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Samenvatting

In vele toepassingen wenst men informatie te verkrijgen die niet expliciet
gegeven wordt door metingen. Een gemakkelijke manier om dit doel te
bereiken is interpolatie, een techniek die reeds teruggaat tot de Babyloniërs
(ca. 300 v. Chr.). Interpolatie construeert een benaderende functie op zo
een manier dat het perfect samenvalt met de gegeven meetpunten. Sinds
het begin van het “informatie- en communicatietijdperk” (20ste eeuw) nam
het aantal ontwikkelingen in de klassieke lineaire interpolatietheorie explosief
toe, waarvan de Whittaker-Kotel’nikov-Shannon bemonsteringstheorie de
belangrijkste mijlpaal is.

Lineaire interpolatie wordt in het algemeen voorgesteld als een praktische
oplossing voor het verbeteren van de resolutie van beelden, waarin we proberen
het vermogen om beelddetails te onderscheiden te verbeteren. Met andere
woorden, we willen “tussen de pixels kijken”. Jammer genoeg creëert lineaire
interpolatie onvermijdelijk visuele en storende artefacten zoals trapvorming,
vervaging en ringing effecten in het hogeresolutiebeeld en daarom zijn er nieuwe
technieken vereist. In het laatste decennium werden er talrijke niet-lineaire of
adaptieve interpolatiemethoden voorgesteld om deze artefacten te voorkomen.

In de praktijk lijden digitale beelden onder verschillende degradaties zoals
vervaging, ruis, compressie-artefacten, enz. Omdat de meetpunten of pixels
niet langer nauwkeurig zijn, zullen de prestaties van interpolatietechnieken
enorm verminderen. Daarom worden er beeldrestauratietechnieken geïntrodu-
ceerd om resolutieverbetering door te voeren en om deze degradatiemodellen
in rekening te brengen. Onder de vele bestaande restauratiemethoden
gepubliceerd over de verscheidene decennia, zijn de regularisatietechnie-
ken en de Bayesiaanse methoden in het bijzonder zeer krachtig omdat ze
in staat zijn voorkennis over de degradatie en het hypothetische ideale
beeld te vervatten. In het algemeen zijn de hoeveelheid voorkennis en de keu-
ze van de overeenkomstige priormodellen bepalend voor de restauratiekwaliteit.

Meer recent, met de groeiende interesse in videobewerking, begonnen onder-
zoekers het probleem van beeldrestauratie voor meerdere beelden te behande-
len. Omdat de twee problemen heel nauw gerelateerd zijn, kunnen de restau-
ratietechnieken voor meerdere beelden heel veel werk hergebruiken dat reeds
ontwikkeld werd voor het restauratieprobleem van enkelvoudige beelden. Hoe
dan ook, restauratietechnieken voor meerdere beelden gaan nog een stap ver-
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der. Gegeven een verzameling van gelijkaardige maar niet-identieke beelden,
bijvoorbeeld van een videosequentie, wordt het mogelijk om de verschillende
gegevens uit beelden te gebruiken voor resolutieverbetering. Met de nieuwe
gegevens wordt het mogelijk om schijnbaar verloren informatie of in technische
termen de ware hoge frequentie inhoud te herstellen. Daarom wordt de nieuwe
generatie van beeldrestauratie superresolutie genoemd.
Hebben we eigenlijk nood aan resolutieverbeteringstechnieken? Want hoge
resolutiebeelden kunnen immers bekomen worden door optica van hoge
precisie en hoogkwalitatieve camerasensoren te gebruiken. Dit gaat echter
gepaard met zeer hoge kosten, wat een belangrijke belemmering vormt in vele
commerciële toepassingen. Aan de andere kant worden er vandaag de dag
massaal goedkope camerasensoren met lage resolutie gebruikt in bijvoorbeeld
webcams, gsm’s en bewakingscamera’s. Er is ook een sterke bijkomende
beperking op het vergroten van de spatiale resolutie door het reduceren van
de pixelgrootte (dit is het toenemen van het aantal pixels per eenheid van
oppervlakte) in de fabricage van de sensoren. Als de pixelgrootte verkleint,
neemt de hoeveelheid opgemeten licht per pixeleenheid af. Dit veroorzaakt
opnameruis die de beeldkwaliteit sterk vermindert.

Resolutieverbeteringstechnieken worden vooral gebruikt in hoge-definitie
televisieschermen om standaarddefinitie videomateriaal (bijvoorbeeld van
dvd’s) te tonen. In forensische en beveiligingstoepassingen hebben we vaak
nood aan duidelijke hoge-resolutie beelden om het gezicht van een crimineel
te herkennen of om de nummerplaat van een vluchtauto te lezen. Helaas
gebruiken bewakingscamera’s meestal goedkope lage-resolutie sensoren, die de
herkenning moeilijker maken. Zodoende kunnen resolutieverbeteringstechnie-
ken deze beelden verbeteren en helpen de rechtszaken op te lossen.

In dit proefschrift bestuderen en ontwikkelen we verscheidene beeld- en
videoresolutieverbeteringstechnieken. Als eerste grote bijdrage hebben we
een nieuwe niet-lineaire beeldinterpolatietechniek ontwikkeld die ongewenste
artefacten ten gevolge van lineaire interpolatie verwijdert. Het voorgestelde
algoritme verscherpt randen door de isokrommen in het beeld te transformeren
gebruik makend van adaptieve contrastverbeteringstechnieken met randvoor-
waarden. Isokrommen worden gedefinieerd als spatiale krommen met een
constant intensiteitsniveau. Om gekartelde randen te vermijden worden de
isokrommen op voorhand behandeld door isophote smoothing schema’s met
bijkomende randvoorwaarden. Experimenten tonen verbeteringen aan zowel
in de numerieke psnr resultaten als in de visuele kwaliteit ten opzichte van
andere state-of-the-art interpolatietechnieken.

Een tweede nieuwigheid in dit doctoraat is de introductie van twee nieuwe
beeldkleurenpriors in het Bayesiaanse restauratieraamwerk. Enerzijds wordt
het adaptieve bimodale kleurenprior voorgesteld, gebaseerd op het feit dat
de waarde van een randpixel een combinatie is van de kleuren van de twee
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verbonden gebieden, elk met een dominante kleurendistributie. Anderzijds
wordt de multimodale kleurenprior gedefinieerd voor beelden die slechts enkele
dominante kleuren bezitten. Restauratieresultaten tonen de doeltreffendheid
en de visuele superioriteit tegenover andere interpolatie/restauratieschema’s
voor beelden met een sterke kleurenmodaliteit. Beide kleurenpriors zijn zeer
geschikt voor de restauratie van tekeningen en tekenfilms, logo’s, kaarten, enz.

Algemene beeldrestauratietechnieken maken enkel gebruik van de spatiale re-
dundantie in de lokale omgeving. In dit werk hebben we aangetoond dat het
schatten van de pixelintensiteit kan gebaseerd worden op informatie verkregen
over het volledige beeld. Hiervoor wordt de aanwezigheid van gelijkaardige
patronen en eigenschappen in het beeld uitgebuit, ook wel herhalende structu-
ren genoemd. De nieuwe aanpak wordt ook wel gerefereerd als de niet-lokale
strategie, die eveneens gerelateerd is aan de voorbeeld- en fractaalgebaseerde
aanpakken. Als derde belangrijke bijdrage hebben we een nieuw resolutiever-
beteringsschema ontwikkeld dat deze herhalende structuren uitbuit. Dit algo-
ritme hebben we dan ook uitgebreid en geoptimaliseerd voor toepassingen in
de documentverwerking. Een verbeterde segmentatie van karakters werd geïn-
troduceerd om de computationele complexiteit te reduceren en een specifieke
beeldprior voor tekst werd eveneens toegevoegd aan het Bayesiaanse restau-
ratieraamwerk. Experimenten tonen aan dat de karakters zeer goed worden
gereconstrueerd. Daarenboven tonen ocr resultaten significante verbeteringen
in vergelijking met andere bestaande resolutieverbeteringsmethoden.
Het voorgestelde algoritme legt geen beperkingen op het lettertype of alfabet
en is daardoor ook geschikt voor algemene symbolen zoals muzieknoten,
hiërogliefen, wiskundige symbolen of andere geschriften. Dezelfde strategie kan
worden toegepast in een voorbeeldgebaseerde zoekprogramma en een efficiënte
compressieschema voor documenten, wat nieuwe mogelijkheden opent voor
toekomstige toepassingen.

Superresolutie van meerdere beelden is een redelijk complex probleem dat
over verschillende takken van beeldverwerking loopt, waaronder b.v. be-
wegingsschatting of beeldregistratie, herbemonstering van onregelmatige
roosters (ook fusie genaamd), beelddeconvolutie en ontruising. Dankzij zijn
relatief lage rekenvereisten en lage geheugenvereisten wordt het standaard
drie-stappenparadigma van de superresolutie-aanpak aanbevolen in de meeste
praktische toepassingen. Deze drie opeenvolgende stappen zijn subpixel
beeldregistratie, beeldfusie en beeldrestauratie.

Als vierde hoofdbijdrage in deze thesis hebben we een zeer nauwkeurige
registratie-algoritme ontwikkeld, zowel in het domein van fotometrie en
geometrie. De ontwikkelde lage-resolutie-naar-hoge-resolutie gradiëntge-
baseerde registratiemethode met regressie met behulp van georiënteerde
kernen produceert momenteel de meest nauwkeurige subpixel informatie
onder verscheidene state-of-the-art methoden. Voor het fotometrische en



viii

gecombineerde geometrische/fotometrische registratieprobleem hebben we
het gebruik van de totale kleinste-kwadratenmethode voorgesteld. De totale
kleinste-kwadratenoplossing produceert in beide gevallen meer nauwkeurige
en consistente registratieparameters in vergelijking met de gebruikelijke
kleinste-kwadratenaanpak in de literatuur. Met hetzelfde idee hebben we
het kernregressie-algoritme voorgesteld en ontwikkeld, wat reeds een state-of-
the-art fusietechniek is, gebruik makend van totale kleinste-kwadraten, om
positionele of registratie-fouten te behandelen. Numerieke experimenten tonen
aan dat de ontwikkelde methode accurater en robuuster is dan de standaard
kernregressie-algoritmen.

In een uitgebreide studie in nauwe samenwerking met medisip-ibbt-ibitech
en de vakgroep radiologie (Universitair Ziekennhuis Gent) hebben we enkele
beperkingen uitgestippeld in de recente ontwikkelingen van mri superresolutie
reconstructie en hebben we ook aangetoond dat klassieke superresolutie niet kan
worden toegepast in het Fourier-gecodeerde vlak door de volledige afwezigheid
van frequentieverwarring gedurende mri opnames.
Als vijfde vernieuwde bijdrage in dit werk hebben we een elegante manier
bedacht voor de beeldresolutie bij meerdere geroteerde mri acquisities te
verhogen. We hebben een nieuwe hybride reconstructie-algoritme voorgesteld
die in het beelddomein herbemonstert gevolgd door fusie van meerdere gealig-
neerde k-ruimte opnames. Simulaties tonen de sterkte aan van onze methode,
zowel kwantitatief als kwalitatief. De resultaten tonen ook verbeteringen
op echte mri scans van een resolutiefantoom en een ajuin. Analyse van de
Fourier-gegevens toont aan dat we echte spatiale resolutie verworven hebben.
Praktische implementaties leiden tot het gebruik van niet-vierkante voxels
zoals gebruikelijk in propeller mri schema’s.

Tot slot, uit ons werk kwamen 3 papers voort gepubliceerd in de Science Ci-
tation Index, waarvan 2 als eerste auteur. In totaal verschenen er 24 andere
papers in de proceedings van internationale en nationale conferenties, waarvan
13 als eerste auteur.



Summary

In many applications, one wishes to acquire information that is not explicitly
given by measurements. An easy way to achieve this goal is interpolation,
which already dates back to the Babylonians (ca. 300 bc). Interpolation
constructs an approximating function in such a way that it perfectly agrees
with the given measurement points. Since the beginning of the Information
and Communication Era (20th century), developments in classical linear
interpolation theory have been explosive, of which the (Whittaker-Kotel’nikov-
Shannon) sampling theory is the most important milestone.

Linear interpolation is commonly proposed as a practical solution for the
image resolution enhancement problem, in which we try to increase the ability
to distinguish image details. In other words, we would like “to see between
the pixels”. Unfortunately, linear interpolation inevitably creates visual and
annoying artefacts such as staircasing, blur and ringing in the high-resolution
image and therefore, new techniques are required. In the last decade, numerous
non-linear or adaptive image interpolation methods have been proposed to
prevent these artefacts.

In practice, digital images suffer from various degradations such as blur, noise,
compression artefacts, etc. Because the measurement points or pixels are no
longer accurate, the performance of interpolation techniques will decrease
tremendously. Therefore, image restoration techniques are then introduced to
perform resolution enhancement and to take these degradation models into
account. Among the numerous existing restoration methods published over
several decades, regularization techniques and especially the Bayesian methods
are very powerful because they are able to include prior knowledge about the
degradation and the hypothetical ideal image. In general, the amount of prior
knowledge and the choice of the corresponding image prior models determine
the performance in terms of restoration quality.

More recently, with the growing interest in video processing, researchers
started to address the problem of multi-frame image restoration. Since the
two problems are closely related, much of the work in multi-frame restoration
borrows from techniques developed for the single image restoration problem.
However, multi-frame restoration techniques take us a step further. Given a
set of similar but non-identical images, e.g. from a video stream, it becomes
possible to use different image data for resolution improvement. With the new



x

data it becomes possible to recover apparently lost information or the true
high frequency content in technical terms. Therefore, this new generation of
image restoration techniques is referred to as super-resolution.

Do we actually need resolution enhancement techniques? After all, high-
resolution images can be acquired using high precision optics and high quality
camera sensors. Unfortunately, this is accompanied by very high costs, which
is an important concern in many commercial imaging applications. On the
other hand, cheap camera sensors with low resolution are used massively
nowadays in for example webcams, mobile phones and surveillance cameras.
Additionally, there is a strong limitation on increasing spatial resolution by
reducing the sensors (i.e. increasing the number of pixels per unit area) by
manufacturing techniques. If the pixel size decreases, the amount of incoming
light per pixel unit also decreases. This generates shot noise that degrades the
image quality severely.

Resolution enhancement algorithms are for instance used in high definition
television screens to display standard definition video material (e.g. from dvd
disks). In forensics and homeland security applications, we often need clean
high-resolution images to recognize the face of a criminal or to read the license
plate of a getaway car. Unfortunately, surveillance cameras commonly employ
cheap low-resolution sensors, which make the recognition more difficult.
Therefore, resolution enhancement techniques can improve these images and
help to solve the cases.

In this dissertation, we study and develop several image and video resolution
enhancement techniques. As the first main contribution, we have developed
a novel non-linear image interpolation technique that eliminates unwanted
artefacts produced by linear interpolation. The proposed algorithm sharpens
edges by mapping the image level curves using constrained adaptive contrast
enhancement techniques. Level curves are defined as spatial curves with a con-
stant intensity level. To avoid jagged edges, the level curves are preprocessed
by a constrained isophote smoothing scheme. Experiments show improvements
in both numerical psnr results as well as in visual quality compared to other
state-of-the-art interpolation techniques.

