object schema’s can be considered:

OSPerson= [OSPerson,TPerson,

‘schema to represent person objects’,{(c2,1)}]

and

OSEmployee= [OSEmployee,TEmployee,

‘schema to represent employee objects’,{(c1,1),(c3,0.7)}]

⋄

A database schemadescribes the semantics of the objects stored in a database.
Each database schemads is defined as a quadruple

ds= [id,D,M,CD]

where

• id ∈ ID is the name of the database schema.
• D = {os1,os2, . . . ,osn} ⊂ OS\ {⊥OS} is a finite set of object schemas. Each ob-

ject schema inD has a different object type. If an object schemaos∈D is defined
for an object typet andt ′ is a super type oft or t ′ is an object type that contains a
binary relationship that refers tot, thenD must contain an object schemaos′ ∈ D
that is defined fort ′.

• M describes the ‘meaning’ of the database schema.
• CD ∈℘̃(Cs

e∪Cm
i ∪Cm

e ) is a normalized fuzzy set of constraints that all put extra
restrictions on the instances of the object schemas ofD. The membership grades
of CD are interpreted as weights and denote the relative importance of the con-
straints within the database schema. For each object schemaos∈ D there exist
unicity constraints inCD which guarantee the unicity of the object identifiers and
object names of the instances ofos. Furthermore, each constraintc ∈ Cs

e∪Cm
e

must be defined for the extent of the object typet of an object schemaos∈ D.

The set of all existing database schemas is denoted asDS and is defined as the set
of all quadruples that satisfy the above definition.

Each persistent instanceo of an object schemaos∈ D of a database schemads
must satisfy (with an EPTV that differs from{(F,1)}) all constraints inCD. An
instance of a database schemads is called a database and is defined as the set of
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the extents of all object schemas ofds. In this way, each database is a set of sets of
objects.

Example 4.13
With the object schemasOSPersonandOSEmployeeof example 4.12 and the con-
straintsc1,c2, . . . ,c9 from example 4.11 the following database schema can be con-
structed:

DSEmployee= [DSEmployee,{OSPerson,OSEmployee},
‘schema for an employee database’,

{(c4,1),(c5,1),(c6,1),(c7,1),(c8,1),(c9,1)}]

By only considering the object identifiers of the persistentobjects of example 4.10,
the corresponding database can be represented as:

{{oid1,oid2,oid3},{oid3}}

⋄

4.2.4.4 Database model

Finally, the database model is obtained by considering specific operators for data
definition (DDL) and data manipulation.

For data definition purposes, operators are considered to create and to remove
databases and database schemas (CreateDB, Drop DB), to add and to remove ob-
ject schemas to database schemas (CreateOS, Drop OS), to add and to remove
characteristics to the object type of an object schema (Add Char, Drop Char), to
add and to remove weighted constraints to an object schema (Add OSC, Drop OSC)
and to add and to remove weighted constraints to a database schema (Add DBC,
Drop DBC).

The operators for data manipulation provide facilities to add, remove, modify and
query database objects. These operators all act on sets of instances that are associ-
ated with an object schema and result in a new object schema with a new associated
set of instances. In this way, each data manipulation operator can act on the result
of each data manipulation operator which allows to construct algebraic expressions
and guarantees the closeness property of the set of data manipulation operators. The
supported operators are the set operators union (∪), intersection (∩), difference (\)
and Cartesian product (⊗), the database operators projection (Π ), extension (Θ ),
selection (σ ) and threshold (τ) and the operators for making an object persistent
or transient (Maketransient, Make persistent). The extension operator allows it to
add derived attributes to the object type of an object schema. The threshold operator
is used to restrict the set of instances of an object schema based on the given thresh-
old values for EPTVs. The semantics of all other operators isanalogous to that of
their relational counterparts (cf. section 3.4.1.2).
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The database modelDM is then finally defined by:

DM = [TS,CS,OS,DS,Omodel
DDL ,Omodel

DML ]

where

• TSis the type system,
• CSis the constraint system,
• OSis the set of all object schemas,
• DS is the set of all database schemas,
• Omodel

DDL is the set of all data definition operators and
• Omodel

DML is the set of all data manipulation operators.

More details about this database model are described in [23].

4.2.5 Other approaches
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Chapter 5
Fuzzy querying of fuzzy databases

The fuzzy querying techniques for regular databases as presented in chapter 3 can be
further extended (or generalized) so that they can be applied for the fuzzy querying
of ‘fuzzy’ databases. The main difference with the ‘fuzzy’ querying techniques of
regular databases is that in ‘fuzzy’ databases the data are not known with certainty in
case of imprecision, fuzziness, uncertainty or missing information. This uncertainty
propagates to, and should be reflected in, the query results so that the logical frame-
work that is underlying the querying mechanism must be able to adequately model
and deal with this uncertainty. In this chapter, fuzzy querying of fuzzy databases in
three such frameworks is described. More specifically, attention is paid to querying
in thepossibilistic framework, in asimilarity based framework, and in anextended
possibilistic framework. The extended possibilistic framework can hereby be seen
as an extension of the possibilistic framework.

For fuzzy querying of ‘fuzzy’ databases the same main ideas as with fuzzy query-
ing of regular database remain applicable: preferences canbe introducedinsideel-
ementary query conditions andbetweenelementary query conditions [5]. For the
treatment of preferences inside elementary querying conditions, the evaluation func-
tions for simple conditions must be generalized in such a waythat the possible im-
perfection of data is adequately dealt with. The treatment of composed conditions,
taking into account preferences between querying conditions (if existent), can then
occur completely analogously as with fuzzy querying of regular databases.

In the first section 5.1 of the chapter an example of a ‘fuzzy’ database is given.
This example will be used in the remainder of this chapter to illustrate the presented
techniques. The next sections deal with the possible logical frameworks supporting
fuzzy querying of ‘fuzzy’ databases. In section 5.2 a general introduction is given.
In section 5.3 the possibilistic approaches are described,section 5.4 deals with the
similarity based approaches, and in section 5.5 the essenceof the extended pos-
sibilistic approach is presented. For each of these approaches, attention is paid to
the generalization of evaluation functions for simple search criteria. With the han-
dling of the extended possibilistic approach, extra attention goes to the description
of dealing with missing information in fuzzy query processing. The chapter ends

127
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with section 5.8 that deals with some relational and object oriented frameworks for
fuzzy querying of ‘fuzzy’ databases.

5.1 Example database

The example database of section 3.1 can be adapted to a ‘fuzzy’ database as de-
scribed below.

Example 5.1.Figure 5.1 contains a representation of the records of the adapted
database. The database again consists of three record types‘Painting’, ‘Artist’ and
‘Owner’. To illustrate the handling of imperfect information the record types ‘Paint-
ing’ and ‘Artist’ have been generalized. The semantics of the record fields ‘Artist’,
‘Period’, ‘Value’ and ‘Owner’ of the record type ‘Painting’and the semantics of
the record fields ‘Yearof birth’ and ‘Yearof death’ of the record type ‘Artist’ are
hereby generalized in such a way that these fields can containpossibility distribu-
tions as values (cf. the possibilistic relational model in section 4.2.1). These possi-
bility distributions allow to model imprecision, uncertainty or unknown information.
For the record fields ‘Period’, ‘Value’, ‘Yearof birth’ and ‘Yearof death’ all field
values are represented by means of linguistic terms. Remarkalso that record fields
that are used to associate record types with each other (‘Artist’ and ‘Owner’) can
contain uncertain values. ⋄

5.2 The evaluation of fuzzy query conditions

As already shortly explained in the introduction of this chapter, the evaluation of
fuzzy querying conditions with ‘fuzzy’ databases has a lot of techniques in common
with fuzzy query evaluation with regular databases. The differences stem from the
fact that a ‘fuzzy’ database can contain imperfect data and these imperfections can
bring along uncertainty with them.

Possible sources of imperfections are:

• With the integration of databases (e.g. when building a datawarehouse) different
values can be assigned to the same single-valued record field, where each of these
values originates from a different data source.

• With predictions, one almost always has to deal with different possible/(un)certain
data values, which eventually can be dependent of some parameters.

• In archives, information can (partially) get lost or (partially) get damaged. This
can result in incomplete or missing data.

• Applying advanced analytical techniques, like for exampleclustering or pattern
recognition, mostly results in different candidate objects or patterns.
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RECORDTYPE Painting

RECORDTYPE Artist

RECORDTYPE Owner

ID Name Artist Period Value Owner

P01 Fishermans house {(Monet,1)} 1882 {(Boijmans,1),
(KMSK,1)}

about_15M

P02 The ballet course {(Degas,1)} around_1870 {(Louvre,1)}more_than_8M

P03 Mona Lisa {(Da Vinci,1)} very_old very_expensive

P04 Afternoon in Ostend {(Ensor,1),
(Permeke,0.4)}

1881 {(KMSK,1)}at_least_1K

Name First_name Year_of_birth

Da Vinci Leonardo around_1452

Degas Edgar 1834_or_1835

Ensor James 1860

Monet Claude 1840

Year_of_death

around_1519

1917

1949

1926

Name Place Country

Boijmans Rotterdam The Netherlands

Louvre Paris France

KMSK Antwerp Belgium

{(Louvre,1)}

Permeke Constant 1886 1952

RECORDTYPE Painting

RECORDTYPE Artist

RECORDTYPE Owner

ID Name Artist Period Value Owner

P01 Fishermans house {(Monet,1)} 1882 {(Boijmans,1),
(KMSK,1)}

about_15M

P02 The ballet course {(Degas,1)} around_1870 {(Louvre,1)}more_than_8M

P03 Mona Lisa {(Da Vinci,1)} very_old very_expensive

P04 Afternoon in Ostend {(Ensor,1),
(Permeke,0.4)}

1881 {(KMSK,1)}at_least_1K

Name First_name Year_of_birth

Da Vinci Leonardo around_1452

Degas Edgar 1834_or_1835

Ensor James 1860
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Year_of_death
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1917

1949

1926

Name Place Country

Boijmans Rotterdam The Netherlands

Louvre Paris France

KMSK Antwerp Belgium

{(Louvre,1)}

Permeke Constant 1886 1952

Fig. 5.1 Records of the ‘fuzzy’ example database ‘Artworks’.

If the exact value of a record field is questioned and thus uncertain, the result of
a query that acts on these field values can never be certain. Asa consequence of
this, the approaches with satisfaction degrees, presentedin chapter 3 are no longer
suited as an underlying logical framework. Indeed, these approaches do not allow
it to model uncertainty. The other approaches, based on extended possibilistic truth
values, can still be used as will be explained in what follows. Other, commonly used
frameworks are the possibilistic framework and the probabilistic framework. The
use of a similarity based framework has also been studied [6,15]. Due to the scope
of this book which is centralized around ‘fuzzy’ databases,only the possibilistic,
the similarity based, and the extended possibilistic approaches are further described
in this chapter.
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5.3 Possibilistic approaches

5.3.1 Modelling

The possibilistic approaches are based on possibility theory [17, 11]. In these ap-
proaches the evaluation of the querying criteria results for each involved object in a
possibility ‘Pos’ and anecessity‘Nec’ which respectively denote to which extent
the the object possibly satisfies the criteria and to which extent the object necessarily
satisfies the criteria. With other words, ifc is a querying condition andedenotes the
evaluation function, then the evaluatione(c)(r) of c for a database recordr results
in a couple

e(c)(r) = (Pos(c)(r),Nec(c)(r))

where Pos(c)(r) is the possibility thatr satisfiesc and Nec(c)(r) is the necessity
thatr satisfiesc.

5.3.2 Evaluation of simple conditions

With fuzzy querying of ‘fuzzy’ databases two different kindof simple conditions
exist:

• Conditions of the form
A θ L

whereA is a record field,L is a constant —possibly modelled by means of a
fuzzy set— andθ represents a (‘fuzzy’) comparison operator or the compatibility
operator.

• Conditions of the form
A θ B

whereA andB are record fields andθ represents a (‘fuzzy’) comparison operator.

As with fuzzy querying of regular databases, the comparisonoperatorsop, which
might be ‘fuzzy’ or not, can be modelled by means of a membership function µop

that is defined over the Cartesian product of two domainsdom1 anddom2 and which
denotes for each couple(v1,v2) of domain valuesv1 ∈ dom1 andv2 ∈ dom2 to which
extent the operationop(v1,v2) (or v1 op v2) is satisfied. Like with fuzzy querying
of regular databases, this approach allows to deal with operators as for example
‘approximately equal to’ and ‘much larger than’.

Simple conditions of the formA θ L.

• (‘Fuzzy’) comparison operators (op). With this first form of ‘fuzzy’ compar-
ison operators, only one record field (or attribute)A is involved. Examples are
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‘Age is much lower thanmiddle-aged’ and ‘Value isapproximately equal to
3.000 Euro’.
If πA represents the possibility distribution of the current field value ofA in a
recordr of the ‘fuzzy’ database,µL is the membership function for the allowed
values ofA given by the user in the query specification andµop is the member-
ship function of the (‘fuzzy’) comparison operatorop which is defined over the
Cartesian productdomA×domA of the domaindomA (of the data type ofA) with
itself, then the possibility measure and necessity measureof A op Lare obtained
as:

e(A op L)(r) = (Pos(A op L)(r),Nec(A op L)(r))

where

– Pos(A op L)(r) = supx∈domA
min(µL ◦ op(x),πA(x))

– Nec(A op L)(r) = infx∈domA max(µL ◦ op(x),1−πA(x))

with
µL ◦ op(x) = sup

x′∈domA

min(µop(x,x
′),µL(x

′)).

This last expression expresses thatL ◦ op is the fuzzy set of the elements of
domA which are in relationopwith at least one element ofL.
The possibility measure and necessity measure define two fuzzy sets over the
result set of the comparison: the fuzzy set of records that possibly satisfy the
comparison and the fuzzy set of records that necessarily satisfy the comparison.

• Compatibility operator ( IS). As with the fuzzy querying of regular databases,
the compatibility operatorIS allows it to check to which extent the values of a
given record field of database records are compatible with a fuzzy set of allowed
values that is specified by the user in the query condition andis eventually repre-
sented by means of linguistic term. In ‘fuzzy’ databases, the record field values
can be modelled by a possibility distributions. In general an ‘IS’-proposition is
of the form

A IS L

whereA is a record field (or attribute) of the database andL is a fuzzy set of
allowed values forA which is given by the user.L can eventually be represented
by a linguistic term.
Examples of ‘IS’-propositions are: ‘ValueIS expensive’, ‘SpeedIS high’, ‘Period
IS old’ and ‘Weight IS heavy’. Hereby,Value, Speed, Period, andWeightare
record fields (or attributes) of record types stored in the database and ‘expen-
sive’, ‘high’, ‘old’ and ‘heavy’ are linguistic terms whichrepresent the domain
values of the data type of the record field that by the user are considered as be-
ing allowed values. Each of these linguistic terms are modelled by a fuzzy set of
which the membership grades are interpreted as degrees of compatibility.
From a possibilistic point of view, the evaluation of an ‘IS’-proposition must
now be interpreted as follows [13]:L is a fuzzy set andπA is the possibility dis-
tribution that represents the field value ofA. This possibility distribution models
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an interpretation space where each interpretation corresponds to the assignment
of one of the domain valuesx to the record fieldA with possibility πA(x). The
evaluation of the ‘IS’-proposition then corresponds to thedetermination of a pos-
sibility measure and necessity measure which together denote to which extent it
is (un)certain that a given record satisfies the ‘IS’-proposition.
Again, the possibility measure and necessity measure definetwo fuzzy sets over
the result set of the compatibility operation: the fuzzy setof records that possibly
satisfy the ‘IS’-proposition and the fuzzy set of records that necessarily satisfy
the ‘IS’-proposition.
If πA represents the possibility distribution of the field value of A which is ob-
tained from a database recordr andµL is the membership function given by the
user that denotes the values ofA that are considered to be adequate (or allowed)
with respect to the query result, then the possibility measure and necessity mea-
sure ofA IS Lare obtained as:

e(A IS L)(r) = (Pos(A IS L)(r),Nec(A IS L)(r))

where

– Pos(A IS L)(r) = supx∈domA
min(πA(x),µL(x))

– Nec(A IS L)(r) = infx∈domA max(πA(x),µL(x))

Simple conditions of the formA θ B.

With this form of simple conditions two different record fields (or attributes)A and
B are involved. The operatorθ represents a (‘fuzzy’) comparison operator which
will further be denoted asop. In what follows it is for simplicity reasons assumed
thatA andB are independent attributes, i.e. the value ofA is independent of the value
of B and inversely, of the same record type. Examples of such conditions are ‘the
exam result for the course databases isapproximately equal tothe exam result for
the course multimedia applications’ and ‘the exam result for the course databases is
much better thanthe exam result for information management’.

If πA andπB represent the possibility distributions of the field valuesof A and
B which are obtained from a database recordr andµop is the membership function
for the (‘fuzzy’) comparison operatorop and is defined over the Cartesian product
domA× domB of the domainsdomA anddomB of the data types of respectivelyA
andB, then the possibility measure and necessity measure ofA op Bare obtained
as:

e(A op B)(r) = (Pos(A op B)(r),Nec(A op B)(r))

where

• Pos(A op B)(r) = sup(x,x′)∈domA×domB
min(µop(x,x′),πA(x),πB(x′))

• Nec(A op B)(r) = inf(x,x′)∈domA×domB
max(µop(x,x′),1−πA(x),1−πB(x′))

As was previously the case, the possibility measure and necessity measure again
define two fuzzy sets over the result set of the comparison: the fuzzy set of records
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that possibly satisfy the comparison and the fuzzy set of records that necessarily
satisfy the comparison.