A second novelty in this dissertation is the introduction of two new image
colour priors in the Bayesian restoration framework. On the one hand,
the adaptive bimodal colour prior assumes that the value of an edge pixel
is a combination of the colours of two connected regions, each having a
dominant colour distribution. On the other hand, the multimodal colour
prior is proposed for images that normally just have a few dominant colours.
Restoration results show the effectiveness and the visual superiority to other
interpolation/restoration schemes for images with a strong colour modality.
Both colour priors are found very suitable to the restoration of drawings and
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cartoons, logos, maps, etc.

Common image restoration techniques only exploit the spatial redundancy in a
local neighbourhood. In this work, we have demonstrated that the estimation
of the restored pixel intensity can be based on information retrieved from the
whole image, thereby exploiting the presence of similar patterns and features
in the image, which we call repetitive structures. The new approach is referred
to as the non-local strategy, which is also related to the exemplar- and fractal-
based approaches. As the third important contribution, we have developed a
novel resolution enhancement scheme that exploits these repetitive structures.
We also have extended and optimized this algorithm for document image pro-
cessing applications. An improved character segmentation scheme is introduced
to reduce the computational complexity and an additional text specific image
prior is included in the Bayesian restoration framework. Experiments show
that characters are reconstructed very well. In addition, ocr accuracy results
show significant improvements in comparison with other existing resolution
enhancement methods.
The proposed algorithm is not restricted to font type or alphabet, therefore,
it is also suitable to generic symbols such as musical notes, hieroglyphics
or mathematical symbols. The same strategy can also be applied in an
exemplar-based search engine and in an efficient document compression
scheme, which opens up new possibilities in future applications.

Multi-frame super-resolution is quite a complex problem, which spans over sev-
eral fields of image processing, such as motion estimation or image registration,
image reconstruction from irregularly spaced samples (also called fusion), im-
age deconvolution and denoising. Due to its relatively low computational load
and low memory requirements, the standard three-step paradigm of the super-
resolution approach is recommended in most practical applications. These
three successive steps are subpixel image alignment, image fusion and image
restoration.
As the fourth main contribution in this dissertation, we have developed very
accurate registration algorithms, both in photometric and geometric domain.
The proposed low-resolution-to-high-resolution gradient-based registration
method with steering kernel regression fusion currently produces the most
accurate subpixel information among several state-of-the-art methods. For the
photometric and joint geometric/photometric registration problem, we have
proposed the use of the total least square framework. The total least square
solution produces in both cases more accurate and consistent registration pa-
rameters compared to the ordinary least square approach, which is commonly
employed in the literature. In the same spirit, we also have proposed and
developed the kernel regression algorithm, which is a state-of-the-art fusion
technique, in the total least square sense to handle positional or registration
errors. Numerical experiments show that the proposed method is more
accurate and robust compared to the standard kernel regression algorithms.
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In an extensive study in close collaboration with medisip-ibbt-ibitech and
the department of radiology (Ghent university hospital), we have pointed out
some limitations in the recent developments in super-resolution magnetic res-
onance imaging (mri) reconstruction and we also have argued that classical
super-resolution cannot be applied in the Fourier encoded plane because of the
complete absence of frequency aliasing during mri acquisition.
As the fifth main novelty in this work, we have introduced an elegant way to
enhance the image resolution by multiple rotated mri acquisitions. We have
proposed a novel hybrid reconstruction algorithm that performs resampling
in the image domain followed by fusion of multiple aligned k-space data.
Simulations demonstrate the superiority of our method, both quantitatively
and qualitatively. The results also demonstrate improvements on real
mri data of a resolution phantom and an onion. Analyzing the Fourier
data reveals that we really have gained true spatial resolution. Practical
implementations require non-squared voxel sizes as in propeller mri schemes.

Finally, our work resulted in 3 papers that have been published in the Science
Citation Index, of which 2 as first author. In total, 24 other papers appeared in
the proceedings of international and national conferences, of which 13 as first
author.
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1
General introduction

The beginning is the most important part of the work
—Plato

In this dissertation, we study several image and video resolution enhancement
techniques. Images can be seen as a set of pixels (typically denoted by its
intensity or colour value) placed on a (regular) grid, while video is denoted as
a sequence of images, in which time is referred to as an extra dimension.

Just to go straight to the point, we can ask ourselves: what does resolution
mean anyway? A common fallacy is that image resolution is simply defined as
the number of pixels in an image, which is actually not correct.1 Resolution is
in essence related to the ability to distinguish image details, for example: can
we resolve two closely spaced point sources? In effect, the spatial resolution
refers to the number of independent pixel values per unit length, which is often
expressed in pixels per inch (ppi) in scanners and monitors. In remote sensing
and medical applications, the spatial resolution is often inversely determined
by the sampling interval (in m or mm). Analogously, we can for example
define the temporal resolution, i.e. the ability to resolve events at different
points in time, which is usually expressed in frames per second (fps).

We illustrate the difference between spatial resolution and image size with some
examples in Figure 1.1.2 On the top left side, we show the 0.26 megapixels
image with a spatial resolution of 30 cm. The other images have a lower
resolution, although the images in Figures 1.1(b) and 1.1(c) have the same
number of pixels as Figure 1.1(a). The blurred image also has a lower resolution
because the independence of neighbouring pixels is largely violated. On the
other hand, the image size do put an upper bound on the spatial resolution for
a given view (approximately 150 m by 150 m) as illustrated by Figure 1.1(d).

1By convention, when the pixel counts are referred to as resolution, the term image size
or pixel resolution is used. The image size is often described by the set of two positive integer
numbers (i.e. width × height) or by the total number of pixels in the image (e.g. expressed
in megapixels).

2These images are obtained via Microsoft Virtual Earth.
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(a) 512 × 512 image (30 cm resolution) (b) 512 × 512 image (60 cm resolution)

(c) 512 × 512 blurred image (d) 128 × 128 image (120 cm resolution)

Figure 1.1: Different pictures of the Technicum building.

That is why we frequently need to enlarge the image in order to show (possible)
improvements on the spatial resolution.

High-resolution images can be acquired using high precision optics and high
quality camera sensors. However, this is also accompanied by very high costs,
which is an important concern in many commercial imaging applications.
Additionally, there is a strong limitation on increasing spatial resolution by
reducing the sensors (i.e. increasing the number of pixels per unit area) by
manufacturing techniques. If the pixel size decreases, the amount of incoming
light per pixel unit also decreases. This generates shot noise that degrades the
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image quality severely. On the one hand, a huge amount of digital images and
video are thus currently acquired, compressed and stored in low resolution
(e.g. by cheap off-the-shelf cameras). On the other hand, more and more high-
resolution displays are sold, for example due to the growing popularity of high
definition television (hdtv). To bridge the gap between the low-resolution ma-
terial and the high-end displays, resolution enhancement techniques are needed.

Throughout this thesis, we will mainly focus on algorithms that improve the
spatial resolution (or just simply resolution). These resolution enhancement
techniques belong to a more general class of image and video restoration. In
practice, resolution is also limited by other degradation sources such as noise,
blur, compression artefacts, etc. That is why restoration techniques are pro-
posed to solve these problems jointly. In the remainder of this introduction
chapter, we give a brief overview of potential applications, we describe the
outline of this thesis and we list the main novelties and contributions of our
work.

1.1 Applications of resolution enhancement

Resolution enhancement techniques can be applied and are already used in
various imaging domains. In this section, we will focus on the resolution
enhancement aspect in two very important fields of image processing.

The first important application domain is covered by the so-called consumer
imaging. By this we understand all applications that perform image and video
format/standards conversions to fit for instance the content to the display or
printer devices. Resolution enhancement (both in space and time) is needed to
display standard definition (sd) video material on hdtv sets. These sd sources
can be transmitted or stored in an interlaced format in broadcasting companies
or via dvd disks. Another application is the conversion of old dirty and grainy
analog video material (e.g. which are stored on tapes) to a new digital format
such as dvd or Blu-Ray. Scratches and blotches can be detected and removed
by dedicated inpainting algorithms.
Low-resolution document images (commonly displayed at 75 dots per inch
(dpi) on the monitor) need to be upscaled before printing on high-resolution
printer devices (typically at 600 or 1200 dpi) or before displaying on the next-
generation high-resolution e-papers. In general document image processing
applications, resolution enhancement can improve the readability either for hu-
man beings or machines (i.e. measured in terms of optical character recognition
(ocr) accuracy), which is for example important in increasing the performance
of office automation or in digitalizing libraries.
Several resolution enhancement algorithms are already implemented in
off-the-shelf digital cameras, e.g. the so-called digital zoom function or in
the demosaicing stage (i.e. the reconstruction of full colour images from the
colour-filtered ccd or cmos samples). Resolution enhancement algorithms
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can also be found in many image processing software tools such as Adobe
Photoshop and gimp.

The second important application domain is denoted by forensics and scientific
imaging. Resolution enhancement and image restoration in general are used
for instance in remote sensing and astronomy (a set of telescope or satellite
images could be combined to display fine details that are not distinguishable
in any of the input images), biological imaging (e.g. enhancing images from
electronic and optical microscopes to improve the analysis) and medical imaging
(e.g. enhancing the images from mri, ct, pet, etc. to support medical doctors
with their decisions).
Resolution enhancement and especially resampling techniques are needed to
perform accurate geometric transformations and image registrations. Image
registration techniques are important in for example computer-assisted align-
ment in modern x-ray imaging systems and in creating panoramic images that
facilitate automatic annotation in soil research.
In forensics and homeland security applications, we often need clean high-
resolution images to recognize the face of a criminal or to read the license plate
of a getaway car. Unfortunately, surveillance cameras commonly employ cheap
low-resolution sensors, which makes the recognition more difficult. Therefore,
resolution enhancement techniques can improve these images and help to solve
the cases.

Recently, numerous patent applications have been issued in the field of
interpolation and super-resolution, see for example [Volovelsky et al., 2005,
Young, 2006,Milanfar et al., 2006]. This indicates the growing interest and im-
portance of image and video resolution enhancement techniques in the business
community.

1.2 Contributions and list of publications

During the work of this dissertation, several contributions have been made.
The main novelties, extensively discussed in this thesis, are:

• the development of a new non-linear interpolation technique that elimi-
nates unwanted artefacts such as blur, staircase and ringing effects. The
algorithm sharpens edges by mapping the smooth image level curves us-
ing adaptive contrast enhancement techniques (see Chapter 3). The main
novelty is the combination of two existing image processing techniques
(i.e. isophote smoothing and contrast enhancement), each having a dif-
ferent purpose, in a non-trivial way on top of the linear interpolation
techniques. Additional constraints are put on these algorithms to achieve
strict interpolation and to preserve the topology of the image level curves.
This results in sharper high-resolution images with less disturbing arte-
facts compared to the state-of-the-art non-linear interpolation techniques.
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This work led to an icip publication [Luong et al., 2005] and another con-
ference publication [Luong and Philips, 2005].

• the introduction of two new colour image priors in the image restoration
framework, namely the adaptive bimodal colour prior and the multimodal
colour prior, which take advantage of local and global dominant colour
distribution (see Chapter 4). The novelty is to incorporate and to adapt
the bimodal black-and-white text prior for a more general class of images.
The key achievements are the automatic determination of the parameters
(both locally adaptive as globally) and the extension to the multimodal
case. We have been able to show that the use of these priors is very
powerful in the restoration of cartoons and logos, thereby outperforming
other existing state-of-the-art techniques in visual quality. This work led
to two publications in the Springer’s Lecture Notes on Computer Science
(lncs) series [Luong et al., 2007,Luong and Philips, 2007b].

• the development of non-local resolution enhancement techniques that
exploits repetitive structures (see Chapter 5). These techniques are
adapted and optimized for greyscale and binary document image pro-
cessing (see Chapter 6). The main novelty here is to use the non-local
strategy, borrowed from image denoising techniques for image resolu-
tion enhancement. The blocks are selected based on the newly proposed
dual matching criterion that enables a fast and robust filtering of these
blocks. This work led to an icip publication [Luong et al., 2006c] and
another publication in the lncs series [Luong et al., 2006b] for regular
image restoration, and a journal publication [Luong and Philips, 2008]
and another conference publication [Luong and Philips, 2007a] for docu-
ment processing. In addition, joint works with B. Goossens and A. Dauwe
on improving non-local denoising led to three more conference publica-
tions [Dauwe et al., 2008,Goossens et al., 2008a,Goossens et al., 2008c].

• the derivation and development of joint geometric/photometric image reg-
istration and kernel regression in the total least square sense (see Chap-
ter 7). The novel idea is to use the total least square metrics instead of
the ordinary least square metrics, which is commonly used in the litera-
ture. In image registration applications, the total least square solution of
the motion parameters is much more consistent and accurate in presence
of noise compared to existing registration algorithms. In image fusion ap-
plications, the improved kernel regression algorithm appears to be much
more robust to noise and registration errors than existing state-of-the-art
techniques. These improvements are important for the performance of
multi-frame super-resolution image reconstruction algorithms.

• the introduction of a novel multi-frame reconstruction framework for mri
images in the Fourier encoded plane (see Chapter 8). We first point out
some shortcomings of the recent developments in super-resolution mri.
As the key achievement, we introduce an elegant way to enhance the
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image resolution by multiple mri acquisitions: several rotated images are
combined into one high-resolution image with an enlarged k-space span.
We propose a novel hybrid linear reconstruction algorithm that consists
of a proper resampling scheme in the image domain followed by optimal
fusion of multiple aligned k-space data. Simulations demonstrate the
superiority of the proposed method compared to standard regression and
interpolation techniques: more image details are revealed. This work led
to a submitted journal publication [Luong et al., 2009] and a conference
publication [Luong et al., 2008].

To summarize, our work resulted in 1 journal publication, 1 submitted
journal publication and 4 publications in the lncs series, of which 3 as first
author. In total, 22 other papers appeared in the proceedings of interna-
tional and national conferences, of which 13 as first author. Own work and
contributions to other people’s work are published in the field of level curve
mapping interpolation [Luong et al., 2005, Luong and Philips, 2005], image
restoration with colour priors [Luong et al., 2007, Luong and Philips, 2007b],
non-local resolution enhancement [Luong et al., 2006c, Luong et al., 2006b,
Luong and Philips, 2007a, Luong and Philips, 2008], image denois-
ing [Dauwe et al., 2008, Goossens et al., 2008a, Goossens et al., 2008c,
Goossens et al., 2008b], multi-frame mri reconstruction [Luong et al., 2008,
Luong et al., 2009], multi-frame super-resolution [Luong et al., 2004b,
Luong et al., 2006d, Luong and Philips, 2006], mathematical morphology
interpolation [Ledda et al., 2005, Ledda et al., 2006a, Ledda et al., 2006b,
Ledda et al., 2008], multi-camera video coding [Morbée et al., 2007],
forensic science [De Smet et al., 2005, De Leersnyder et al., 2006],
video segmentation [Luong et al., 2004a], image registration and mo-
saicing [Luong et al., 2004c, Luong et al., 2006a] and audio process-
ing [De Smet et al., 2004].
A small selection of publications that were published during the course of this
research is given here:

• Luong, H. and Philips, W. (2008). Robust reconstruction of low-
resolution document images by exploiting repetitive character behaviour.
International Journal on Document Analysis and Recognition (IJDAR),
11(1):39–51.