5.3.3 Evaluation of composite conditions

In case no preferences between query conditions are specified, composite conditions
can be evaluated by means of the following computation rules:

• Rule for negation:
If

e(c) = (Pos(c),Nec(c))

then
e(¬(c)) = (Pos(c),Nec(c))

where the line above the fuzzy set denotes the complement operator for fuzzy
sets.

• Rule for conjunction:
If

e(c1) = (Pos(c1),Nec(c1) ande(c2) = (Pos(c2),Nec(c2))

then
e(c1∧c2)) = (Pos(c1)∩Pos(c2),Nec(c1)∩Nec(c2))

where∩ represents the intersection operator (t-norm) for fuzzy sets.
• Rule for disjunction:

If
e(c1) = (Pos(c1),Nec(c1) ande(c2) = (Pos(c2),Nec(c2))

then
e(c1∨c2)) = (Pos(c1)∪Pos(c2),Nec(c1)∪Nec(c2))

where∪ represents the union operator (t-conorm) for fuzzy sets.

In case we have to deal with preferences between query conditions, an approach
similar to the ones described in section 3.3.2.2 must be used[12].

5.4 Similarity relation based approaches

5.4.1 Modelling

In the similarity based approaches as introduced in section4.2.2 the uncertainty
involved in the query results is modelled by means of membership grades which
are all interpreted as degrees of uncertainty [6, 15]. Thus,if r is a database object
that is involved in the result of a queryQ for which a querying conditionc must be
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evaluated, then the evaluation

e(c)(r) = µQ(r)

results in a membership degreeµQ(r) that indicates how (un)certain it is thatr sat-
isfies the queryQ.

5.4.2 Query evaluation

In the basic similarity relation based model, a general formof Boolean queries is
considered [15]. A query

Q(a1,a2, . . . ,ak), k∈ N

is hereby considered to be an expression ofk factorsV1,V2, . . . ,Vk combined by
disjunctive or conjunctive Boolean operators

V1 op V2 op . . . op Vk.

In order to be well formed with respect to a (fuzzy) relationr having generalized
domains ˜domT1,

˜domT2, . . . ,
˜domTm, m∈N, each factorVj , 1≤ j ≤ k must be

1. a domain elementa, a∈ ˜domTi , where ˜domTi is a generalized domain forr, or
2. a domain element modified by one or more linguistic modifiers, like e.g.NOT,

VERYor MORE OR LESS.

The relationr may be one of the original database relations or be obtained as
a result of fuzzy relational algebra operations. Fuzzy semantics apply to both op-
erators and modifiers. An example of a query for a fuzzy relation ‘Painting’ with
attributesValueandPeriod is

Q(cheap, recent) = MORE OR LESS cheapand NOT VERY VERY recent

where ‘cheap’ is an abbreviation of the term ‘Value= cheap’ and ‘recent’ is an
abbreviation of ‘Period= recent’. The use and interpretation of linguistic modifiers
is as described in section 3.2.1.2. The linguistic modifierVERY is hereby used to
strengthen the linguistic termrecent, NOT is used to negate ‘VERY VERY recent’,
whereasMORE OR LESSis used to dilate or to weaken the linguistic term ‘cheap’.

A membership grade is assigned with each tuple in a response relationr, reflect-
ing the possibility that the tuple matches the query specifications. Leta∈ ˜domTj be
an arbitrary element. The membership gradeµa(b), b∈ ˜domTj , is defined based on
the similarity relationSTj (a,b) over the domain ˜domTj . The query

Q(a1,a2, . . . ,ak), k∈ N

induces a membership gradeµQ(t) for a tuplet in the responser as follows:
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1. Each interpretationα = [a′1,a
′
2, . . . ,a

′
m] of t determines a gradeµa j (a

′
j) for each

domain elementa j of Q(a1,a2, . . . ,ak).
2. Evaluation of the modifiers and operators inQ(a1,a2, . . . ,ak) over the member-

ship gradesµa j (a
′
j) yields µQ(α), the membership grade of the interpretation

with respect to the query.
3. Finally,µQ(t) = max{µQ(α)|α is an interpretation oft}.

In short, the membership grade of a tuple represents the bestmatching interpre-
tation. The response relation is then the set of tuples having non zero membership
grades. In practice, it may be more realistic to consider only the tuple with the high-
est grade.

Three methods for calculating tuple membership grades are averaging,n-root and
weighted summation of membership grades [15].

5.5 Extended possibilistic approach

5.5.1 Modelling

In the extended possibilistic approach, the framework based on (extended) possi-
bilistic truth values ((E)PTVs) of chapter 3 is further developed. Uncertainty about
the results of a fuzzy query is hereby modelled by means of (E)PTVs [8]. Conse-
quently, an (E)PTV is associated with each objectr that is involved in the result of
a query for which a querying conditionc must be evaluated. Thus,

e(c)(r) = {(T,µe(c)(r)(T)),(F,µe(c)(r)(F)),(⊥,µe(c)(r)(⊥))}

The membership grades of the elementsT, F and⊥ in this EPTV hereby respec-
tively express to which extent it is possible that the objectr satisfies conditionc, to
which extent it is not possible that the objectr satisfies conditionc, and to which
extent it is possible that conditionc is not applicable for the objectr, i.e.

µe(c)(r)(T) = Pos(e(c)(r) = T)

µe(c)(r)(F) = Pos(e(c)(r) = F)

and
µe(c)(r)(⊥) = Pos(e(c)(r) =⊥).

The relationship between the possibilistic approach and the extended possibilistic
approach follows from Nec(c)(r) = 1−Pos(c)(r), i.e.

• µe(c)(r)(T) = Pos(e(c)(r) = T) = Pos(c)(r)
• µe(c)(r)(F) = Pos(e(c)(r) = F) = Pos(c)(r) = 1−Nec(c)(r).

Differently than with the possibilistic approach, in the extended possibilistic ap-
proach the underlying logic allows it to explicitly reflect that some information
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might be inapplicable or non-existent: if for a given database record some of the
querying conditions are not applicable, then this will be explicitly reflected in the
resulting associated EPTV.

5.5.2 Evaluation of simple conditions

Also in the extended possibilistic approach a distinction is made between simple
conditions of the formA θ L (whereA is a record field,L is a constant —possibly
modelled by a fuzzy set— andθ represents either a (‘fuzzy’) comparison operator
or the compatibility operator) and simple conditions of theform A θ B (whereA and
B are record fields andθ represents a (‘fuzzy’) comparison operator).

The comparison operatorsop, fuzzy or not, are again modelled by means of a
membership functionµop which is defined over the Cartesian product of two do-
mainsdom1 anddom2 and which denote for each couple(v1,v2) of domain values
v1 ∈ dom1 andv2 ∈ dom2 to which extent the operationop(v1,v2 (or v1 op v2) is
satisfied.

Simple conditions of the formA θ L.

• (‘Fuzzy’) comparison operators (op). If πA is the possibility distribution of the
current field value ofA in a ‘fuzzy’ database recordr, µL is the membership
function for the allowed values forA specified by the user andµop is the mem-
bership function of the (‘fuzzy’) comparison operatorop which is defined over
the Cartesian productdomA×domA of the domaindomA (of the data type ofA)
with itself, then the (E)PTV ofA op L is obtained as:

e(A op L)(r) = {(T,µe(A op L)(r)(T)),(F,µe(A op L)(r)(F)),(⊥,µe(A op L)(r)(⊥))}

where

– µe(A op L)(r)(T) = supx∈domA\{⊥domA
}min(µL ◦ op(x),πA(x))

– µe(A op L)(r)(F) = 1− infx∈domA\{⊥domA
}max(µL ◦ op(x),1−πA(x))

– µe(A op L)(r)(⊥) = max(µL(⊥domA),πA(⊥domA))

with
µL ◦ op(x) = sup

x′∈domA

min(µop(x,x
′),µL(x

′)).

Hereby is is explicitly assumed that each domaindomA contains a special domain
value⊥domA which is used to model the inapplicability of a ‘regular’ domain
value.

• Compatibility operator ( IS). The compatibility operatorISallows it to compare
a field value from the database —which is eventually modelledby a possibility
distribution— with a fuzzy set of allowed values that specified by the user and
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of which the membership grades are interpreted as degrees ofcompatibility. This
fuzzy set can eventually be represented by means of a linguistic term. From a pos-
sibilistic point of view, the evaluation of an ‘IS’-proposition can in the extended
possibilistic approach be interpreted as follows [13]:L is a fuzzy set andπA is
the possibility distribution that represents the actual field value ofA and models
an interpretation space. Each interpretation correspondsto the assignment of one
of the domain valuesx to the record fieldA. The possibility of the interpretation
is πA(x). The evaluation of the ‘IS’-proposition corresponds to thedetermination
of a possibility measure and its complement which respectively denote to which
extent it is possible that the stored field value is compatible with the given fuzzy
set —represented by the membership grade of the truth value ‘true’ (T)— and to
which extent it is not possible that the stored field value is compatible with the
given fuzzy set —represented by the membership grade of the truth value ‘false’
(F)—. Additionally, it is also computed to which extent it is possible that the
‘IS’-proposition is not applicable for the given record field.
If πA represents the possibility distribution of the field value of A which is ob-
tained from a ‘fuzzy’ database recordr andµL is the membership function given
by the user, denoting the values that considered to be adequate (or allowed) for
A, then the (E)PTV ofA IS L is obtained as:

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥,µe(A IS L)(r)(⊥))}

where

– µe(A IS L)(r)(T) = supx∈domA
min(πA(x),µL(x))

– µe(A IS L)(r)(F) = supx∈domA\{⊥domA
}min(πA(x),1− µL(x))

– µe(A IS L)(r)(⊥) = min(πA(⊥domA),1− µL(⊥domA))

Hereby it is again explicitly assumed that each domaindomA contains a special
domain value⊥domA that is used to denote the inapplicability or the non-existence
of a ‘regular’ domain value.
The formula above reflects that:

– If A is possibly not applicable (πA(⊥domA) > 0) and the labelL refers to the
value⊥domA (µL(⊥domA)> 0), then the truth valueT is possible to the extent
that is calculated.

– The possibility of the truth value⊥ is 1 if A is possibly completely inapplica-
ble (πA(⊥domA) = 1) and the label does not refer to the value⊥domA.

Example 5.2.As an example, consider the evaluation of a proposition ‘around 30K
IS cheap’ for a record field ‘Value’ as illustrated in figure 5.2. Hereby

– µe(‘around30K IS cheap’)(r)(T) is shortly denoted asµT ,
– µe(‘rond 30 IS jong’)(r)(F) is shortly denoted asµF , and
– µe(‘rond 30 IS jong’)(r)(⊥) = 0.

⋄
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Fig. 5.2 Example of the evaluation of an ‘IS’-proposition.

Simple conditions of the formA θ B.

Two different record fields (or attributes)A andB are involved in these kinds of
conditions. Furthermore, the operatorθ represents a (‘fuzzy’) comparison which
will further be denoted asop. For the sake of simplicity it is again assumed thatA
andB are independent attributes —the value ofA is independent of the value ofB
and inversely— of the same record type.

If πA andπB represent the possibility distributions of thee field values of A and
B which are obtained from a ‘fuzzy’ database record andµop is the membership
function of the (‘fuzzy’) comparison operatorop that is defined over the Cartesian
productdomA×domB of the domainsdomA anddomB of the data types of respec-
tively A andB, then the (E)PTV ofA op Bis obtained as:

e(A op B)(r) = {(T,µe(A op B)(r)(T)),(F,µe(A op B)(r)(F)),(⊥,µe(A op B)(r)(⊥))}

where

• µe(A op B)(r)(T) =

sup
(x,x′)∈domA\{⊥domA

}×domB\{⊥domB
}
min(µop(x,x

′),πA(x),πB(x
′))

• µe(A op B)(r)(F) =

1− inf
(x,x′)∈domA\{⊥domA

}×domB\{⊥domB
}
max(µop(x,x

′),1−πA(x),1−πB(x
′))

• µe(A op B)(r)(⊥) = max(πA(⊥domA),πB(⊥domB))

Hereby it is explicitly assumed that the domaindomA contains a special domain
value⊥domA and the domaindomB contains a special domain value⊥domB for the
modelling of the inapplicability of a ‘regular’ domain value.
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5.5.3 Evaluation of composite conditons

Because in the extended possibilistic approach all evaluations of simple conditions
result in an EPTV the evaluation of composite conditions as can be done as has been
explained in sections 3.2.2.2. In case preferences betweenquery conditions have to
be taken into account, the evaluation can be done as described in section 3.3.2.2.

5.6 Other approaches

As described in section 4.1.1 imprecise and vague information can in a ‘fuzzy’
database be modelled by means of ‘interval-valued’ fuzzy sets (IVFS), ‘intuition-
istic’ fuzzy sets (IFS) or ‘two-fold’ fuzzy sets (TFS). Withthe handling of the
extended possibilistic approach in section 5.5 it is already explained how ‘IS’-
predicates of the form

A IS L

with A a record field (or attribute) of the ‘fuzzy’ database andL a fuzzy set of
allowed values forA, can be evaluated. In remainder of this section, we further
extend this approach in case the data are modelled by means of‘interval-valued’,
‘intuitionistic’ or ‘two-fold’ fuzzy sets (cf. [9]).

5.6.1 Evaluation of the compatibility operator ‘IS’ with the use of
‘intuitionistic’ fuzzy sets

First we deal with the case based on ‘intuitionistic’ fuzzy sets (IFS) because this
offers interesting extra querying facilities. At the one hand it is assumed that the
values of the record fieldA of an ‘IS’-proposition are allowed to be modelled by an
‘intuitionistic’ possibility distribution (IPD)

(πµA,πνA).

At the other hand the linguistic termL can also be modelled by an ‘intuitionistic’
fuzzy set (IFS)

L = {< x,µL(x),νL(x)> |x∈ domA}
with membership functionµL and non-membership functionνL.

Case 1

In the case where the value ofA that is obtained from the ‘fuzzy’ database recordr
is modelled by a regular possibility distribution
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πA

and the linguistic termL is given by means of an intuitionistic fuzzy set

{< x,µL(x),νL(x)> |x∈ domA}

the (E)PTV of the proposition
A IS L

is defined by

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥µe(A IS L)(r)(⊥))}

where

• µe(A IS L)(r)(T) = supx∈domA
min(πA(x),µL(x))

• µe(A IS L)(r)(F) = supx∈domA\{⊥domA
}min(πA(x),νL(x))

• µe(A IS L)(r)(⊥) = min(πA(⊥domA),νL(⊥domA))

Example 5.3.The same situation as in example 5.2, considering the evaluation of the
proposition ‘around30K IS cheap’ for a record field ‘Value’, is given in figure 5.3.
The linguistic term ‘cheap’ is hereby now modelled by an IFS.⋄
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Fig. 5.3 Example of the evaluation of an ‘IS’-proposition withL being an IFS.

By using an IFS, information about the non-membership of elements that are
denoted by the linguistic termL is now more generally modelled by the non-
membership functionνL, instead of by the complement 1− µL. This allows for
example, as illustrated in figure 5.3, to consider prices between 30K and 50K as
being neither cheap, nor not cheap. This illustrates that ‘intuitionistic’ fuzzy sets al-
low for more flexibility in expressing non-membership and can be used in (database)
applications which demand for such a flexibility.
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Case 2

In the case where the value ofA that is obtained from the ‘fuzzy’ database recordr
is modelled by an ‘intuitionistic’ possibility distribution (IPD)

(πµA,πνA)

and the linguistic termL is given by an ‘intuitionistic’ fuzzy set (IFS)

{< x,µL(x),νL(x)> |x∈ domA}

the (E)PTV of the proposition
A IS L

is analogously defined by

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥,µe(A IS L)(r)(⊥))}

where

• µe(A IS L)(r)(T) = supx∈domA
min(πµA(x),µL(x))

• µe(A IS L)(r)(F) = supx∈domA\{⊥domA
}min(πµA(x),νL(x))

• µe(A IS L)(r)(⊥) = min(πµA(⊥domA),νL(⊥domA))

The non-membership partπνA of the IPD (πµA,πνA) for A is not used for the
computation of the (E)PTVe(A IS L)(r). This is due to the fact that we are only in-
terested in the compatibility betweenA andL (andNOT(L)) and not in the compat-
ibility betweenNOT(A) andL (andNOT(L)). In cases where we have to compute
the (E)PTV of a proposition of the form

NOT(A) IS L

the partπνA can be meaningfully used as follows:

e(NOT(A) IS L)(r) = {(T,µe(NOT(A) IS L)(r)(T)),

(F,µe(NOT(A) IS L)(r)(F)),(⊥,µe(NOT(A) IS L)(r)(⊥))}

where

• µe(NOT(A) IS L)(r)(T) = supx∈domA
min(πνA(x),µL(x))

• µe(NOT(A) IS L)(r)(F) = supx∈domA\{⊥domA
}min(πνA(x),νL(x))

• µe(NOT(A) IS L)(r)(⊥) = min(πνA(⊥domA),νL(⊥domA))
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5.6.2 Evaluation of the compatibility operator ‘IS’ with the use of
‘interval-valued’ fuzzy sets

On the one hand, ‘interval-valued’ fuzzy sets can be used to model the values of a
record fieldA in a ‘fuzzy’ database. This can be done by means of an interval-valued
possibility distribution (IVPD)

(π l
A,π

u
A).

In such a case, the record fieldA in an ‘IS’-proposition

A IS L

can also take an IVPD as value. On the other hand the linguistic termL in the ‘IS’-
proposition can be modelled by means of an interval-valued fuzzy set (IVFS)

L = {< x,µ l
L(x),µu

L(x)> |x∈ domA}

with lower boundµ l
L and upper boundµu

L for the membership function. Hereby,µu
L

can be seen as an optimistic approximation of the membershipfunction, whereasµ l
L

can be seen as a pessimistic approximation.