• Luong, H., Goossens, B., and Philips, W. (2007). Image upscaling using
global multimodal priors. In Blanc-Talon, J., Philips, W., Popescu,
D., and Scheunders, P., editors, Proceedings of Advanced Concepts for
Intelligent Vision Systems (ACIVS), volume 4678 of Lecture Notes in
Computer Science, pages 473–484, Delft, The Netherlands. Springer-
Verlag.

• Luong, H. and Philips, W. (2007). Reconstruction of low-resolution
images using adaptive bimodal priors. In Campilho, A. and Kamel, M.,
editors, Proceedings of International Conference On Image Analysis And
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Recognition (ICIAR), volume LNCS 4633 of Lecture Notes in Computer
Science, pages 69–80, Montréal, Canada. Springer-Verlag.

• Luong, H., Ledda, A., and Philips, W. (2006). Non-local image inter-
polation. In Proceedings of IEEE International Conference on Image
Processing (ICIP), pages 693–696.

• Luong, H., Ledda, A., and Philips, W. (2006). An image interpolation
scheme for repetitive structures. In Proceedings of International Con-
ference On Image Analysis And Recognition (ICIAR), volume 4141 of
Lecture Notes in Computer Science, pages 104–115. Springer-Verlag.

• Luong, H., De Smet, P., and Philips, W. (2005). Image interpolation
using constrained adaptive contrast enhancement techniques. In Pro-
ceedings of IEEE International Conference on Image Processing (ICIP),
pages 998–1001.

• Luong, H. and Philips, W. (2005). Sharp image interpolation by map-
ping level curves. In Proceedings of Visual Communications and Image
Processing (VCIP), pages 2012–2022.

1.3 Organization of this dissertation

The goal of this dissertation is to study and develop image and video resolution
enhancement techniques. The organization of this thesis is as follows. In
Chapter 2, we give a more formal description of the image resolution enhance-
ment problem in a sampling framework. We first give a brief introduction
of the Shannon sampling theorem followed by an overview of existing linear
interpolation techniques. We then link the sampling framework to single image
restoration techniques and multi-frame super-resolution imaging. Given these
general problem setups, we can easily situate the different methods in the rest
of our work. Finally, we also give a brief overview of other image processing
tasks related to these problems.

Chapter 3 covers the problem of non-linear (or adaptive) interpolation.
We first discuss several strategies to perform non-linear interpolation and
classify the existing state-of-the-art techniques according to these interpolation
strategies. Afterwards, we describe a novel approach that eliminates unwanted
artefacts (i.e. blur, staircase and ringing effects) that are created by linear
image interpolation methods. We then briefly discuss various strategies to
extend greyscale interpolation methods to colour images. The performance of
the proposed method is compared to other interpolation techniques.

In Chapter 4, we discuss resolution enhancement as an image restoration
problem. We briefly address the different sources of image degradation. We
give a broad overview of the existing adaptive image restoration methods
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where the focus is lying on the joint denoising and deconvolution problem.
We concentrate on the regularization techniques described from a Bayesian
point of view and especially on the maximum a posteriori framework. The
evolution and an overview of image priors are described in more detail. We
derive the steepest descent algorithm that performs resolution enhancement
with a geometry-driven smoothness prior. We introduce two new colour image
priors, namely the adaptive bimodal colour prior and the multimodal colour
prior, and show their influence on the restoration results.

In Chapter 5, we exploit the presence of similar (non-local) patterns and
features in the image, which we call repetitive structures. We first describe
the relationship between this relatively new class of non-local methods and
the exemplar- and fractal-based algorithms. The original non-local means
filter for the image denoising problem is described and we discuss numerous
improvements both on accelerating the non-local means filter as well as on
enhancing the visual quality. We introduce this novel non-local approach in
the image resolution enhancement framework and demonstrate its effectiveness.

Chapter 6 continues the work on non-local methods of the previous chapter,
but in a more specific context of document image processing. To exploit the
repetitive behaviour of the characters in greyscale low-resolution document
images, we describe and improve an existing character segmentation algo-
rithm. We propose a Bayesian framework with a specific text image prior
that combines similar characters into high-resolution prototypes. We perform
several quantitative experiments that compare our framework to other existing
resolution enhancement techniques. In addition, we present a similar algorithm
for binary document images.

In Chapter 7, we address the multi-frame super-resolution problem, where
we concentrate on a three-step implementation, which consists of image
alignment, image fusion and image restoration. We first give an overview of
the existing super-resolution approaches. We then discuss various aspects of
motion estimation and both geometric and photometric image registration.
We propose and derive a robust image alignment technique that performs joint
geometric and photometric registration in the total least square sense. We
describe several fusion algorithms and focus on the kernel regression frame-
work. We also propose and derive the kernel regression algorithm in the total
least square sense to handle potential registration errors. We briefly discuss
super-resolution reconstruction along the temporal direction. We evaluate the
subpixel accuracy of several state-of-the-art shift estimators and compare the
proposed registration algorithm numerically to other approaches. We show the
effectiveness of the proposed super-resolution strategy in real-world examples
and deinterlacing problems.

Chapter 8 is dedicated to the multi-frame resolution enhancement of magnetic
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resonance imaging (mri) images in the Fourier encoded plane. We first
point out some limitations in the recent developments in super-resolution
mri reconstruction and we also argue that classical super-resolution cannot
be applied in the Fourier encoded plane because of the complete absence of
frequency aliasing during mri acquisition. We introduce an elegant way to
enhance the image resolution by multiple mri images, which are acquired over
a rectangular k-space span. We propose a novel hybrid linear reconstruction
algorithm that consists of a proper resampling scheme in the image domain
followed by optimal fusion of multiple aligned k-space data. The proposed res-
olution enhancement framework is evaluated quantitatively and qualitatively
for both simulated and real mri data.

Chapter 9 provides the general conclusions of this work and discuss some di-
rections for future research. To end this section, we draw a decision chart in
Figure 1.2 that helps to guide the reader through this dissertation.
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Figure 1.2: The decision chart: how to flick through this dissertation?



2
Linear interpolation theory

Think analog, act digital.
—Michael Unser

In this chapter, we provide a mathematical formulation of image resolution
enhancement techniques in a sampling framework. First, we start with a brief
introduction of the Shannon sampling theorem. Afterwards, we discuss the im-
age reconstruction given a set of discrete samples and we describe linear inter-
polation techniques, single image restoration and multi-frame super-resolution
imaging. Given these general problem setups, we can easily situate our differ-
ent proposed image resolution enhancement techniques. Finally, we give a brief
overview of other variants on these problems.

2.1 The sampling theorem
In the digital era, modern applications often require that we sample analog
(or continuous) signals, acquire them in a digital form, perform some digital
operations on them and finally reconstruct them as continuous signals. This
process is illustrated in Figure 2.1. Since some useful properties of functions and
signals are easy to interpret by means of their characteristics in the frequency
domain, we briefly review the Fourier transform.

2.1.1 The Fourier transform
We denote the n-dimensional frequency coordinates as u ∈ R

n and the spatial
coordinates as x ∈ R

n. The n-dimensional continuous Fourier transform F (u)
of the continuous signal f(x) is given by

F (u) = (F(f))(u) =
∫
x∈Rn

f(x)e−2πj(u·x)dx, (2.1)

where u·x is defined as the inner product between the two vectors. Analogously,
the multi-dimensional inverse continuous Fourier transform is then denoted by

f(x) = (F−1(F ))(x) =
∫
u∈Rn

F (u)e2πj(x·u)du. (2.2)
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sampling

reconstruction

original

sampled

reconstructed
signal

signal

signal

Figure 2.1: The sampling-reconstruction process: from continuous signal to discrete
signal and back to continuous signal.

One of the most important properties of the Fourier transform is the convo-
lution theorem, which states that the Fourier transform of the convolution
(f ∗ g)(x) is the product of their Fourier transforms F (u)G(u) and vice versa.
The convolution of two functions is defined as

(f ∗ g)(x) =
∫
y∈Rn

f(y)g(x − y)dy. (2.3)

From an implementation point of view, it is important to know that the Fourier
transform is separable, i.e. you can perform the transform in n dimensions
separately, which has the advantage of a lower computational complexity.

2.1.2 The sampling process

Since the Fourier transformation is separable, we restrict the explanation to
the one-dimensional case for simplicity. Extension to multiple dimensions is
fairly straightforward. The sampling process reads the continuous signal f(x)
(x ∈ R) at discrete positions, of which a discrete signal is formed. Assume now
that we sample f(x) uniformly from the origin with a sampling interval T . At
each position kT (k ∈ Z) on the grid, we measure the value f(kT ).
To explain the sampling process in a formal way, we first introduce the impulse
δ(·) (or Dirac delta distribution),1 which has the following property:

∫ +∞

−∞
δ(x− x0)f(x)dx = f(x0). (2.4)

1An alternative way of understanding the basic sampling formulas is using Poisson’s sum-
mation formula instead of Dirac distributions [Unser, 2000].
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We now define the impulse train or Shah2 function XT (·) with sampling in-
terval T as a periodic Schwartz distribution constructed from Dirac delta:

XT (x) =
+∞∑

k=−∞
δ(x− kT ). (2.5)

The Fourier transform of the impulse train is then given by (via Fourier series)

F(XT (x)) =
∫ +∞

−∞

+∞∑
k=−∞

δ(x − kT )e−2πjuxdx

=
1
T

+∞∑
k=−∞

δ(u− k

T
) =

1
T

X1/T (u) (2.6)

So, we note that the Fourier transform of an impulse train is also an impulse
train, but with a sampling rate 1/T . We denote the sampled signal fT (x) as
the multiplication of the continuous signal f(x) with the impulse train:

fT (x) = f(x)XT (x) =
+∞∑

k=−∞
f(x)δ(x − kT ). (2.7)

Via the convolution theorem, we can easily show that the Fourier transform of
the sampled signal FT (u) can be expressed as

FT (u) =
1
T
F ∗ X1/T (u) =

1
T

+∞∑
k=−∞

F (u − k

T
). (2.8)

This result shows that sampling a signal in the spatial domain at a rate 1/T
replicates the Fourier transform of the original signal at the frequencies k/T
(k ∈ Z). The sampling process is illustrated in Figure 2.2, both in the spatial
and frequency domain.

2.1.3 Frequency aliasing
From a reconstruction point of view, it is important to know under which
conditions the original signal can be reconstructed perfectly from its samples.
Therefore, we introduce the class of bandlimited signals. A function or signal
is bandlimited, if the frequency values are zero above a certain threshold B (or
cutoff frequency):

F (u) = 0 (∀u : |u| ≥ B). (2.9)

The smallest threshold or minimum upper cutoff frequency B is called the
baseband bandwidth of the signal. By contrast, a non-baseband (passband)

2Recognizing the Russian Cyrillic letter “Sha”, the train of delta functions (or Dirac comb
function) is named the Shah-function X(·).
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multiplication convolution

sampling replication

⇔

⇔

⇔

x

x

x u

u

u

. . .

. . .. . .

. . .. . .

. . .

. . .

T 1/T

f(x)

fT (x)

F (u)

FT (u)

XT (x) X1/T (u)

spatial domain frequency domain

Figure 2.2: The sampling process in the spatial and frequency domain for bandlim-
ited signals. The spectrum is replicated at frequencies k/T (k ∈ Z).

bandwidth is the difference between the highest and lowest nonzero frequency.
Note that this bandlimitation is just an idealization: physically, real world
functions or signals are never exactly bandlimited. A law of the Fourier
transform states that if a signal is finite in space or time, the support of
its spectrum will be infinitely large and vice versa (except for the function
f(x) = 0). In practice, most signals concentrate most of their energy at low
frequencies. In general, the power spectrum of natural images even follows
an 1/u2-decay [Field, 1987]. Therefore, such signals can approximately be
considered bandlimited.

The reconstruction of the continuous signal from its samples can be performed
without any loss if the sampling rate or sampling frequency 1/T is larger than
twice the cutoff frequency, which is called the Nyquist criterion:

1
T

≥ 2B. (2.10)

This is commonly known as the Shannon3 sampling theorem [Shannon, 1949].
In this case, the replicated spectra do not overlap.
On the other hand, if the Nyquist criterion is not fulfilled (i.e. the signal is un-
dersampled), replicated spectra overlap each other in such a way that frequency
components above the sampling frequency are mapped into frequencies below
this limit after sampling. As a consequence, we can no longer reconstruct the

3For the sake of completeness, we have to mention that equivalent theorems are pre-
sented by Whittaker [McNamee et al., 1971, Unser, 2000], Nyquist [Nyquist, 2002] and Ko-
tel’nikov [Kotel’nikov, 2000]. We refer the interested reader to [Lüke, 1999] for a discussion
on the origins of sampling theorem.
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⇔
x u

. . .. . .. . .

fT (x) FT (u)
2B

1/T

spatial domain frequency domain

Figure 2.3: Frequency aliasing in the spatial and frequency domain for bandlimited
signals.

Figure 2.4: Illustration of Moiré patterns.

original signal from its samples. This phenomenon is called frequency aliasing4

and is illustrated in Figure 2.3, both in frequency and spatial domain. This
annoying artefact manifests itself as Moiré patterns in images (an example is
given in Figure 2.4) or in temporal aliasing in the form of stroboscopic effects
or wagon-wheel effects in video (i.e. spoked wheels sometimes appear to be
turning backwards). The latter occurs when the frame rate is too low.

There are several solutions to prevent or reduce aliasing. In the first place, we
can increase the sampling rate until it is above twice the baseband bandwidth.
Alternatively, we can restrict the baseband bandwidth of the original signal

4Its dual counterpart (e.g. during mri acquisitions) is denoted as spatial aliasing. To make
the presentation self-contained, we will return to this aspect in Chapter 8.
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before sampling using an anti-aliasing filter Φaa(·) (also called low-pass filter).
This has the disadvantage that the signal can not be reconstructed perfectly
anymore (see Figure 2.5). In theory, the ideal low-pass filter is mathematically
realized by multiplying frequency values with the frequency response Π(u)5:

Π(u) =
{

1 if |u| ≤ 1/2,
0 if |u| > 1/2. (2.11)

The frequency response of the ideal anti-aliasing filter is thus Φaa(u) =
Π(Tu), which is equivalently to applying a convolution with the sinc-function
F−1(Φaa(u)) = ϕaa(x) = sinc(x) in the temporal or spatial domain. However,
in practice, there is no such device as an ideal anti-aliasing filter because of the
infinite extent of the sinc-function. Real filters approximate the ideal filter by
truncating and windowing the infinite impulse response (iir) to make a finite
impulse response filter (fir-filter).