Case 1

We first consider the case where the value of the record fieldA obtained from the
‘fuzzy’ database recordr is modelled by a regular possibility distribution

πA

and the linguistic termL is given by means of an IVFS

L = {< x,µ l
L(x),µ

u
L(x)> |x∈ domA}.

In such a case and if we consider an optimistic approach, the (E)PTV of the propo-
sition

A IS L

is defined by

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥,µe(A IS L)(r)(⊥))}

where

• µe(A IS L)(r)(T) = supx∈domA
min(πA(x),µu

L(x))
• µe(A IS L)(r)(F) = supx∈domA\{⊥domA

}min(πA(x),1− µu
L(x))

• µe(A IS L)(r)(⊥) = min(πA(⊥domA),1− µu
L(⊥domA))
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Example 5.4.Let us, consider the same proposition ‘around30K IS cheap’ as in
examples 5.2 and 5.3. If the linguistic term ‘cheap’ is modelled by an IVFS as
depicted in figure 5.2, the computation of the resulting (E)PTV is done as illustrated
in the figure. ⋄
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Fig. 5.4 Example of the evaluation of an ‘IS’-proposition withL an IVFS.

To determine the (E)PTV the (optimistic) upper boundµu
L is used to compute the

possibility of the truth valueT, while the (optimistic) complement of lower bound
µu

L is used to compute the possibilities of the truth valuesF and⊥. This allows
for more flexibility because imprecision in the modelling oflinguistic terms can be
more adequately dealt with.

In the case of a pessimistic approach, the (E)PTV of the proposition

A IS L

is defined by

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥,µe(A IS L)(r)(⊥))}

where

• µe(A IS L)(r)(T) = supx∈domA
min(πA(x),µ l

L(x))
• µe(A IS L)(r)(F) = supx∈domA\{⊥domA

}min(πA(x),1− µ l
L(x))

• µe(A IS L)(r)(⊥) = min(πA(⊥domA),1− µ l
L(⊥domA))

Case 2

Secondly we consider the case where the value ofA that is obtained from the ‘fuzzy’
database recordr is modelled by an interval-valued possibility distribution

(π l
A,π

u
A)
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and the linguistic termL is given by means of an IVFS

L = {< x,µ l
L(x),µu

L(x)> |x∈ domA}.

Also in such a case, either an optimistic or a pessimistic approach is possible for the
calculation of the (E)PTV of the proposition

A IS L.

With the pessimistic approach the (E)PTV is defined by

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥,µe(A IS L)(r)(⊥))}

where

• µe(A IS L)(r)(T) = supx∈domA
min(π l

A(x),µ
l
L(x))

• µe(A IS L)(r)(F) = supx∈domA\{⊥domA
}min(π l

A(x),1− µ l
L(x))

• µe(A IS L)(r)(⊥) = min(π l
A(⊥domA),1− µ l

L(⊥domA))

Hereby, the (pessimistic) lower bound functionπ l
A is used.

Whereas with the optimistic approach the (E)PTV is defined by

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥,µe(A IS L)(r)(⊥))}

where

• µe(A IS L)(r)(T) = supx∈domA
min(πu

A(x),µ
u
L(x))

• µe(A IS L)(r)(F) = supx∈domA\{⊥domA
}min(πu

A(x),1− µu
L(x))

• µe(A IS L)(r)(⊥) = min(πu
A(⊥domA),1− µu

L(⊥domA))

Now, the (optimistic) upper bound functionπu
A is used.

5.6.3 Evaluation of the compatibility operator ‘IS’ with the use of
‘two-fold’ fuzzy sets

If ‘two-fold’ fuzzy sets are considered, then it is an optionto model the values of the
record fieldA of an ‘IS’-proposition by means of a ‘two-fold’ possibilitydistribution
(TPD)

(πP
A ,π

S
A).

Furthermore, it is also an option to model the linguistic term L by means of a ‘two-
fold’ fuzzy set (TFS)

L = ({< x,µP
L (x)> |x∈ domA},{< x,µS

L(x)> |x∈ domA})

with membership functionµP
L for the determination of the preferred values and

membership functionµS
L for the determination of the satisfactory values. Hereby,
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µP
L can be seen as the preferred conformity for the membership function ofL, while

µS
L can be interpreted as an allowed conformity for the membership function ofL.

Case 1

In the case where the value of the record fieldA obtained from the ‘fuzzy’ database
recordr is modelled by a regular possibility distribution

πA

and the linguistic termL is given by means of a TFS

L = ({< x,µP
L (x)> |x∈ domA},{< x,µS

L(x)> |x∈ domA})

both membership functionsµP
L andµS

L can be used to compute the (E)PTV of the
proposition

A IS L.

With a progressive, optimistic approach, the (E)PTV can be defined on the basis of
the membership functionµS

L that defines the allowed values, i.e.:

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥,µe(A IS L)(r)(⊥))}

where

• µe(A IS L)(r)(T) = supx∈domA
min(πA(x),µS

L(x))
• µe(A IS L)(r)(F) = supx∈domA\{⊥domA

}min(πA(x),1− µS
L(x))

• µe(A IS L)(r)(⊥) = min(πA(⊥domA),1− µS
L(⊥domA))

With a rather conservative, pessimistic approach, the definition of the (E)PTV
can be based on the membership functionµP

L that defines the preferred values, i.e.:

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥,µe(A IS L)(r)(⊥))}

where

• µe(A IS L)(r)(T) = supx∈domA
min(πA(x),µP

L (x))
• µe(A IS L)(r)(F) = supx∈domA\{⊥domA

}min(πA(x),1− µP
L (x))

• µe(A IS L)(r)(⊥) = min(πA(⊥domA),1− µP
L (⊥domA))

Example 5.5.In figure 5.5 the computation of the (E)PTV resulting from theevalu-
ation of the proposition ‘around30K IS cheap’ is illustrated. For the sake of the
example we have chosen for the conservative approach. The stored field value
‘around30K’ is modelled by a regular possibility distribution, whereas the linguis-
tic term ‘cheap’ is modelled by the TFS with membership functions µP

cheap and

µS
cheap. ⋄
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Fig. 5.5 Example of the evaluation of an ‘IS’-proposition withL an IFS (conservative approach).

Case 2

In the case where the value of the record fieldA obtained from the ‘fuzzy’ database
recordr is modelled by a ‘two-fold’ possibility distribution

(πP
A ,π

S
A)

and the linguistic termL is given by means of a TFS

L = ({< x,µP
L (x)> |x∈ domA},{< x,µS

L(x)> |x∈ domA})

we can again choose for an optimistic or a pessimistic approach for the computation
of the (E)PTV of the proposition

A IS L.

With a progressive, optimistic approach, the (E)PTV can be defined on the basis
of the membership functionsπS

A andµS
L that depart from the allowed values, i.e.:

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥,µe(A IS L)(r)(⊥))}

where

• µe(A IS L)(r)(T) = supx∈domA
min(πS

A(x),µ
S
L(x))

• µe(A IS L)(r)(F) = supx∈domA\{⊥domA
}min(πS

A(x),1− µS
L(x))

• µe(A IS L)(r)(⊥) = min(πS
A(⊥domA),1− µS

L(⊥domA))

With a conservative, pessimistic approach, the definition of the (E)PTV can be
based on the membership functionsπP

A andµP
L that depart from the preferred values,

i.e.:

e(A IS L)(r) = {(T,µe(A IS L)(r)(T)),(F,µe(A IS L)(r)(F)),(⊥,µe(A IS L)(r)(⊥))}

where
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• µe(A IS L)(r)(T) = supx∈domA
min(πP

A(x),µ
P
L (x))

• µe(A IS L)(r)(F) = supx∈domA\{⊥domA
}min(πP

A(x),1− µP
L (x))

• µe(A IS L)(r)(⊥) = min(πP
A(⊥domA),1− µP

L (⊥domA))

5.7 ‘Fuzzy’ database querying in the presence of null values

As explained in section 4.1.3, the extended possibilistic approach provides extra
facilities for the handling of missing information. In thissubsection attention is paid
to the different cases and contexts where a null value can occur with the handling
of selection conditions of flexible queries. The selection operator is the key operator
to deal with when handling null values. The handling of otheroperators, like e.g.
projection and join —which is typical for relational databases—, is not further dealt
with in this section.

For the sake of illustration, a ‘fuzzy’ database that consists of one single record
type, called ‘Poll’, is considered. With this record type (partial) information result-
ing from a social neighbourhood research is stored in the database. Each recordr of
the record type represents information about a registered participant of the research
and is characterized by a unique participant identifier (PID) —the key field—, a
field for the year of birth of the participant (Year o f birth), a salary field (Salary)
and a field with the year of birth of the oldest child of the participant (Oldest child).
As extra information a field (EPTV) is added to represent the EPTV that is used to
express the extent to which it is (un)certain that the recordr satisfies the predicate
of the record type (cf. subsection 3.4.1.2). For the sake of simplicity it is assumed
that all records initially have been assigned an EPTV{(T,1)}. The value{(T,1)}
can for example be the default value that is assigned with a record on insertion.
Alternatively, in a more general situation the user could beallowed to provide an
extended possibilistic truth value to express that the record can not be considered as
fully satisfying (or ‘belonging to’) the record type.

In what follows it is also assumed for the sake of simplicity that the non-key
record fields are mutually independent of each other —the value of a record field
is independent of the values of the other record fields and inversely—. Without this
restriction, the following description would be more complex because dependencies
between record fields must be taking into account when handling missing informa-
tion: if a value is missing, but its dependent values are not,then the missing value
can in some cases be (approximately )derived from its dependent values. For exam-
ple, if the salary of a person is dependent of his or her age, then a missing salary
value could be derived from the known year of birth of the person.

For the modelling of undefined information, the domainsdomt of the associated
data typest of the record fields are considered to contain a type specific domain
value⊥t . The value⊥t is used to model those cases where a regular domain value of
t does not apply. Furthermore, for each domaindomt three linguistic terms ‘UNK’,
‘UNA’ and ‘N/A’ are defined as described in subsection 4.1.3.2.
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PID Year o f birth Salary Oldestchild EPTV
P01 1969 2.600 2000 {(T,1)}
P02 1952 4.000±1000 1976 {(T,1)}
P03 1966 2.800 UNK {(T,1)}
P04 1930 N/A 1960 or 1961{(T,1)}
P05 1965 3.000±500 N/A {(T,1)}
P06 1955 ‘notaverage’ N/A {(T,1)}
P07 1962 UNK UNK {(T,1)}
P08 1958 UNK N/A {(T,1)}
P09 1930 N/A N/A {(T,1)}
P10 1980 UNA UNA {(T,1)}

Table 5.1 Examples of records of the record typePoll.

Table 5.1 contains a table representation of the record set of the record typePoll
(each row represents a record). The values of the ‘Salary’ and ‘Oldest child’ fields
are all labels that are modelled by a possibility distribution that is defined over the
domain of the data type of the record field. A label with a regular number like ‘2.600’
corresponds with a possibility distribution that is characterized by normalized mem-
bership function of which the support is a singleton. Consequently, labels like ‘1960
or 1961’ correspond with a possibility distribution which is characterized by a nor-
malized membership function with a discrete support. Labels like ‘4.000±1.000’
correspond with possibility distributions with triangular membership functions. As
such, ‘4.000±1.000’ is for example modelled by the triangular distribution function

π4.000±1.000(x) =





x−3000
1000 iff x∈ [3000,4000]

5000−x
1000 iff x∈ [4000,5000]

0 else

Analoguously, the possibility distributions that correspond with the labels ‘average’
and ‘notaverage’ are respectively defined by the trapezoidal distribution function

πaverage(x) =





x−1000
500 iff x∈ [1000,1500]

1 alsx∈ [1500,2500]
3000−x

500 iff x∈ [2500,3000]

0 else

and the distribution function

πnot average(x) = 1−πaverage(x)

Hereby the salary value of record ‘P06’ is either ‘lower’ than 1.500, or ‘larger’ than
2.500, or ‘not applicable’ which can for example be due to thefact that participant
‘P06’ is not an employee or is retired.
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PID Salary EPTV
P01 2.600 {(T,1)}
P04 N/A {(⊥,1)}
P05 3.000±500 {(T,0.2),(F,1)}
P06 ‘notaverage’{(T,0.2),(F,1),(⊥,1)}
P07 UNK {(T,1),(F,1)}
P08 UNK {(T,1),(F,1)}
P09 N/A {(⊥,1)}
P10 UNA {(T,1),(F,1),(⊥,1)}

Table 5.2 Result of Query 1.

To illustrate database querying, a simple SELECT-FROM-WHERE grammar
will be used. In this grammar the selection conditions are extended with ‘IS’-
propositions which are evaluated as explained in section 5.5. As an example of a
very straightforward query with a simple selection condition the following query
specification can be considered :

Query 1

SELECTPID, SalaryFROM Poll WHERESalaryIS 2.600

This query selects the participant identifier (PID) and salary (Salary) of all par-
ticipants that have a salary that exactly equals 2.600. Suppose that the query is exe-
cuted on the database presented in table 5.1. The records that then belong to the re-
sult of Query 1 are given in table 5.2. For each record in the result, the corresponding
EPTV is computed as described in section 5.5. (Records with an associated EPTV
{(F,1)} are omitted.) As with regular database querying, the extended possibilistic
approach allows it to find records for which the corresponding truth value is either
completely true (record ‘P01’), or completely false (records ‘P02’ and ‘P03’). Ad-
ditionally, the approach also allows it to deal with recordsthat only partially satisfy
the selection condition (records ‘P05’ and ‘P06’). Cases ofwhich it is known that a
regular salary value exists, but for which there is further nothing known about this
salary value result in an EPTV representing ‘unknown (but applicable)’ (records
‘P07’ and ‘P08’). If it is known that a regular salary value does not apply for a given
participant, because this participant is for example not anemployee or retired, then
the corresponding EPTV represents ‘not applicable’ (records ‘P04’ and ‘P09’). The
possibility of inapplicability can also occur in combination with the possibility of a
partial query satisfaction (record ‘P06’). Finally, it canoccur that absolutely nothing
is known about the salary value of a given record. In such a case, the corresponding
EPTV represents ‘not available’ (record ‘P10’).

In a more complex query, the selection criteria can contain labels which can not
be modelled by means of a regular set. For example, consider the next query with a
simple fuzzy selection condition:
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PID Salary EPTV
P01 2.600 {(T,0.8),(F,0.2)}
P03 2.800 {(T,0.4),(F,0.6)}
P04 N/A {(⊥,1)}
P05 3.000±500 {(T,0.5),(F,1)}
P06 ‘notaverage’{(T,0.5),(F,1),(⊥,1)}
P07 UNK {(T,1),(F,1)}
P08 UNK {(T,1),(F,1)}
P09 N/A {(⊥,1)}
P10 UNA {(T,1),(F,1),(⊥,1)}

Table 5.3 Result of Query 2.

Query 2

SELECTPID, SalaryFROM Poll WHERESalaryIS average

This query selects the participant identifier (PID) and salary (Salary) of all par-
ticipants that have an average salary. Hereby it is assumed that ‘average’ is a lin-
guistic term that represents±[1500–2500] and is modelled by the trapezoidal distri-
bution function given above in the description of table 5.1.The records that belong
to the result if the query is executed on the database presented in table 5.1 are given
in table 5.3. This result illustrates that EPTVs can meaningfully be used to express
the uncertainty about query satisfaction and moreover allow to adequately handle
missing information with fuzzy database querying. More specifically, EPTVs allow
to model those cases where the satisfaction of a selection condition is not com-
pletely certain (records ‘P01’, ‘P03’, ‘P05’ and ‘P06’). Itcan also occur that the
selection condition is completely not satisfied (record ‘P02’). As is the case with
regular queries, EPTVs also allow in fuzzy querying to adequately deal with un-
known information (records ‘P07’ and ‘P08’), the (possible) inapplicability of in-
formation (records ‘P04’, ‘P06’ and ‘P09’) and the unavailability of information
(record ‘P10’).

With composite querying conditions the EPTVs in the result of a query are com-
puted from the EPTVs of the simple conditions of the composition. Hereby, the
logical operators ‘ ˜¬’, ‘ ∧̃’ and ‘∨̃’, which are defined in subsection 2.4.2.2 can for
example be used. For the sake of illustration, we can consider we can consider the
following the query:

Query 3

SELECTPID, Salary, Oldest child FROM Poll
WHERE (SalaryIS 2.600) AND (Oldest child IS 2000)

This query selects the participant identifier (PID), salary (Salary), and year of
birth of the oldest child (Oldest child) of all participants that have a salary that is
exactly equal to 2.600 and of who the oldest child is born in the year 2000. The
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PID e(c1)(r) e(c2)(r) e(c1)(r)∧̃e(c2)(r)
P01 {(T,1)} {(T,1)} {(T,1)}
P02 {(F,1)} {(F,1)} {(F,1)}
P03 {(F,1)} {(T,1),(F,1)} {(F,1)}
P04 {(⊥,1)} {(F,1)} {(F,1)}
P05 {(T,0.2),(F,1)} {(⊥,1)} {(F,1),(⊥,0.2)}
P06 {(T,0.2),(F,1),(⊥,1)} {(⊥,1)} {(F,1),(⊥,1)}
P07 {(T,1),(F,1)} {(T,1),(F,1)} {(T,1),(F,1)}
P08 {(T,1),(F,1)} {(⊥,1)} {(F,1),(⊥,1)}
P09 {(⊥,1)} {(⊥,1)} {(⊥,1)}
P10 {(T,1),(F,1),(⊥,1)} {(T,1),(F,1),(⊥,1)} {(T,1),(F,1),(⊥,1)}

Table 5.4 Calculation of the EPTVs from the result of Query 3.