2.1.4 Ideal reconstruction
For general resampling or regridding tasks, the interpolation step must recon-
struct the continuous signal f̂(x) (x ∈ R) from its discrete samples f(kT )
(k ∈ Z). The signal value at position x can be estimated by a convolution of
the discrete data samples with the impulse response of a reconstruction filter
ϕint(·) (also called the interpolation or resampling kernel):

f̂(x) =
+∞∑

k=−∞
f(kT )ϕint(x/T − k). (2.12)

In ideal circumstances (i.e. when the Nyquist criterion is satisfied), we can re-
construct the original signal perfectly by multiplying the Fourier spectrum with
a rectangular function (see Figure 2.5) or equivalently, perform a convolution
with the Whittaker-Shannon interpolation formula [Shannon, 1949]:

ϕint,ideal(x/T ) =
∫ +∞

−∞
Π(Tu)e2πjxudu

=
∫ 1

2T

− 1
2T

e2πjxudu

=
T

2πjx

(
e2πjx 1

2T − e−2πjx 1
2T

)
=

sin(πx/T )
πx/T

≡ sinc(x/T ). (2.13)

In literature, the ideal reconstruction filter is also denoted as sinc or zero-
padding interpolation. Again, in practice, there exists no ideal reconstruction
filter for the same reasons as for the ideal anti-aliasing filter (as discussed

5Alternative definitions assign 0 or 0.5 to the boundary |u| = 1/2.
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u

u

u

. . .. . .

F (u)

FT (u)

F̂ (u)

sampling

reconstruction

Φaa

Φint

Figure 2.5: The ideal anti-aliasing and ideal reconstruction filter illustrated in the
Fourier domain. We cannot reconstruct the original signal perfectly if the Nyquist
criterion is not satisfied, but we can reconstruct the alias-free part of the spectrum.

Figure 2.6: Digital signal processing is a combination of quantization and sampling:
the acquisition of the original signal (black) results in a step-like digital signal (grey).

before in Section 2.1.3). It is also rarely used in general image resampling
tasks because of the slow decay of the sinc function [Unser, 2000].

In practical applications, we usually cannot reconstruct the original signal per-
fectly due to various sources of errors such as measurement noise. As discussed
earlier, we are commonly dealing with frequency aliasing and/or we have lost
high frequency components due to the anti-aliasing filter. Additionally, in
digital signal processing, the discrete signal values go through a quantization
process as illustrated in Figure 2.6. In digital images, the discrete sampled
signal values are denoted as pixels. In practice, an n-bits uniform integer quan-
tization is commonly applied: typically 8-bits for greyscale images and 24-bits
for full rgb-coloured images.
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2.1.5 Sampling methods

Until now, we have restricted ourselves to the 1d regular sampling case (i.e. with
uniform sampling intervals). By making use of the separable property of the
Fourier transformation, we can easily extend the traditional sampling theory
to multiple dimensions. For example, the n-dimensional interpolation kernel
can be reconstructed as

ϕn(x) =
n∏

i=1

ϕ(xi), (2.14)

where x ∈ R
n. In typical image and video applications, we are most familiar

with Cartesian coordinate systems, i.e. samples are taken on an orthonormal
reference grid (the 2d case is thus a squared grid). In this work, we assume
that all images and video sequences are acquired on Cartesian grids, for
which equation (2.14) is valid. Additionally, we want to point out that other
uniform grids such as hexagonal lattices are used for instance in printing
applications [Van De Ville, 2001].

When the sample positions are arbitrarily chosen, the sampling method is
called non-uniform or irregular. There are essentially two strategies to re-
construct the signal from its non-uniform samples: firstly, use the same in-
terpolation kernel everywhere (denoted as shift-invariant) and fit these ker-
nels to the measurement data in a way that the reconstructed signal goes
through the samples and secondly, define tailored basis functions (such as
radial basis functions) that are better suited to the underlying non-uniform
structure [Unser, 2000]. Irregularly sampled positions stem for example from
stochastic sampling or non-Cartesian sampling trajectories (e.g. during mri ac-
quisitions) [Dologlou et al., 1996,Pruessmann et al., 2001]. Recently, compres-
sive sampling has gained much interest in the image processing community,
e.g. [Candès and Wakin, 2008,Romberg, 2008,Lustig et al., 2008]. The goal is
to summarize the image in a very few samples (i.e. in a sparse representation)
and to reconstruct the image in the best possible way from these sparse data.
A special and important subcategory of irregular sampling methods are the
multichannel sampling methods: the global set of samples can then be divided
into m sets of uniformly spaced samples. As an extension of the traditional
Shannon’s sampling theory, Papoulis showed that a bandlimited signal can
perfectly be reconstructed from uniformly sampled m sets, where the sampling
rate within each set is 1/m of the Nyquist rate [Papoulis, 1977]. We will return
to multichannel sampling in Section 2.4. The different sampling methods are
illustrated in Figure 2.7.

In our sampling model, we have assumed that the signals are sampled using
Dirac deltas. Alternatively, we can consider a more general sampling kernel,
denoted by its point spread function (psf). The sampling operation is then
transformed into a convolution with the sampling kernel, or equivalently, a
multiplication in the frequency domain, followed by the actual sampling. If
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(a) Uniform sampling (b) Non-uniform sampling (c) Multichannel sampling

Figure 2.7: Examples of the different sampling methods.

the sampling kernel (which is a low-pass filter in general) does not remove
any frequency components, the signal can be perfectly reconstructed on the
condition that the sampling kernel is not too ill-conditioned [Vandewalle, 2006].

2.1.6 Modern sampling theory
The standard sampling theory states that signals need to be bandlimited for
a perfect reconstruction, which is a limitation in practice because real world
signals or images are never exactly bandlimited [Unser, 2000]. Alternatively,
we can aim to reconstruct the signal as close as possible to the original
continuous signal. This goal gives rise to the start of modern sampling theory.

The anti-aliasing prefilter introduced in Section 2.1.4 can be reinterpreted as
an orthogonal projection operator that computes the minimum error bandlim-
ited approximation of an arbitrary input signal from the Hilbert space l2,
which consists of all functions that are square integrable in the Lebesgue’s
sense [Unser, 2000]. The corresponding l2-norm is

‖f‖ =
(∫

x∈Rn

|f(x)|2dx
)1/2

=
√
〈f, f〉, (2.15)

which is induced by the conventional l2-inner product:

〈f, g〉 =
∫
x∈Rn

f∗(x)g(x)dx, (2.16)

where the ∗-operator denotes the complex conjugate. Note that in general, any
combination of prefiltering and sampling can be rewritten in terms of inner
products between the continuous signal and an analysis function ϕa(·). Anal-
ogously, we can define the l2-norm via the inner product for n-dimensional
discrete sequences:

‖c‖l2 =

( ∑
k∈Zn

|c(k)|2
)1/2

, (2.17)

〈c1, c2〉 =
∑
k∈Zn

c∗1(k)c2(k). (2.18)
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Now we can introduce the generalized interpolation formula by replacing the
(sinc) interpolation kernel in equation (2.12) by a more general generating or
synthesis function ϕs(·) and the signal samples by a sequence of coefficients
c(k):

s(x) =
+∞∑

k=−∞
c(k)ϕs(x/T − k). (2.19)

This model makes the connection between a discrete sequence of coefficients
c(k) and a continuous function s(x). There are three requirements for such
a model to make sense [Unser, 2000]. Firstly, the l2-norm of the coefficient
series should obviously be finite. Secondly, the model should be stable and
unambiguously defined. Stability ensures that a small variation in coefficients
result in small variations of the l2-norm. Furthermore, the basis functions
should be linearly independent so that the basis is unambiguous: each signal
s(x) is then defined by a unique set of coefficients c(k). In other words, the
basis functions ϕ(x − k) should form a Riesz basis: there must be two strictly
positive constants 0 < A and B < +∞ such that

A‖c‖2
l2 ≤

∥∥∥∥∥∑
k∈Z

c(k)ϕ(x − k)

∥∥∥∥∥
2

≤ B‖c‖2
l2 , (∀c(k) ∈ l2). (2.20)

The l2-space consists of all sequences with finite l2-norm. A basis is orthonor-
mal if and only if A = B = 1. The third and final requirement is that the
approximation should converge to the input signal when the sampling interval
decreases. This is equivalent to the partition of unity condition [Unser, 2000]:∑

k∈Z

ϕs(x/T − k) = 1, (∀x ∈ R). (2.21)

In practice, this last condition puts the strongest constraint on the selection
of acceptable generating functions. Note that the sinc-functions from the
Shannon’s sampling theory form an orthonormal basis and satisfy the partition
of unity. From a computational point of view, it is interesting to note that
equation (2.21) allows synthesis kernels with compact support.

Both traditional and modern sampling schemes follow the standard three-step
paradigm: prefiltering, sampling and postfiltering as illustrated in Figure 2.8.
However in modern sampling, both filters are not necessarily ideal and identi-
cal. For the minimum l2-norm approximation, the analysis function ϕa(x− k)
is uniquely determined by the biorthogonality condition (it is said that the
analysis function is the dual function of the synthesis function):

〈ϕa(x− k), ϕs(x− l)〉 = δ(x− k − l). (2.22)

If ϕs is orthonormal, then it is ϕa = ϕs, which is for example the case with the
sinc function in Shannon’s sampling theory.
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f(x) f̂(x)
ϕa(x) ϕs(x)

prefiltering sampling postfiltering

c(k)∑
k∈Z

δ(x− k)

Figure 2.8: Schematic representation of the standard three-step paradigm: the
analog input signal is prefiltered with ϕa and sampled, afterwards, the signal is re-
constructed by analog filtering of c(k) with ϕs.

f(x) f̂(x)
ϕa(x) ϕs(x)qint(x)

acquisition
device sampling

digital
correction

reconstruction
filter

f(k) c(k)∑
k∈Z

δ(x− k)

Figure 2.9: Sampling for non-ideal acquisition devices. It is the same block diagram
of Figure 2.8, except for the additional digital correction filter qint.

In practice however, the analog prefilter is often dictated by the acquisition de-
vice and is thus not necessarily optimal or ideal. Given the measurements after
prefiltering and sampling, we want to construct a meaningful approximation of
the form (2.19) with a synthesis function ϕs. A meaningful approach is based
on consistent sampling: the signal approximation should yield exactly the same
measurements if it was reinjected into the system. This can be solved by intro-
ducing a suitable digital correction filter qint as shown in the block diagram in
Figure 2.9. If we revisit the standard reconstruction in equation (2.12), we can
reformulate the interpolation process as (where we set T = 1 for the simplicity
of notation)

f̂(x) =
+∞∑

k=−∞
f ∗ qint(k)︸ ︷︷ ︸

c(k)

ϕs(x− k). (2.23)

The solution can also be presented in the traditional interpolation form:

f̂(x) =
+∞∑

k=−∞
f(k)ϕint(x− k), (2.24)

where ϕint is the interpolation kernel denoted as

ϕint(x) =
+∞∑

k=−∞
qint(k)ϕs(x− k). (2.25)

In the next section, we will describe some popular interpolation and synthesis
kernels used in image resampling applications.
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Figure 2.10: Ideal anti-aliasing and reconstruction filter: (a) sinc kernel plotted for
|x| < 3 and (b) logarithmic plot of the magnitude of its Fourier transform (in dB).

Finally, we want to mention that there is close relationship between the modern
sampling theory and the wavelet theory. The analysis tools and mathematics
are essentially the same except that wavelets analyze the signal at different
scales. A detailed discussion of wavelets is beyond the scope of this work and
we refer the interested reader to the standard wavelet literature [Mallat, 1989].

2.2 Linear image interpolation

The general interpolation formula (2.24) describes the discrete-to-analog pro-
cess as a convolution of the (discrete) image with a continuous interpolation
kernel ϕint(·), which is a linear operation, hence the term linear image inter-
polation. As illustrated in Figure 2.10(b), the ideal reconstruction kernel is
constant and 1 in the passband (denoted by the interval −π < ω < π in angu-
lar frequencies6 and the cutoff point or Nyquist frequency is given by ω = π)
and 0 in the stopband (|ω| > π). As mentioned before, the optimal sinc inter-
polation kernel for bandlimited signals is rarely used in practice because of its
infinite support and its slow decay.
We are then left with the problem of how to choose the interpolation kernels.
Usually, symmetrical and separable kernels (see equation (2.14)) are employed
to reduce the computational complexity. This also makes the implementation
in multiple dimensions straightforward.

As discussed in Section 2.1.6, the interpolation kernels should also satisfy the
partition of unity condition (2.21). This means that for any displacement x
the direct current (dc)-gain will be unity and the energy of the resampled
image, i.e. the squared l2-norm, remains unchanged. In other words, the mean

6Angular frequencies ω are often used in literature and are related to the frequencies by
ω = 2πu.
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brightness of the image is not affected if the image is resampled. Therefore,
kernel functions that satisfy or fail condition (2.21) are named dc-constant or
dc-inconstant, respectively.
The consistent sampling condition guarantees that the image is not modified if
it is resampled on the same grid. Therefore, interpolation kernels satisfy

{
ϕint(x) = 1 if x = 0,
ϕint(x) = 0 if x ∈ Z0,

(2.26)

where Z0 = Z/{0}. In contrast to interpolators, kernels that do not satisfy
equation (2.26) are called approximators.

We briefly mention the most important classes of linear interpolation meth-
ods, for a more comprehensive overview we refer the reader to some ex-
cellent survey articles on linear image interpolation [Lehmann et al., 1999,
Meijering et al., 2001] and to an exhaustive historical review on image interpo-
lation [Meijering, 2002].

2.2.1 Sinc-approximating interpolation kernels

Starting from the ideal reconstruction kernel, we can design a family of prac-
tical interpolation kernels by multiplying the sinc function with a windowing
function w(·) of limited spatial support [−m,m]:

ϕint,ws(x) = w(x)sinc(x), (2.27)

with w(x) = 0 (∀|x| ≥ m) and 2m ∈ N. If w(x) = 1 (∀|x| < m) or equivalently
w(x) = Π(mx), the interpolation kernel is called 2m-points truncated sinc and
2m-points windowed sinc, otherwise. In the frequency domain, truncation is
equivalent to a convolution of a rectangular function (from the ideal sinc inter-
polation kernel) with a sinc function (the frequency response of the windowing
function). This results in numerous overshoots or ripples in the stopband as
illustrated in Figure 2.11. Note that truncated sinc is also dc-inconstant for
any choice of m < +∞.

It would be a better idea to use another windowing function that has better
properties in the frequency domain. Some examples of windowing functions
are given in Table 2.1. More examples can be found in [Meijering et al., 2001].
The Blackman-Harris windowed sinc provides a dc-constant interpolator, while
most other windowing functions do not have this superior property. That is
why we often employ the 4-term Blackman-Harris windowed sinc interpolation
as a reference tool throughout this work. The kernel and the magnitude of its
Fourier transform are plotted in Figure 2.12.
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Figure 2.11: Truncated sinc interpolation (m = 2.5): (a) truncated sinc kernel and
(b) logarithmic plot of the magnitude of its Fourier transform (in dB).

Table 2.1: Several popular windowing functions and their definition. In the defini-
tions of Kaiser and Gaussian windowing functions, α ∈ R

+ represents a free parameter
and I0 is the zeroth-order modified Bessel function. In the definition of the raised-
cosine function, the free parameter β (0 ≤ β ≤ 1) represents the roll-off factor, which
is a measure of the excess bandwidth, i.e. the bandwidth occupied beyond the Nyquist
bandwidth 1/2T .

Windowing function Definition

Bartlett wBar = 1 − |x|
m

Blackman wBla = 0.42 + 0.50 cos
(

πx
m

)
+ 0.08 cos

(
2πx
m

)
Blackman-Harris (3-term) wBH3 = 0.42323 + 0.49755 cos

(
πx
m

)
+

0.07922 cos
(

2πx
m

)
Blackman-Harris (4-term) wBH4 = 0.35875 + 0.48829 cos

(
πx
m

)
+

0.14128 cos
(

2πx
m

)
+ 0.01168 cos

(
3πx
m

)
Bohman wBoh =

(
1 − |x|

m

)
cos

(
πx
m

)
+ 1

π sin
(

π|x|
m

)
Gaussian wGau = exp

(
− 1

2

(
α x

m

)2)
Hamming wHam = 0.54 + 0.46 cos

(
πx
m

)
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Figure 2.12: The 4-term Blackman-Harris windowed sinc interpolation (m = 6):
(a) kernel plotted for |x| < 3 and (b) logarithmic plot of the magnitude of its Fourier
transform (in dB).

2.2.2 Piecewise polynomial-based interpolation kernels
Another broad class of interpolation kernels are composed of piecewise polyno-
mials. They are very popular because of their simplicity. In general, piecewise
nth-degree polynomial kernels (n ≥ 1) can be written in the following form:

ϕint,pol(x) =

⎧⎪⎨
⎪⎩

n∑
i=0

aij |x|i if j − ξ ≤ |x| < j + 1 + ξ,

0 if |x| ≥ m,

(2.28)

where ξ = 1/2 for n even and ξ = 0 for n odd and j = 0, 1, . . . ,m + ξ − 1.
The parameter m determines the spatial support [−m,m] of the convolution
kernel.

The simplest and computationally cheapest approach to build a piecewise poly-
nomial kernel is using zero- or first-degree polynomials, resulting in the nearest-
neighbour (also called pixel replication) and bilinear interpolation kernel,7 re-
spectively defined as

ϕint,nn(x) =
{

1 if − 1
2 ≤ |x| < 1

2 ,
0 otherwise, (2.29)

ϕint,bil(x) =
{

1 − |x| if 0 ≤ |x| < 1,
0 otherwise. (2.30)

The kernels and the logarithmic plot of the amplitude of their Fourier trans-
forms are given in Figures 2.13 and 2.14, respectively. Recently, an original con-
tribution to the bilinear interpolation has been introduced in [Blu et al., 2004],

7To avoid confusion with the general class of linear image interpolation techniques, we
assign the term bilinear image interpolation to the piecewise first-degree polynomial kernel.
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Figure 2.13: Nearest neighbour interpolation: (a) rectangular kernel and (b) loga-
rithmic plot of the magnitude of its Fourier transform (in dB).
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Figure 2.14: Bilinear interpolation: (a) triangular kernel (or hat function) and (b)
logarithmic plot of the magnitude of its Fourier transform (in dB).

that significantly improves the interpolation quality with simple kernel shifts.
As a convention, kernels with polynomials of degree n are called quadratic
(n = 2), cubic (n = 3), quartic (n = 4), quintic (n = 5), sextic (n = 6), septic
(n = 7), octic (n = 8), nonic (n = 9), etc.

Many other popular interpolation kernels fall into this category, just to mention
a few well-known ones: Catmull-Rom, Dodgson, Keys, Lagrange, Mitchell,
Gauss, etc. [Dodgson, 1997, Lehmann et al., 1999, Meijering et al., 1999]. In
fact, every approximating or general synthesis kernel can be rewritten in a
standard interpolation form via equation (2.25). For example, this is the case
for b-splines β(x) (see Section 2.2.3 for more details): the interpolating version
is then called the cardinal b-spline βc(x). Note that the support of cardinal
b-splines is spatially infinite, which makes the implementation unattractive
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for practical applications. On the other hand, the support of b-splines can be
very compact. That is why b-splines became very popular in computational
efficient image processing tasks.

Besides the partition of unity and consistency conditions, some important ker-
nel design specifications are the continuity constraint (the lth-order derivatives
(l < n) of the kernel at positions |x| = 0, 1, . . . ,m should be continuous), the
slope constraint (the slope at |x| = 1 should approximate the slope of the
sinc kernel) and the flatness constraint (the Fourier spectrum of the kernel is
required to be flat at u = 0).

2.2.3 Generalized interpolation kernels
In the generalized sampling theory, we start from the interpolation formula
given by equation (2.23) where the coefficients c(k) do not necessarily corre-
spond to image pixels. To get more familiar with the generalized interpolation
kernels, we discuss the commonly used family of spline functions, namely the
b-splines or basis splines.

The simplest and smallest basis function that satisfies the partition of unity
is called the zeroth-degree b-spline and is denoted as β0(x). That function
happens to be the rectangular function or nearest neighbour interpolation ker-
nel β0 = ϕint,nn as given by equation (2.29). Higher degree b-splines can be
reconstructed via iterative convolution (n ≥ 1):

βn(x) = β0(x) ∗ βn−1(x) = β0(x) ∗ β0(x) ∗ . . . ∗ β0(x)︸ ︷︷ ︸
n + 1 times

. (2.31)

Note that the first degree b-spline corresponds to the bilinear interpolation
kernel β1 = ϕint,bil as defined in equation (2.30). Several b-spline kernels are
plotted in Figure 2.15(a). As an alternative approach, a b-spline of degree n
can be written in the following explicit form:

βn(x) =
1
n!

n∑
k=0

(
n+ 1
k

)
(−1)k

(
x− k +

n+ 1
2

)n

+

, (2.32)

where the unit step function (x)n
+ is defined as

(x)n
+ =

{
xn if x ≥ 0,
0 otherwise. (2.33)

When n→ +∞, the b-spline β∞(x) approaches a Gaussian function, while the
cardinal b-spline β∞

c (x) converges to a sinc function. Note that the Fourier
transform of the b-spline βn(x) is sincn+1(u). Convolution with the b-spline
kernel results then in blur and there is more attenuation of high frequency
components for higher values of n.
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Figure 2.15: b-splines: (a) kernels of degree 0, . . . , 4 and (b) the cardinal cubic
b-spline β3

c compared to the sinc kernel.

For n ≥ 2, b-splines are no longer interpolators, but approximators. To fulfil the
consistent sampling condition, a proper digital correction filter qint (shown in
Figure 2.9) ensures that the convolution of the coefficients c(k) with the b-spline
kernels produces a signal with the same samples as the input samples according
to equation (2.23). The b-spline coefficients c(k) are obtained by prefiltering
the input image. This can be done either by matrix manipulations to solve a
set of equations or by means of highly efficient recursive filtering techniques.
For further details regarding the theoretical and implementational aspects of
the b-spline interpolation, we refer to [Unser et al., 1993a,Unser et al., 1993b,
Unser, 1999].

Besides the popular b-splines, we just want to mention that the shifted linear in-
terpolation [Blu et al., 2004] and the optimal maximal-order-minimal-support
(o-moms) kernels [Blu et al., 2001] also fall into this generalized interpolation
category. o-moms functions are built from linear combinations of b-splines
and its derivatives, which then have the minimal spatial support for a given
interpolation accuracy.

2.2.4 Discussion

In general, linear interpolation techniques are relatively simple to implement
and are also very efficient. Therefore, they are very popular and widely used
in hardware and software implementations. In Figure 2.17, we show the results
of nearest neighbour, bilinear, cubic Catmull-Rom, cubic b-spline, 16-points
Blackman-Harris windowed sinc and ideal sinc8 interpolation of the image given
in Figure 2.16. At first sight, we can clearly notice three kinds of disturbing
artefacts in these interpolation results:

8This is implemented as zero-padding in the discrete Fourier transformation. As a result,
the output dimensions are restricted to even integers.
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Figure 2.16: The lighthouse image.

• staircase artefacts: the staircase patterns at (strong) edges (also called
jagged edges) are clearly visible in the nearest neighbour, bilinear and
cubic Catmull-Rom interpolation. A small amount of this artefact can
also be noticed in the cubic b-spline interpolation. These staircase arte-
facts are caused by the presence of sidelobes and ripples in the stopband
|ω| > π (e.g. in Figures 2.13(b) and 2.14(b)). Because of this, frequency
components of the replicated spectra are badly suppressed.

• blur artefacts: this unsharpness is most prominent near object edges in
bilinear and cubic Catmull-Rom interpolation. We can also observe a
small amount of blur in nearest neighbour and cubic b-spline interpola-
tion. The Fourier analysis of the kernels in Figures 2.13(b) and 2.14(b)
tells us that blur is caused by the slight attenuation of the (high) fre-
quencies in the passband −π < ω < π.

• ringing artefacts: in the uniform areas near edges we can see some
Gibbs effects (i.e. apparent ghost repetitions or halos of the edges) in
the Blackman-Harris windowed sinc and ideal sinc interpolation. Inter-
polation by means of a bandlimited convolution kernel stops the high
frequency components abrupt, which causes then these Gibbs phenom-
ena.

As a consequence of the extra lobes and ripples in the stopband, unwanted
and false high frequency components are left in the stopband during re-
sampling. This can be avoided using a high-quality two-stage resampling
scheme [Seppä, 2007], which consists of the ideal sinc interpolation (i.e. zero-
padding of Fourier coefficients) followed by a standard resampling method.
Even though the authors do not explain why their results are improved, the
key of their success is quite simple: the main lobes and ripples in the stopband
coincide with the zero-patterns of the ideal sinc interpolated image. Therefore,
the unwanted high frequency components are much attenuated. The major
drawbacks of this technique are the extra memory usage and the additional
computation time.
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(a) Nearest neighbour (b) Bilinear

(c) Cubic Catmull-Rom (d) Cubic b-spline

(e) Blackman-Harris windowed sinc (f) Ideal sinc

Figure 2.17: Image interpolation results (4× enlargement of Figure 2.16).
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Figure 2.18: The presence of frequency aliasing during image rotation: (a) regions
where aliasing occurs is denoted by grey and (b) the alias-free region is given by a
circular support in the frequency domain. The 2d frequencies are denoted as (u, v).

In literature (e.g. in [Lehmann et al., 1999, Seppä, 2007]), a common way to
compare the performance of different resampling kernels is to apply a rotation
experiment: the image is successively rotated until a full rotation (360◦) is
reached. To avoid confusion at the image boundaries, only the central part of
the fully rotated image is compared to the original image. Because rotation in
the spatial domain corresponds to an identical rotation in the Fourier domain
and because image rotations are often carried out on the same grid, high fre-
quency components will also get confused (i.e. aliasing at the boundaries of the
frequency domain). This aliasing effect is illustrated in Figure 2.18(a). Unfor-
tunately, the presence of frequency aliasing is usually neglected in literature.
To avoid this problem, an alternative resampling experiment can be worked
out based on subpixel shifts, or we can apply an ideal low-pass filter with a
circular support on the image before carrying out the rotation experiment (see
Figure 2.18(b)).

To justify our claims, we set up a small rotation experiment: we rotate 5
images 15 times with successive rotations of 24◦, afterwards we calculate the
psnr between the central parts of the resampled result and the original image
(an example is given in Figure 2.19). For the filtered approach, we apply an
ideal low-pass filter with circular support on the original image while for the
common approach, no prefiltering is used. The psnr results for both method-
ologies are given in Table 2.2 for the nearest neighbour, bilinear, cubic b-spline
and Blackman-Harris windowed sinc interpolation as well as in a two-stage re-
sampling scheme with 2× and 4× sinc prefiltering. The resampled images are
shown in Figures 2.20 and 2.21.
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Table 2.2: Average psnr results in dB of a rotation experiment of 5 images, by the
common (com) and filtered (fil) approach. The best psnr result is written in bold
letters for each resampling method.

Resampling method Standard way 2-Stage (2×) 2-Stage (4×)

com fil com fil com fil

Nearest neighbour 19.55 19.92 25.51 26.34 34.64 36.04
Bilinear 22.74 23.12 26.08 26.84 32.81 34.34
Cubic b-spline 28.03 29.31 44.09 49.38 53.16 58.02
Blackman-Harris 30.20 32.58 52.57 55.44 52.42 55.29

Figure 2.19: Boat image. The central region of interest (roi) is used to compute
the psnr values.
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(a) Nearest neighbour (21.64 dB) (b) 2-Stage nearest neighbour (39.83 dB)

(c) Bilinear (25.27 dB) (d) 2-Stage bilinear (38.82 dB)

Figure 2.20: The resampling result after several rotations. The two-stage resampling
scheme interpolates the image in a first stage 4× in each direction using an ideal sinc.
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(a) Cubic b-spline (34.44 dB) (b) 2-Stage cubic b-spline (69.36 dB)

(c) Blackman-Harris (38.11 dB) (d) 2-Stage Blackman-Harris (62.14 dB)

Figure 2.21: The resampling result after several rotations (continued).
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From the results, we can observe that the filtered approach yields higher psnr
values compared to the common approach. However, the loss is not always
consistent: it varies from 0.5 dB up to 5 dB between the common and the
filtered implementation. Therefore, wrong conclusions may be drawn based on
the common approach.
We also note for example that nearest neighbour performs better in a two-
stage resampling scheme (with 4× sinc prefiltering) than bilinear interpolation
because deviations in the passband, which result in blur artefacts, become more
dominant. This can be clearly observed in the logarithmic magnitude plots of
the Fourier transforms of the kernels given in Figures 2.13(b) and 2.14(b).

2.3 Image restoration
Images enlarged with linear interpolation techniques suffer from a number of
artefacts and do not aim at restoring the missing high frequency content. In
non-ideal circumstances, it is very difficult to reconstruct the original signal.
In general, distortion by frequency aliasing is non-recoverable (unless we have
multiple subpixel shifted images, see Section 2.4). Additionally, quantization
and noise corrupt the measurements of the individual samples. To overcome
these problems, we introduce some prior knowledge about images and deal with
a more general mathematical acquisition model.

2.3.1 Adaptive interpolation
To restore the missing high frequency content, the unknown Fourier coeffi-
cients beyond the Nyquist frequency need to be estimated. Since there are no
measurements available in the stopband, various a priori assumptions can be
made about the image, both in the frequency and spatial domain.

Papoulis assumes that the high-resolution (hr) image is bandlimited (with
B > π) and also that the image has a finite extent. From these conditions,
he computes additional high frequency information via an iterative algorithm9

in which alternatively, the known set of samples are projected onto the high-
resolution grid and an ideal low-pass filter (according to the new bandwidth B)
is applied on the hr image [Gerchberg, 1974,Gerchberg, 1989,Papoulis, 1975].

In the spatial domain, other assumptions can be made to avoid some artefacts.
A well-known disadvantage of linear interpolation methods is that they assume
that the signal is smooth everywhere, which is clearly violated in the real
world. Therefore, interpolation should be spatially adaptive according to
the image or edge data. For example, an ideal edge can be modelled as a
step or Heaviside-like function. However, due to the convolution (2.24) with
finite-support symmetrical kernels, also “wrong” pixel values (e.g. pixels across
the edge) are contributing to the estimated pixel, which eventually results in

9Also known as the Papoulis-Gerchberg algorithm.
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blurred edges.

In Chapter 3, we will return to adaptive or non-linear interpolation and discuss
some a priori assumptions for image interpolation in more detail.