PID Salary OldestChild EPTV
P01 2.600 2000 {(T,1)}
P05 3.000±500 N/A {(F,1),(⊥,0.2)}
P06 ‘notaverage’ N/A {(F,1),(⊥,1)}
P07 UNK UNK {(T,1),(F,1)}
P08 UNK N/A {(F,1),(⊥,1)}
P09 N/A N/A {(⊥,1)}
P10 UNA UNA {(T,1),(F,1),(⊥,1)}

Table 5.5 Result of Query 3.

result of query 3, in case the query is executed on the exampledatabase presented in
table 5.1, is given in table 5.5. For each record of the result, the associated EPTV is
computed by applying the conjunction operator∧̃ on the EPTVs that result from the
evaluation of the respective criteriac1 =‘Salary IS 2.600’ andc2 =‘Oldest Child
IS 2000’, as presented in table 5.4. In general, the use of extended possibilistic
logic —based on the operators∧̃, ∨̃ and¬̃— allows it to adequately handle missing
information in the case of composite querying conditions.

Records for which both criteria are completely certainly satisfied (record ‘P01’)
certainly belong to the query result, whereas records for which both criteria are
completely certainly not satisfied (record ‘P02’) certainly do not belong to the query
result. If one of the criteria completely certainly is not satisfied, then the record cer-
tainly does not belong to the query result, independent of the result of the evaluation
of the other criterion (records ‘P02’, ‘P03’ and ‘P04’). Theconjunction of a crite-
rion that is certainly satisfied and a criterion that is certainly not applicable results
in a truth value that is possibly undefined (records ‘P05’ and‘P06’). Cases where
both criteria either evaluate to an EPTV that represents ‘unknown’ (record ‘P07’)
or an EPTV that represents ‘not applicable’ (record ‘P09’),respectively result in an
EPTV ‘unknown’ and ‘not applicable’. If nothing is known about the satisfaction
of both criteria, then the resulting EPTV represents ‘not available’ (record ‘P10’).
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PID Salary EPTV
P04 N/A {(T,1)}
P06 ‘notaverage’{(T,1),(F,1)}
P09 N/A {(T,1)}
P10 UNA {(T,1),(F,1)}

Table 5.6 Result of Query 4.

The conjunction of an EPTV that represents ‘unknown’ and an EPTV that repre-
sents ‘not applicable’ results in an EPTV that represents ‘completely possible false
or completely possible not applicable’ (record ‘P08’).

To end this section, we still consider three special types ofqueries where the
database is respectively queried for data that are compatible with the predefined la-
bels ‘N/A’, ‘UNK’ and ‘UNA’. These queries respectively search for data i) where
the attribute under consideration is not applicable, ii) where the attribute under con-
sideration is applicable, but there are no further restrictions imposed on the data,
and iii) where the attribute under consideration is either not applicable, or applica-
ble with no further restrictions on the data. Such queries —especially the last one—
are clearly not very useful in practice, but are considered here to clarify the be-
haviour of the presented approach.

Query 4

SELECTPID, SalaryFROM Poll WHERESalaryIS N/A

With query 4, the database is explicitly queried for recordsin which a regular
salary value is not provided. This means that ‘Salary IS N/A’ must be either in-
terpreted as ‘possibly no salary value existent’ or ‘possibly no regular salary value
applicable’. The result of this query, if executed on the example database presented
in table 5.1, is given in table 5.6. Records with a salary value ‘N/A’ completely cer-
tainly satisfy the selection condition (records ‘P04’ and ‘P09’). Records for which
the salary value is possibly not applicable, possibly satisfy the selection condition
—to the extent reflected by the EPTV— (records ‘P06’ and ‘P10’). All other records
certainly do not satisfy the selection condition.

Query 5

SELECTPID, SalaryFROMPoll WHERESalaryIS UNK

With query 5 the database is queried for records in which the salary value iscom-
patible with the label ‘UNK’. This means that a regular attribute value for salary
must exist and there are no further restrictions imposed on this value by the query,
i.e., the query searches for participants with a regular salary value, whatever this
value is. Thus, it is important to notify that the query does not only search for par-
ticipants in the database that have an unknown, but existentsalary. Assume that the
query is executed on the example database presented in table5.1. The result of the
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PID Salary EPTV
P01 2.600 {(T,1)}
P02 4.000±1000 {(T,1)}
P03 2.800 {(T,1)}
P04 N/A {(⊥,1)}
P05 3.000±500 {(T,1)}
P06 ‘notaverage’{(T,1),(⊥,1)}
P07 UNK {(T,1)}
P08 UNK {(T,1)}
P09 N/A {(⊥,1)}
P10 UNA {(T,1),(⊥,1)}

Table 5.7 Result of Query 5.

query is then given in table 5.7. Records for which the salaryvalue completely dif-
fers from ‘N/A’ completely certainly satisfy the selection condition (records ‘P01’,
‘P02’, ‘P03’, ‘P05’, ‘P07’ and ‘P08’). For records with a salary value ‘N/A’ the cor-
responding EPTV represents ‘not applicable’ (records ‘P04’ and ‘P09’). For records
with a salary value that is possibly not applicable, the resulting EPTV is ‘possibly
true, possibly not applicable’ (records ‘P06’ and ‘P10’).

Query 6

SELECTPID, SalaryFROM Poll WHERESalaryIS UNA

With query 6 the database is finally queried for records in which the salary value
is compatiblewith the label ‘UNA’. Such a selection condition imposes no restric-
tions on the database, which means that all records completely satisfy the selec-
tion condition. This is due to the fact that all domain valuesare completely cer-
tainly compatible with the uniform normalized possibilitydistribution that is de-
noted by the label ‘UNA’ which represents ‘no information available’ (or all values
are equally possible).

5.8 Frameworks for fuzzy querying

For the practical application of the querying techniques introduced in this chap-
ter, one must have an implementation of a ‘fuzzy’ database model as for example
the ones that are presented in chapter 4. Such an implementation is also called a
‘fuzzy’ database management system. A requirement of a ‘fuzzy’ database man-
agement system is that it must be fine tuned and integrated with the underlying
logical framework that is chosen and used to express query satisfaction. As an il-
lustration, we further describe ‘fuzzy’ querying of ‘fuzzy’ relational databases in
subsection 5.8.1 and ‘fuzzy’ querying of ‘fuzzy’ object oriented databases in sub-
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section 5.8.2. For both the relational and an object oriented database modelling, we
present as well the possibilistic approach as the extended possibilistic approach.

5.8.1 ‘Fuzzy’ relational databases

5.8.1.1 Possibilistic approach

An example of a ‘fuzzy’ relational database model with a possibilistic approach
is the possibilistic relational model as originally presented in [16], that we already
described in subsection 4.2.1.

Structural aspects.

As already has been described in subsection 4.2.1, in the possibilistic relational
model all database and result relationsr are extended with two extra attributes with
names ‘Pos’ (possibility) and ‘Nec’ (necessity) of which the values express mem-
bership grades? In this way, two fuzzy sets are defined over the all tuplest of r: a
fuzzy set with membership grades Pos(r)(t) which defines the tuples that possibly
satisfy the predicate of relationr, and a fuzzy set with membership grades Nec(r)(t)
which defines the tuples that necessarily satisfy the predicate of relationr. This ex-
tension is required to be able to guarantee thecloseness propertyof the generalized
relational algebra (see ‘operational aspects’ below).

Additionally, the users can be provided the option to specify threshold values

0< τPos≤ 1 and 0< τNec≤ 1

with the query specification. If this is the case, then only tuples for which both
Pos(r)(t)≥ τPosand Nec(r)(t)≥ τNec hold, are preserved in the query result.

Operational aspects.

The operators

• union
• difference
• Cartesian product
• selection
• projection

of the minimal subset of operators of the relational algebra, as originally presented
by E.F. Codd [7] could be generalized as follows:

• Union.
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e(union(r, r ′))(t) = (Pos(union(r, r ′))(t),Nec(union(r, r ′))(t))

with

– Pos(union(r, r ′))(t) = max(Pos(r)(t),Pos(r ′)(t))
– Nec(union(r, r ′))(t) = max(Nec(r)(t),Nec(r ′)(t))

where r and r ′ represent relations,t is a tuple ofr or r ′, and Pos(r)(t) and
Nec(r)(t) respectively denote the degree of possibility and degree ofnecessity
thatt belongs tor.

• Difference.

e(difference(r, r ′))(t) = (Pos(difference(r, r ′))(t),Nec(difference(r, r ′))(t))

with

– Pos(difference(r, r ′))(t) = min(Pos(r)(t),1−Pos(r ′)(t))
– Nec(difference(r, r ′))(t) = min(Nec(r)(t),1−Nec(r ′)(t))

where r and r ′ represent relations,t is a tuple ofr or r ′, and Pos(r)(t) and
Nec(r)(t) respectively denote the degree of possibility and degree ofnecessity
thatt belongs tor.