2.3.2 Acquisition model

Until now, our model assumes that a continuous scene is sampled with
Dirac pulses, which results in a discrete image. However, in conventional
imaging systems (as in camera-based applications), there is a natural loss
of spatial resolution caused by optical distortions (camera lens blur, out of
focus, diffraction limit, atmospheric blur, etc.), motion blur due to limited
shutter speed, quantization and noise that occur within the sensor (due to
the analog circuitry) or during transmission and there is insufficient sensor
density [Park et al., 2003]. Thus, the acquired image usually suffers from
blur, noise and frequency aliasing effects. Additionally, some postfiltering op-
erations such as lossy compression can degrade the image quality tremendously.

The general acquisition chain for common cameras is illustrated in Figure 2.22.
The blur operation is characterized by its (space-varying) point spread function
(psf). In the rest of this work, decimation will be denoted as the combination of
(non-ideal) anti-aliasing filtering and sampling. The anti-aliasing filter can also
be considered as part of the blur kernel. The additive noise is characterized
by its probability density function (pdf). The compression depends on the
codec, typically this will result in block and quantization artefacts (e.g. in
jpeg- and mpeg-based compression schemes). We can omit this in case of
lossless compression (i.e. the original image is reconstructed perfectly after
decompression) or if there is no codec at all. The goal of image restoration is
then to reconstruct the hypothetical desired high-resolution (hr) image from
a given degraded low-resolution (lr) image.

Although the proposed acquisition model is much more complex than Dirac
sampling, we have not taken into account a number of non-degrading linear and
non-linear operations, which are built into an off-the-shelf camera, e.g. gamma
and colour correction, sharpening (e.g. unsharp masking), contrast enhance-
ment (e.g. histogram stretching), demosaicing, etc. Since these operations are
often manufacturer-specific, we will do not discuss them further in this work,
although incorporating them would additionally improve the restoration pro-
cess.

2.3.3 Image restoration as an ill-posed inverse problem

As discussed in the previous section, image restoration is the reconstruction
process of the original high-resolution image from an observed degraded
low-resolution image. However, image restoration is usually a computationally
complex and numerically ill-posed inverse problem [Kirsch, 1996]. We will
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Figure 2.22: Traditional observation model for super-resolution image reconstruc-
tion in camera-based applications. The image acquisition process consists of con-
structing a digital image from a continuous scene.

make this assertion more clear by clarifying the inverse and ill-posed problems.

A forward and an inverse problem are related to each other if the for-
mulation of one of the problems involves all or part of the solution of the
other [Keller, 1976]. The forward or direct problem is well-posed, while the
inverse problem is ill-posed in general. Given the model and its parameters,
the direct problem is then to find the solution of this operation. In our
situation, this problem is transformed into finding the observed lr image
given the hr image (i.e. the parameters) and the acquisition model, which is
a simple task. On the other hand, the inverse problem is to find the model
parameters given the observed data or to find the hr image in the restoration
problem. This is obviously a much more complex problem than the direct
problem. In a more general context, we can also say that image synthesis in
graphics is a direct problem, while image analysis is an inverse problem.

According to Hadamard’s work [Hadamard, 1923], a problem is classified as
well-posed if the solution to the problem:

1. exists for any data,

2. is unique for any input data and

3. depends continuously on the initial data (i.e. the solution is stable under
perturbations on the data).

In contrast, a problem that fails to satisfy any of these conditions is called
ill-posed. We will discuss each condition in more detail according to the image
restoration problem:

1. The presence of noise during the acquisition may result in an observed
image that is inconsistent with any scene. The result is that the system is
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noninvertible and the hr image can not be estimated from its observation.
For example, we can obtain negative intensity values in the solution to
the inverse problem, which cannot really exist of course.

2. Since the number of pixels in the hr image, i.e. the number of unknowns
is considerably higher than the the number of pixels in the lr image, it is
clear that insufficient constraints exist to ensure a unique solution to the
inverse problem. Furthermore, at least some information is lost during
the acquisition process, which indicates that the solution to the inverse
problem is likely to be non-unique.

3. Depending on the characteristics of the acquisition model, the solution
may be highly sensitive to perturbations of the observed data. For ex-
ample, noise is amplified tremendously by deblurring.

Note that the Hadamard conditions are rarely satisfied in practice, such that
image restoration is invariably ill-posed. In practice, the solution to inverse
problems are determined using computational methods, which implies that
the observed data, the solution and the model must be discretized. The
discretization of ill-posed problems leads to ill-conditioned numerical prob-
lems [Borman, 2004].
To overcome numerical instability in the computational solution of the inverse
problem, regularization methods are applied in order to obtain acceptable solu-
tions. Regularization utilizes additional information (i.e. a priori assumptions)
to compensate for the loss in information that characterizes ill-posed problems
and turns the problem into a well-posed one [Borman, 2004]. Such a regulariza-
tion can be carried out in a stochastic or set-theoretic framework. In Chapter 4
et seq, we will discuss this topic in more detail.

2.4 Super-resolution imaging
The classical image restoration problem has been studied for several decades
and a wide variety of restoration techniques have been proposed in literature.
More recently, with the growing interest in video processing, researchers
started to address the problem of multi-frame image restoration. Since the
two problems are closely related, much of the work in multi-frame restoration
borrows from techniques developed for the single image restoration problem.
Nevertheless, new problems have to be tackled when we want to employ
information from multiple frames.

Though many definitions of super-resolution image reconstruction exist, it is
broadly recognized as the bandwidth extrapolation beyond the bandlimit of
the imaging system.10 In contrast to the classical image restoration, super-
resolution restoration requires the restoration of lost information, i.e. the true

10Other variants mention the diffraction limit of the optical system. However, in digital
imaging, the resolution is limited not by the diffraction limit, but rather by the spatial
integration at the sensors.
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high frequency content. Therefore, super-resolution is also called the second
generation of image restoration techniques.

2.4.1 Multi-frame restoration

The best known and most important class of super-resolution techniques is
the one of multi-frame restoration techniques. Given a set of similar but non-
identical images, e.g. from a video stream, it becomes possible to use different
observation data for resolution improvement.

From the sampling point of view, as discussed earlier in Section 2.1.5, we
can reformulate the multi-frame super-resolution problem as a multichannel
sampling problem, i.e. uniformly spaced samples of the different images
overlaying the high-resolution grid, which results in nonuniform sampling. To
convert a set of irregularly placed samples into a regular grid, reconstruction
(also called fusion) is required. However, the shifts between the pixels of the
different images are usually unknown and need to be estimated first through
motion compensation or image registration. Of course, the pixels are usually
not measured in ideal circumstances and as a consequence, we have to take the
acquisition model into account. Like the classical image restoration problem,
super-resolution image reconstruction is also an ill-posed inverse problem. In
a nutshell, the three main components of multi-frame super-resolution are
registration, fusion and restoration.

Multi-frame sr image reconstruction in camera-based applications is possible
if two conditions are fulfilled, namely the lr images must be subpixel
shifted and the images must contain frequency aliasing (due to subsam-
pling) [Park et al., 2003]. Indeed, if there are no subpixel shifts (i.e. all pixel
shifts are integer), each image contains exactly the same pixel information
(besides noise) and therefore, no new information is available to reconstruct
the missing high frequencies. If there is no frequency aliasing, then the
observed data only contains exact bandlimited information and recovering
high frequencies is not possible. Under the stated conditions, restoration
techniques using multiple acquisitions are superior to traditional restoration
approaches that employ only a single image. A comprehensive discussion on
this topic will be given in Chapter 7.

In some applications (e.g. in magnetic resonance imaging), there is no frequency
aliasing present due to the image acquisition process. We show in Chapter 8
that recovery of true high frequent information from multiple images is still
possible under specific circumstances. In other applications (e.g. in document
processing), it is even possible to perform super-resolution using only a single
image. This will be discussed in Chapters 5 and 6.
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2.4.2 Classification
Super-resolution and/or restoration techniques can be broadly categorized by
the number of inputs and the number of outputs. We will list and briefly
discuss the possible input-to-output combinations:

• single-frame to single-frame (or single-input single-output (siso)): this
corresponds to the classical image restoration setting (Chapter 4). In
some applications, we can break through the bandlimit of the imaging
system by using only one input image (Chapters 5 and 6). If the input lr
image is not corrupted by noise, interpolation techniques can be applied
(Section 2.2 and Chapter 3).

• multi-frame to single-frame (or multi-input single-output (miso)): this
corresponds to the multi-frame super-resolution setting that produces a
still hr image from an image sequence (Chapters 7 and 8).

• multi-frame to multi-frame (or multi-input multi-output (mimo)): this
corresponds for example to the video format conversion problem, e.g. con-
verting from standard definition television to high definition television
(Chapter 7). Note that it is now possible to remove motion blur
(which is a temporal phenomenon with a spatial artefact as an ef-
fect [Schechtman et al., 2005]).

• multi-view video to multi-frame: in multi-camera systems it is interest-
ing to combine different video streams to restore temporal aliasing and
thus improve the frame rate through super-resolution. In this way, a
high-speed camera system can for example be built from several cheap
camera’s. Another interesting application is to merge differently coded
versions of a video stream to obtain a better video quality and resolution,
both in spatial and temporal domain.

• multi-view to multi-view video: it is a great challenge to design efficient
algorithms for multi-camera systems, for example in real-time applica-
tions.

• different single/multi-input to single/multi-frame: resolution information
can also be obtained from different image modalities, for example in
remote sensing applications (e.g. combining multispectral images with
panchromatic images), in medical applications (e.g. combining mri, ct
and pet for medical diagnosis) or in depth cameras (common hr images
are combined with lr depth images [Diebel and Thrun, 2005]).

• single/multi-frame to learning-based single/multi-frame: in the train-
ing stage, high-resolution image features (for example texture informa-
tion) are collected, which are then used in the actual reconstruction pro-
cess as prior information [Freeman et al., 2002,Datsenko and Elad, 2007,
Jiji et al., 2007]. Of course, the performance of the algorithm depends
heavily on the training data.
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2.5 Related problems
It is not our intention to give an exhaustive overview of all existing image
restoration problems, but to relate a few well-known image/video processing
fields to the general resolution enhancement problem. Of course, the presented
problems are not exclusive and can appear jointly in practical applications.

Starting from the general resampling problem, we can find several related in-
terpolation tasks:

• image inpainting refers to the fill-in of missing or oc-
cluded regions in an image based on information available
on the observed regions [Chan et al., 2005, Chan et al., 2007,
Tschumperlé and Deriche, 2005]. A common principle for inpaint-
ing is to smooth the transitions near the boundaries between the
observed and occluded regions in a natural way. The image interpolation
problem is in theory a special case of image inpainting: the observed
regions are then reduced to a regular “nail bed”. A typical inpainting
application can be found in old movie restoration: scratches and blotches
are detected and removed in a first step and inpainting techniques are
then used for filling in the removed regions [Haindl and Filip, 2002].

• deinterlacing is used to convert an interlaced video into a progressive
format [Van De Ville, 2001,Yoo and Jeong, 2002]. The inverse process of
producing half-resolution fields at double the frame rate is known as in-
terlacing. To obtain the full vertical resolution, interpolation is needed
at odd or even lines as illustrated in Figure 2.23(a). Bad deinterlacing of
moving objects or moving scenes result in tearing artefacts where alter-
nate lines are slightly displaced from each other.

• demosaicing is defined as a digital image process used to interpo-
late a complete image from the partial raw data received from the
colour-filtered ccd or cmos image sensor via a colour filter array
(cfa) [Trussell and Hartwig, 2002,Hirakawa and Parks, 2006]. The most
commonly used cfa is the Bayer pattern, shown in Figure 2.23(b). The
challenge is to restore the missing colours in the presence of aliasing, but
in contrast to single image interpolation, correlation between the colour
planes can be exploited. The most occurring problems during reconstruc-
tion are zippering artefacts and apparent false colours near edge regions.

Note that both deinterlacing and demosaicing problems face the aliasing issue
as the general super-resolution problem. Therefore, it is reasonable to address
these problems in a unified context: a joint super-resolution and demosaic-
ing/deinterlacing approach (such as in [Farsiu et al., 2006a]) provides the op-
timal solution for the reconstruction problem.

From the image restoration problem, we can briefly categorize the tasks ac-
cording to the acquisition model (see Figure 2.22):
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Figure 2.23: Grids in deinterlacing and demosaicing problems (d=data, r=red,
g=green, b=blue).

• denoising is the process of removing noise from a signal. The origin of
noise is usually found in the acquisition or transmission process. The ob-
jective is to design an algorithm that can remove noise and simultaneously
preserve the original image details and fine structures.

• deconvolution (or deblurring) is the process of removing blur which is
denoted as a mathematical convolution with a psf or blur kernel. In
practice, the psf is unknown and therefore, the blur kernel is estimated
prior the deconvolution (via blur identification) or in the other case, the
blur kernel and the deblurred image are jointly estimated from the data
(also called blind deconvolution).

• deblocking is applied to blocks in decoded image/video to improve vi-
sual quality and prediction performance by smoothing over the block
boundaries. Disturbing block artefacts originate from low bit rates and
significant quantization in block-based compression schemes (e.g. jpeg
or mpeg systems).

Given multiple images or an image sequence acquired from a same scene, we
can exploit and combine the pixel information in multi-frame techniques:

• motion compensating methods in video processing use motion estimation
to predict and consider the right pixel values at the correct positions from
previous (and subsequent) frames. Typical applications are multi-frame
deinterlacing and video denoising [Zlokolica, 2006].

• image fusion is the process of combining relevant information from two
or more (aligned) images into a single image. The resulting image will
be more informative than any of the input images. This is for example
applied in extending the depth of field in microscopy [Tessens et al., 2007]
or in extending the range of exposures (also known as high dynamic range
(hdr) imaging [Debevec and Malik, 1997]).

• mosaicing is the stitching process of multiple images with overlapping
fields of view to produce a segmented panorama (i.e. with a larger
field of view) [Traka and Tziritas, 2003]. Such panoramic images facil-
itate automatic annotation [Luong et al., 2006a] or aid in compressibil-
ity [Smolić et al., 1999].
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2.6 Conclusion
Several problems still exist in the Shannon sampling theory: firstly, it is
an idealization because real world signals are not bandlimited (except for
f(x) = 0), secondly, there is no such thing as an ideal anti-aliasing filter
and finally, Shannon’s reconstruction formula is rarely used in practice due
to the slow decay of the sinc function. Linear interpolation methods are
then proposed as a practical solution for the image resampling problem.
Unfortunately, artefacts such as staircasing, blur and ringing are inherit to
these techniques. Therefore, we explore adaptive interpolation techniques in
Chapter 3 to overcome these problems.

In practice, a digital image suffers from several degradations such as blur,
noise, compression artefacts, etc. Image restoration techniques are then intro-
duced to take acquisition models into account. However, image restoration is
an ill-posed inverse problem, which can be solved through regularization (see
Chapter 4 et seq).

In some cases, for example with multiple aliased images, it is possible to restore
true resolution content beyond the bandlimit of the imaging system. This is
called super-resolution and is discussed in Chapter 7 et seq. Finally, we gave a
short overview of the related problems in other image processing applications.
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3
Level curve mapping

interpolation

Scientia potentia est.
—Sir Francis Bacon

Image interpolation addresses the problem of generating a high-resolution im-
age from its low-resolution version. Linear interpolation assumes that the im-
age is smooth everywhere (as discussed in Chapter 2). As a consequence, these
methods fail to capture the fast evolving statistics around edges and introduce
annoying artefacts such as blur, staircase and ringing effects. Since linear inter-
polation techniques can be implemented efficiently, they are generally preferred
in image processing hardware and software tools such as Adobe Photoshop and
gimp.
Adaptive or non-linear image interpolation methods improve the subjective
quality of the interpolated images by imposing more accurate models and by
incorporating prior knowledge. These techniques are able to avoid some or
all of the previously mentioned artefacts (blur, staircase and ringing effects),
although new kinds of artefacts might be introduced.

In this chapter, we give an overview of the existing state-of-the-art non-linear
interpolation techniques in Section 3.1 and in Section 3.2, we describe a novel
interpolation technique, which is based on linear image interpolation followed
by eliminating unwanted artefacts. The proposed algorithm sharpens edges by
mapping the smooth image level curves using adaptive contrast enhancement
techniques. The main novelty of this algorithm is the combination of two exist-
ing image processing techniques (i.e. isophote smoothing and contrast enhance-
ment), each having a different purpose, in a non-trivial way on top of the linear
interpolation techniques. Additional constraints are put on these algorithms
to achieve strict interpolation and to preserve the topology of the image level
curves. This results in sharper high-resolution images with less disturbing arte-
facts compared to the state-of-the-art non-linear interpolation techniques as dis-
cussed in Section 3.3. This work led to an icip publication [Luong et al., 2005]
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(a) (b)

Figure 3.1: Illustration of the two main concepts in edge-directed interpolation: (a)
preventing interpolation across edges avoids mixing pixels of both sides of the edge
and (b) performing interpolation along the edges follows the edge orientation.

and another conference publication [Luong and Philips, 2005]. Finally, Sec-
tion 3.4 concludes this chapter.

3.1 Non-linear image interpolation

We can broadly divide the state-of-the-art non-linear image interpolation meth-
ods into three classes: edge-directed, example-based and restoration-based in-
terpolation. We will discuss these classes in more detail and illustrate some
new artefacts that can be created by these adaptive techniques.

3.1.1 Edge-directed interpolation

The main motivation of edge-directed interpolation stems from the funda-
mental property of an ideal step edge (known as geometric regularity), i.e.,
that the image intensity field evolves more slowly along the edge orientation
rather than across the edge orientation. Geometric regularity has important
effects on the visual quality of an interpolated image such as the sharpness of
edges and the freedom from artefacts. Most existing adaptive interpolation
techniques are edge-directed.

From the assumption of geometric regularity, two different edge-directed inter-
polation strategies are commonly used: the first strategy avoids interpolating
across edges, while the second strategy performs interpolation along the edges.
The difference between these two concepts is illustrated in Figure 3.1.

Typically in the first strategy, an edge is detected with subpixel accuracy
and the linear interpolation is modified to prevent interpolation across this
edge [Jensen and Anastassiou, 1995, Allebach and Wong, 1996]. As a result,
the adaptively interpolated image looks much sharper than results produced
by linear interpolation. Alternatively, the edges can be roughly approximated
through data dependent triangulation (ddt), which is achieved by diagonals
that divide the squared grid into triangles [Su and Willis, 2004].
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In the second strategy, the orientation of the edge is locally estimated,
rather than the (exact) location of the edge. For example, some meth-
ods use the local covariance characteristics at low resolution to estimate
the missing high-resolution pixels, e.g. Li’s New Edge-Directed Interpolation
(nedi) [Li and Orchard, 2001] and its improved versions [Zhao et al., 2002,
Zhao and De Haan, 2003]. Adaptively Quadratic (aqua) image interpola-
tion determines the local quadratic signal class and then applies opti-
mal recovery to estimate the missing samples [Muresan and Parks, 2001,
Muresan and Parks, 2004]. Wang and Ward proposed an orientation-guided in-
terpolation method, in which image contours are divided into edges and ridges,
and interpolate in the direction based on the estimated orientation of edges
and ridges [Wang and Ward, 2007].
The edge-directed property of covariance-based adaptive methods gives the
capability to tune the interpolation coefficients to match an arbitrarily oriented
edge. These methods demonstrate significant improvements on the visual
quality over linear interpolation, but the computational cost is also much
higher than the linear methods. To reduce the computation time, directional
interpolation is applied in edge areas while linear interpolation is applied
in uniform areas, in which both methods produce similar (visual) results.
Alternatively, some algorithms only investigate a limited number of edge
directions (e.g., horizontal, vertical or diagonal) and interpolate locally along
the best edge directions [Battiato et al., 2002, Muresan, 2005]. Obviously,
quantizing the edge directions affects the accuracy of the imposed edge model.

Besides edge-directed interpolation techniques, other edge-based image
interpolation methods operate in multi-resolution frameworks such as
wavelets [Kinebuchi et al., 2001] and Laplacian pyramids [Jeon et al., 2006].
The algorithms based on the pyramid structure offer the possibility of pre-
serving sharp edges by exploiting relationships between coefficients at different
scales. This model is used to interpolate images by predicting coefficients at
finer scales.

3.1.2 Example-based interpolation

Since high-frequent components beyond the Nyquist limit are not present in
low-resolution images, the missing high-resolution detail needs to be estimated.
In general, these details cannot be retrieved via simple image sharpening. One
would expect that the richness of real-world images is difficult to capture ana-
lytically. This motivates a learning-based approach: in a training set, the algo-
rithm learns the fine details that correspond to different image regions seen at
a low-resolution scale and then uses these learned relationships to predict fine
details in other images [Freeman et al., 2002]. In [Muresan and Parks, 2004], a
training set can be used for determining the local quadratic signal class of the
low-resolution patches and edge-directed interpolation is then applied accord-
ing to this classification.
These methods produce sharper images, but the performance depends heavily
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on the training data. The main drawback of these methods is the potential for
introducing artefacts when the lookup table provides wrong high-resolution
patches. In addition, these image models may not work as well for data
containing artefacts, such as in block-based compression, as the methods tend
to consider artefacts as part of the image and may enhance the artefacts more
than the underlying image.

Stepin introduced a very fast magnification filter for cartoon images that maps
low-resolution 3 × 3 blocks directly into predefined high-resolution blocks,
which are stored in a lookup table [Ledda, 2006]. To reduce the number of
entries in the lookup table, the 8 neighbours of the central pixel are classified
into “close” and “distant” pixels (according to the difference in the yuv colour
space between the central pixel and its neighbours). As a result, only 256
different combinations need to be stored.

Fractal-based interpolation methods suppose that many things in na-
ture possess self-similarity, i.e. scale invariance [Honda et al., 1999,
Price and Hayes III, 1998]. This means that parts of the image re-
peat themselves on an ever-diminishing scale, hence the term self-
similarity. This resolution-independent relationship across various scales
is described by the fractal Brownian function (fbm) as introduced by
Mandelbrot [Mandelbrot, 1982]. This self-similarity property is ex-
ploited for fractal image compression and interpolation by mapping
the similar parts at different scales (via a contractive affine transforma-
tion) [Jacquin, 1992]. Due to the recursive application of these mappings
at the decoder stage, the notion of iterated function systems (ifs) is intro-
duced [Polidori and Dugelay, 1995]. In this framework, the “examples” are
not retrieved from an external training set, but from scaled versions of the
same image. Note that there are connections with edge-based multi-resolution
interpolation methods [Kinebuchi et al., 2001, Jeon et al., 2006], although
the prediction of the high-resolution information is done in a different
way [Gharavi-Alkhansari et al., 1997].

3.1.3 Restoration-based interpolation
Another image interpolation strategy is to avoid artefacts that are cre-
ated in the interpolated image, such as blur, staircase and ringing effects.
Restoration-based interpolation techniques start from a rough initialization of
the high-resolution image, typically achieved by linear interpolation, and try
to minimize the artefacts that are left by putting constraints on the hr image.

The most popular approach is based on partial differential equa-
tions (pde). pde’s describe the evolution of curves, surfaces
or vector fields and are also often applied in other image pro-
cessing tasks such as image denoising, sharpening, segmentation,
etc. [Gilboa et al., 2002, Tschumperlé and Deriche, 2005, Tschumperlé, 2006].
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Commonly, these algorithms are implemented as non-linear diffusion processes
that are controlled by the local gradient [Perona and Malik, 1990]. For
interpolation applications, the pde scheme is constrained. Specifically, the reg-
ularization is only applied to the missing image regions on the hr grid and thus
leaves the original pixels unaltered as in image inpainting [Tschumperlé, 2006].
In [Morse and Schwartzwald, 1998, Morse and Schwartzwald, 2001], an itera-
tive constrained level set reconstruction (isophote smoothing) is successfully
applied for restoring jagged edges. The removal of the so-called jaggies is
achieved by minimizing the local curvature. An effective numerical implemen-
tation of a pde scheme with both smoothness and orientation constraints for
edges is presented in [Jiang and Moloney, 2002].

Another approach to incorporate prior knowledge or to impose constraints
on the hr image is via projection-onto-convex-sets (pocs). pocs schemes
formulate interpolation as an ill-posed inverse problem and solve it by regu-
larized alternating projections. One of the constraints projects the hr image
onto the set of known samples. Examples of other constraints are smoothness
and positivity (e.g. a pixel must be in the range of [0, 255]). The pocs
approach in the image interpolation context are discussed in [Gerchberg, 1974,
Papoulis, 1975,Ferreira, 1994,Ratakonda and Ahuja, 1998].

Recently, we have collaborated to the development of a new interpolation al-
gorithm, which removes jagged edges using mathematical morphology tech-
niques. Originally designed for enlarging binary images, the algorithm ini-
tializes the hr image with a nearest neighbour interpolation. Various ori-
ented structuring elements are used in an iterative way to detect and vali-
date the extra “corners” coming from jagged edges. These validated corners
are removed by a pixel swapping algorithm (i.e. black pixels become white
and vice versa) [Ledda et al., 2005, Ledda et al., 2006a]. As a result, stair-
case effects are removed from the interpolated images. In a later stadium,
the algorithm was extended to treat greyscale images [Ledda et al., 2006b] and
coloured images with sharp edges in a fuzzy framework [De Witte et al., 2006].
In [Ledda et al., 2008], a fast non-iterative implementation for binary images
is realized without sacrificing image quality. For a more detailed discussion
and implementation details, we refer the interested reader to [Ledda, 2006,
De Witte, 2007].

3.1.4 Discussion
Adaptive image interpolation techniques often require a lot of computation
time, which is a severe limitation on their practical use in real-time appli-
cations. Linear interpolation methods can be employed in uniform areas or
simplified concepts can be introduced to reduce the computational complexity
(e.g., quantization of the edge orientations). Some adaptive techniques
are restricted to magnification factors that are powers of two (e.g., nedi
interpolation proposed by Li and Orchard [Li and Orchard, 2001]), which is a
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strong limitation towards many applications.

In Figure 3.3, we compare several non-linear interpolation techniques to
linear cubic b-spline interpolation. The original image is shown in Fig-
ure 3.2. The non-linear methods used in this visual experiment are
data-dependent triangulation (ddt) [Su and Willis, 2004], aqua2 interpola-
tion [Muresan, 2005], nedi interpolation [Li and Orchard, 2001], iterated func-
tion systems (ifs) [Gharavi-Alkhansari et al., 1997] and isophote smooth-
ing [Morse and Schwartzwald, 2001].
These non-linear interpolation methods usually result in jaggies-free or sharper
interpolated images but most of them introduce new types of disturbing arte-
facts. In aqua2 and nedi interpolation, we notice some brushlike stripes and
sweeps, which we denote as painting effects. In ifs and nedi interpolation,
isolated or grouped pixels appear randomly in smooth areas as a result of nu-
merical instability or wrongly learned patterns. Slanted jagged edges become
visible if edge orientations are quantized (e.g., in aqua2 and ddt interpola-
tion). In isophote smoothing and ddt interpolation, the images suffer from
“cartooning” effects, i.e. the results look segmented and artificial due to the
hard thresholds that prevent interpolation across edges. Also, almost all adap-
tive methods yield important visual degradation in finely textured areas such
as the grass in our example. All these artefacts become more visible at large
image magnifications (i.e. magnification factors of 4 and more) and hence they
become more annoying.

Since most of these artefacts are unpredictable or very hard to be removed,
we concentrate in the next section on tackling artefacts that arise from lin-
ear interpolation methods such as blur, staircase and ringing artefacts that
are predictable and removable. Another benefit is that all existing hardware
and software components that perform linear interpolation, do not have to be
thrown away.

3.2 Proposed level curve mapping interpolation

For many applications, the main emphasis on image interpolation should
be on the perceptual quality of images, i.e. the interpolated images should
be artefact-free and visually pleasing. With this goal in mind, the appli-
cation of level set methods for restoring jagged edges has been introduced
successfully by Morse and Schwartzwald [Morse and Schwartzwald, 1998,
Morse and Schwartzwald, 2001]. However, the interpolated images still suf-
fer from blur and ringing artefacts. We tackle these artefacts by assigning
new intensity values to the level curves, which we denote as level curve map-
ping. Level curves or isophotes are defined as spatial curves with a constant
intensity level. These curves can be compared to isobars on a weather chart.
The manipulation of these intensity levels can be seen as an adaptive contrast
enhancement problem. In particular for the interpolation problem, we define
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Figure 3.2: Part of the lighthouse image.
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(a) Cubic b-spline (linear) (b) Data-dependent triangulation

(c) aqua2 interpolation (d) nedi interpolation

(e) Iterated function systems (f) Isophote smoothing

Figure 3.3: Image interpolation results (4× enlargement of Figure 3.2).
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Figure 3.4: Schematic representation of the proposed interpolation method.

some additional constraints on the contrast enhancement. This approach will
result in an interpolation method that produces less artefacts. The outline of
our interpolation scheme is shown in Figure 3.4.
In the following sections, we first discuss the isophote smoothing scheme. We
then describe the constrained level curve mapping algorithm and finally, we
discuss how to apply interpolation to colour images.

3.2.1 Constrained isophote smoothing

Before applying the level curve mapping, we need a good initial estimation
of the spatial positions of the level curves, because the shape of the level set
contours does not change during the adaptive contrast enhancement. The
initial estimation is done by a linear interpolation method (see Chapter 2).
Since manipulating the intensity levels of these initial curves amplifies the an-
noying staircase artefacts, we remove these jagged edges by applying isophote
smoothing [Morse and Schwartzwald, 1998,Morse and Schwartzwald, 2001].

At first sight, spatial correction of the level curves requires explicitly finding
and fitting each level curve, much as individual edges must be found and fitted
in edge-directed approaches. However, level curve corrections do not require
explicitly finding and fitting each curve. Instead, correcting a level curve
passing through each pixel is done directly by manipulating the pixel intensity
level f(x) [Morse and Schwartzwald, 1998, Sethian, 1999], which is described
by partial differential equations (pde’s) [Sethian, 1999].