• Cartesian product.

e(Cart-prod(r, r ′))(tt ′) = (Pos(Cart-prod(r, t ′))(tt ′),Nec(Cart-prod(r, r ′))(tt ′))

with

– Pos(Cart-prod(r, r ′))(tt ′) = min(Pos(r)(t),Pos(r ′)(t ′))
– Nec(Cart-prod(r, r ′))(tt ′) = min(Nec(r)(t),Nec(r ′)(t ′))

wherer andr ′ represent relations,t is tuple ofr, t ′ is a tuple ofr ′ and Pos(r)(t)
and Nec(r)(t) respectively denote the degree of possibility and degree ofneces-
sity thatt belongs tor.

• Selection.

e(selection(r,c))(t) = (Pos(selection(r,c))(t),Nec(selection(r,c))(t))

with

– Pos(selection(r,c))(t) = min(Pos(r)(t),Pos(c)(t))
– Nec(selection(r,c))(t) = min(Nec(r)(t),Nec(c)(t))

wherer represents a relation,t is a tuple of this relation,c is a (fuzzy) selection
condition and Pos(c)(t) and Nec(c)(t) respectively denote the degree of pos-
sibility and degree of necessity thatt satisfiesc. These degrees are computed as
described in section 5.3. Furthermore, Pos(r)(t) and Nec(r)(t) remain the degree
of possibility and degree of necessity thatt belongs tor.

• Projection.
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e(projection(r,V))(v) = (Pos(projection(r,V))(v),Nec(projection(r,V))(v))

with

– Pos(projection(r,V))(v) = maxr Pos(r)(vw)
– Nec(projection(r,V))(v) = maxr Nec(r)(vw)

where r represents a relation,V is a subset of setX of all attributes ofr, v
takes values fromV andw takes values fromX \V. The values Pos(r)(vw) and
Nec(r)(vw) respectively represent the degree of possibility and degree of neces-
sity thatt = vwbelongs tor.

Remark that the computation rules given above are only an example of a possible
way to generalize the operators of the relational algebra. As such, for the operators
union, difference and projection a strict equality operation for attribute values is
assumed, which implies that for the equality of fuzzy sets —representing possibil-
ity distributions— the standard equality operator (definition 2.11) is used to check
whether two tuples are redundant, so that one of them has to bediscarded from the
result of the operation. An alternative, less stringent approach is possible here. Two
possibility distributionsπ andπ ′, that are both defined on the domain of an attribute
A, can hereby approximately be considered as being equal if itholds that

sup
x∈domA

|π(x)−π ′(x)| ≤ εdomA

whereεdomA is a given threshold value, specified to act on the values of attributeA.

5.8.1.2 Extended possibilistic approach

The structural and operational extensions for the approachwith extended possibilis-
tic truth values that have been described in subsection 3.4.1.2 can be applied with
‘fuzzy’ querying of ‘fuzzy’ databases, on condition that the generalized evaluation
functions for ‘fuzzy’ querying conditions, described in section 5.5, are taken into
account.

Example 5.6.Considering the relational counterpart of the ‘fuzzy’ artworks database
presented in figure 5.1, the same ‘fuzzy’ query as in example 3.7 can be formulated,
i.e.:

Give the name of the painting and the name of the artist of all very expensive paint-
ings of artists who die at the beginning of the twentieth century, where the condition
on the year of death of the artist must have significant largerimpact on the query
result than the condition on the value of the painting.

This query results in the following algebraic expression:
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pro ject(select(Cart− prod(Painting,Artist),

(Painting.Artist = Artist.Name,weight= 1) AND

(Painting.Value IS‘very expensive′,weight= 0.6) AND

(Artist.Year o f death IS‘beginningo f twentiethcentury′,weight= 1)),

{Painting.Name,Artist.Name})

where ‘veryexpensive’ and ‘beginningof twentiethcentury’ are linguistic terms
that are modelled by the fuzzy sets with membership functions

µvery expensive(x) =





0 iff x< 10M
x−10

10
iff 10M ≤ x≤ 20M

1 iff x> 20M

and

µbeginningo f twentiethcentury(x) =





1 iff 1900≤ x≤ 1910

0 iff x< 1900 orx> 1940
1940− x

30
iff 1910≤ x≤ 1940

The Cartesian product results in a relation with 16 tuples. The first condition that
must be evaluated is the generalized join condition

Painting.Artist = Artist.Name

This join condition is a simple condition of the formA θ B with θ being the equality
operator. Only 5 tuples satisfy this condition. These are presented as an intermediate
result in table 5.8 (for the sake of simplicity only the attributes representing the
artist of the painting (Painting.Artist) and the name of the artist (Artist.Name) —
which are involved in the join condition— and the resulting EPTV (EPTV1) are
presented. Because of the fact that the join condition has anassociated weight 1
and because of the fact that there are only conjunction operators in the composite
selection condition, the query processing can be continueddeparting with these 5
tuples.

Table 5.8 First intermediate results of the query processing.

Painting.Artist Artist.Name EPTV1
{(Monet,1)} Monet {(T,1)}
{(Degas,1)} Degas {(T,1)}
{(DaVinci,1)} Da Vinci {(T,1)}

{(Ensor,1),(Permeke,0.4)} Ensor {(T,1)}
{(Ensor,1),(Permeke,0.4)} Permeke {(T,0.4),(F,0.6)}
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The evaluation of the other simple ‘fuzzy’ conditions

Painting.Value IS‘very expensive′

and
Artist.Year o f death IS‘beginningo f twentiethcentury′

respectively results in the EPTVsEPTV2 andEPTV3 as presented in table 5.9. For
the computations of these EPTVs, the following definitions for the linguistic terms
have been used:

• Linguistic term ‘about15M’:

πabout 15M(x) =





x−14.8
0.2

iff 14.8M ≤ x≤ 15M

15.2− x
0.2

iff 15M < x≤ 15.2M

0 else

• Linguistic term ‘morethan8M’:

πmorethan 8M(x) =

{
1 iff x≥ 8M

0 else

• Linguistic term ‘veryexpensive’:

πvery expensive(x) =





0 iff x< 10M
x−10

10
iff 10M ≤ x≤ 20M

1 iff x> 20M

• Linguistic term ‘atleast1K’:

πat least 1K(x) =

{
1 iff x≥ 1K

0 else

• Linguistic term ‘around1519’:

πaround 1519(x) =





x−1517
2

iff 1517≤ x≤ 1519
1521− x

2
iff 1519< x≤ 1521

0 else

Using the extended conjunction operator∧w
prob that is described in example 3.6

while considering the given weightsw1 = 1, w2 = 0.6 andw3 = 1 allows us to find
the aggregated intermediate results that are presented in table 5.10. For each of the
obtained tuples, the associated aggregated weight isw= 1.
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Table 5.9 Second intermediate results of the query processing.

Artist.Name Value EPTV2 Year o f death EPTV3
Monet about15M {(T,0.51),(F,0.51)} 1926 {(T,0.47),(F,0.53)}
Degas morethan8M {(T,1),(F,1)} 1917 {(T,0.77),(F,0.23)}

Da Vinci very expensive {(T,1),(F,0.5)} around1519 {(F,1)}
Ensor atleast1K {(T,1),(F,1)} 1949 {(F,1)}

Permeke atleast1K {(T,1),(F,1)} 1952 {(F,1)}

Table 5.10 Aggregated intermediate results.

Artist.Name EPTV1∧w
probEPTV2∧w

probEPTV3

Monet {(T,0.24),(F,0.77)}
Degas {(T,0.77),(F,1)}

Da Vinci {(F,1)}
Ensor {(F,1)}

Permerke {(F,1)}

The final result, which is obtained after applying the projection operator and
normalization of the resulting EPTV, is given in table 5.11.

Table 5.11 Final query result.

Painting.Name Artist.Name µT µF µ⊥
‘Fishermans house’ ‘Monet’ 0.31 1 0
‘The ballet course’ ‘Degas’ 0.77 1 0

⋄

5.8.2 ‘Fuzzy’ object oriented databases

Also the object oriented and object relational database models have been extended
and generalized to ‘fuzzy’ database models. Hereby, as wellthe possibilistic as the
extended possibilistic approach have been used as the underlayin framework. All
considerations with respect to both the structural and behavioural aspects given in
subsection 3.4.2 remain valid.

An example of a ‘fuzzy’ object oriented database model that is based on the
possibilistic approach is the FOOD-model [1, 14, 2, 3] that has been described in
subsection 4.2.3. The ‘fuzzy’ constraint based object oriented database model [10],
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presented in subsection 4.2.4, is an example of a database model that is supported
by the extended possibilistic approach.

The FOOD-model has been implemented [4].
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