Isophote smoothing is a level curve correction method that removes jagged
edges by minimizing the local curvatures of each level curve. In addition,
we want to preserve the level set topology (i.e. the order of the level curves
can not be altered), the input pixels of the low-resolution image (denoted as
the interpolation constraint, otherwise we have no strict interpolation, but an
approximation (see Chapter 2)) and convex contours such as corners of the low-
resolution image (denoted as the inflection constraint). Imposing these three
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(a) Original image (b) Bilinear interpolation (c) Isophote smoothing

Figure 3.5: Illustration of applying isophote smoothing after bilinear interpolation.

constraints results in a pde, which is given by [Morse and Schwartzwald, 2001]:

ft(x) = −ω(x)τ(x)Ψ (κ(x)) ‖∇f(x)‖2 , (3.1)

where ω, τ and Ψ are the interpolation, inflection and topology constraint
functions respectively and the norm of the gradient is given by ‖∇f(x)‖2 =√
fx(x)2 + fy(x)2 with fx and fy the derivatives of the image with respect

to x and y respectively.1 The evolution of the level curve intensity in time is
denoted by ft(x).
The topology constraint is a function of the spatial curvature κ of the level
curves, which is calculated from the local derivatives of the intensity levels:

κ(x) = [div(∇f/ ‖∇f‖2)] (x)

=
fx(x)2fyy(x) − 2fx(x)fy(x)fxy(x) + fy(x)2fxx(x)

(fx(x)2 + fy(x)2)3/2
. (3.2)

We can interpret equation (3.1) as the movement of the level curves in the di-
rection of their normal at a speed proportional to their curvature κ. Therefore,
Ψ(κ) must have the same sign as κ and ω, τ ≥ 0. As a result of applying this
pde, the local curvatures of the level curves are minimized and jagged edges
become straight as illustrated in Figure 3.5. We now discuss each constraint
function in more detail.

Interpolation constraint: we preserve the input pixels (or also called local
image anchors) by defining the constraint function ω inversely propor-
tional to the distance of the current pixel position x = (x, y) and the
nearest local image anchor:

ω(x) = 1 −
√

(1 − Δx)2 + (1 − Δy)2, (3.3)

1To compact the formulas throughout our work, we often use the shorthand notation for

the partial derivatives: ∂f
∂x

= fx, ∂2f
∂x∂x

= fxx, ∂2f
∂x∂y

= fxy, etc.
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where Δx and Δy are the absolute horizontal and vertical offsets between
the coordinates of the current pixel and the nearest image anchor. We
can also interpret this constraint as the fidelity to the original image.

Explicit topology constraint: we must take additional measures to preserve
the level set topology, especially near the local image anchors, because
they do not move due to the interpolation constraint. Therefore, we
define the constraint function Ψ in a local neighbourhood Ω as:

∀x′ ∈ Ω : (3.4)

Ψ (κ(x)) =
{

sign (κ(x)) min(|κ(x)|, |κ(x′)|) if there is a conflict,
κ(x) otherwise.

A conflict in the level set topology occurs at x if one of the following
conditions is fulfilled:

∃x′ ∈ Ω :{
f(x) < f(x′)
f(x) − ω(x)κ(x) ‖∇f(x)‖ ≥ f(x′) − ω(x′)κ(x′) ‖∇f(x′)‖ ,

or
∃x′ ∈ Ω : (3.5){
f(x) > f(x′)
f(x) − ω(x)κ(x) ‖∇f(x)‖ ≤ f(x′) − ω(x′)κ(x′) ‖∇f(x′)‖ .

In other words, the speed of the curve evolution is controlled such that the
order of intensity values is respected: the effect of Ψ is to ensure that all
greater/smaller neighbouring intensity values stay larger/lower and thus
preserve the level set topology. The size of the squared neighbourhood Ω
depends on the magnification factor: in our implementation, Ω contains
at least one image anchor.

Inflection constraint: we preserve the convex contours (with a high curva-
ture) such as corners in the input image. This can be done by defining
the following inflection constraint:

∃x′ ∈ Ω : τ(x) =

{
1, sign (ft(x)) sign (ft(x′)) < 0,
0, otherwise.

(3.6)

This constraint requires that at least one pixel in the neighbourhood Ω
changes in the opposite direction, which is the case with jagged edges
but not with real corners. This way, convex contours can not shrink. A
similar constraint could be defined for the global image: the total number
of changing pixels or the amount of change in one direction must be the
same as in the opposite direction. In that way, the average intensity of
the image does not change after isophote smoothing.
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Figure 3.6: 1d evolution of deblurring a smooth edge (solid line) with a shock filter
(horizontal arrows) or with level curve mapping (vertical arrows).

In our implementation, 5 to 10 iterations of equation (3.1) give already
reasonable results. Alternatively, numerical approximations of level-set-
based curve evolution can be employed in this stage to speed up the algo-
rithm [Jiang and Moloney, 2002,Shi and Karl, 2008].

3.2.2 Image sharpening

We first describe the relationship between image sharpening via level set cor-
rections and image sharpening via adaptive contrast enhancement. Afterwards,
we discuss the constrained level curve mapping algorithm in more detail.

3.2.2.1 Image sharpening via shock filters

Sharpening blurred edges can be achieved by moving the different level curves
closer to each other, because a higher density of level curves stands for a sharper
edge. The corresponding pde that produces sharper edges in the image f(x)
is given by:

ft(x) = −Λ(∇2f(x)) ‖∇f(x)‖ , (3.7)

where Λ(0) = 0 and Λ(∇2f(x))sign(∇2f(x)) ≥ 0. The sign-operator is defined
as sign(x) = x/|x| (x �= 0) where alternative definitions assign −1, 0 or +1 to
sign(0). This hyperbolic equation is also known as the shock filter proposed
by Osher and Rudin [Osher and Rudin, 1990]. The level curves move in the
direction of their normal and the speed of the movement is proportional to the
Laplacian ∇2f(x) (sometimes denoted as Δf(x)). Figure 3.6 illustrates the
evolution an originally smooth edge when the shock filter is applied to it.
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The main drawback of using shock filters is that a complex function Λ is
needed to preserve the level set topology and the intensities of the original
image pixel simultaneously, i.e. when we require strict interpolation. Another
drawback is that equation (3.7) amplifies the annoying ringing overshoots and
undershoots. Additionally, the number of iterations must also be specified,
which is not always evident.

Alternatively, we can rephrase image sharpening as an adaptive contrast en-
hancement problem, which manipulates the level curve intensities through a
transfer function. An important advantage of this approach is that the shape
of the level curves (and thus the shape of the contours of the object) is auto-
matically preserved and also no explicit edge detection is needed. The level set
topology and interpolation constraints are much easier to define in this frame-
work. Another advantage of using contrast enhancement techniques instead of
iteratively applying a pde is that only a single pass is needed to process the im-
age, which saves a lot of computation time and thus can be useful for optimiza-
tion in parallel systems. An interesting remark can be noticed in Figure 3.6:
the edge evolves vertically (in intensity) instead of horizontally (spatially), but
the end result has the same deblurring effect when being processed with the
previously described shock filter.

3.2.2.2 Adaptive contrast enhancement

A new intensity value fn(x) is assigned to each level curve according to an
adaptive transfer function (a similar technique for contrast enhancement
is used by Yu and Bajaj [Yu and Bajaj, 2004]). The transfer function is
characterized by its range [fmin(x), fmax(x)], where fmin(x) and fmax(x) are
the minimum and the maximum intensities of the four surrounding local image
anchors respectively.

The basic idea of most contrast enhancement techniques is to take advantage
of range stretching [Yu and Bajaj, 2004,Stark, 2000], however, in our case, the
input range is the same as the output range. As illustrated in Figure 3.6, the
contrast enhancement consists of a convex transfer function that pulls the pixel
intensities upwards and of another concave transfer function that pushes the
pixel intensities downwards.
If the intensity of the input pixel is higher than the average of fmin(x) and
fmax(x), we compute the new pixel intensity fn(x) by the convex transfer
function, which is given by:

fn(x) = f(x)1−α(x), (3.8)

and otherwise, we employ the concave transfer function:

fn(x) = 1 − (1 − f(x))1−α(x), (3.9)

where α(x), f(x) and fn(x) are normalized here between 0 and 1 in our im-
plementation (afterwards the intensities will be stretched out over the range).
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Figure 3.7: The convex (upper) and concave (lower) parts of the transfer function
are plotted with the following values for α: 0 (solid line), 0.5, 0.8 and 0.95. For α = 0
(flat area) the transfer function is equal to the identity function and no changes are
made to the intensity. For α = 1, the ideal step edge is reconstructed.

We choose a gamma correction-like function because of the close convergence
to a step edge. Note that other transfer functions can be implemented, e.g.,
a parabolic function is used in [Yu and Bajaj, 2004]. The normalized range
parameter α implicitly incorporates edge information and is locally defined as

α(x) =
fmax(x) − fmin(x)

255
. (3.10)

If α is equal to 0 (e.g. in a uniform region), the transfer functions will leave
the intensities untouched. If α is equal to 1 (i.e., a black pixel and a white
pixel are neighbouring pixels), the transfer function will reconstruct an ideal
step edge. That is why the exponents in equations (3.8) and (3.9) are chosen
inversely to the range. The transfer functions are plotted in Figure 3.7 for
different parameter values. Note that the level set topology is locally preserved
because the transfer functions are monotonically increasing or decreasing.

Unfortunately, there are still three problems left when applying the contrast
enhancement technique as described by equations (3.8) and (3.9):

• the computed min/max images, given by fmin(x) and fmax(x) respec-
tively, are constant per r× r block, with r being the magnification factor
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and as a consequence, the resolution enhancement results in block-like
artefacts,

• it is not guaranteed that the local image anchors remain unchanged (ex-
cept for the ones that are the local minimum or maximum by construction
of the transfer functions),

• disturbing ringing artefacts are amplified by the contrast enhancement.

We solve these problems as follows:

Continuity of neighbouring range parameters: because the min/max
images are constant per r × r block, the range parameter α will also be
constant per r× r block. At the block boundaries, neighbouring transfer
functions can map similar intensity values on very different intensities.
This results in discontinuities, and local averaging is thus needed.
A possible solution is to convolute these min/max images with a low-pass
filter [Yu and Bajaj, 2004], however, it is not recommended because
firstly, if fmin(x)/fmax(x) is decreased/increased by filtering, the range
is expanded and the increase range parameter can amplify ringing
artefacts, which typically occur in relatively uniform regions with a
small range. And secondly, if fmin(x)/fmax(x) is increased/decreased by
filtering, the range is reduced such that more pixel intensities could lie
outside this range.

Hence, instead of low-pass filtering, we use a normalized voting scheme
to compute the new pixel intensity:

fc(x) =

9∑
i=1

wifn,i(x)

9∑
i=1

wi

, (3.11)

where fn,i(x) is calculated by equation (3.8) or (3.9) with different range
parameters α of the neighbouring r × r blocks. If f(x) falls into the
range, fn,i(x) will contribute to fc(x) and wi = 1. Otherwise, fn,i(x)
does not have to be computed and wi = 0. With this voting scheme,
pixel intensities will not be altered by ranges that do not include f(x).

Local image anchor preservation: to guarantee strict interpolation, local
image anchors may not be changed. It is not sufficient to undo the inten-
sity changes at these pixel locations because it can cause conflicts with the
level set topology. We can solve this efficiently by attracting the interpo-
lated surface towards the local image anchors. The new intensity value is
computed as a weighted average between fc(x) from equation (3.11) and
the closest image anchor f(xa) (xa is the position of the closest vector):

fa(x) = βfc(x) + (1 − β)f(xa), (3.12)
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where the weight β (0 ≤ β ≤ 1) is denoted by the (normalized) squared
distance to the closest local image anchor:

β =
1√
2
‖x − xa‖2. (3.13)

In this way, all local image anchors are preserved.

Elimination of ringing effects: most ringing overshoots and undershoots
can easily be detected because these pixel intensity values are outside
the range. We can remove these ringing effects by simply setting fa(x)
that are outside the range, to fmin(x) or fmax(x):

fl(x) = max(min(fa(x), fmax(x)), fmin(x)), (3.14)

which is also the final pixel intensity value obtained by the proposed level
curve mapping algorithm.

3.2.3 Colour image interpolation

There are three common ways to deal with the colourimetric aspect in image
interplation:

• apply the algorithm on each colour plane (e.g., red, green and blue chan-
nel) separately. Since there is no link between the different spectral chan-
nels, components of an edge pixel can flow in different directions due to
different local ranges and mapping functions. This can lead to disturbing
colouring artefacts in edge areas.

• convert the image into a colour space with separate luminance and
chrominance channels and apply the advanced algorithm on the lumi-
nance channel only, while a low-quality, low computational-cost inter-
polation technique can be applied in the chrominance channels, where
high-frequency errors can be tolerated. It is well known that the hu-
man visual system is much less sensitive to high-frequency changes of the
chrominance signals compared to luminance errors [Vrhel, 2005]. A sim-
ilar strategy is applied in broadcasting systems and in image and video
compression schemes, e.g., in jpeg and mpeg. Examples of colour spaces
that separate the luminance component from the chrominance signals are
yuv, yiq, L*a*b* (cielab), L*u*v* (cieluv), etc.

• consider images as surfaces in the hybrid 5d space (x, y, r, g, b),
i.e. each colour pixel is treated as a feature vector in a 3d colour
space [Kimmel et al., 2000]. Since we use the minimum and maximum
operators in the level curve mapping framework, we have to order two
or more colours in an unambiguous way. This problem is well studied in
colour morphology applications, therefore, we refer the interested reader
to [De Witte, 2007].
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In the next section, we evaluate the level curve mapping algorithm on the colour
channels separately (in the rgb colour space) and on the luminance channel
only (in the yuv and L*a*b* colour spaces).

3.3 Experimental results

In the first experiment, we compare the proposed method to linear
interpolation techniques and several adaptive interpolation methods
(given in Figures 3.3 and 3.9), such as data-dependent triangula-
tion (ddt) [Su and Willis, 2004], aqua2 interpolation [Muresan, 2005],
nedi interpolation [Li and Orchard, 2001], iterated function systems
(ifs) [Gharavi-Alkhansari et al., 1997] and mathematical morphology in-
terpolation for greyscale images (mmint) [Ledda et al., 2006b]. In this
visual experiment, we apply the level curve mapping framework on bilinear
and Catmull-Rom interpolation (both prefiltered with constrained isophote
smoothing (5 iterations) in order to remove jagged edges) and 32-point 4-term
Blackman-Harris windowed sinc interpolation (without isophote smoothing).
The results of our interpolation method are shown in Figures 3.8 and 3.10.

In Figure 3.8, we notice that our method preserves finely textured areas
(e.g. the grass) much better than other non-linear techniques in Figure 3.3. In
Figure 3.9, we see clearly painting artefacts in aqua2 and nedi interpolation,
jagged edges in ddt and mmint interpolation and rough edge structures in
ifs interpolation. We can also see that the proposed method outperforms
the linear interpolation methods. In all cases, significant improvements in
visual quality can be noticed: the edges have become much sharper and
ringing undershoots and overshoots have been heavily reduced. It is important
to notice that almost no new artefacts are introduced with the level curve
mapping interpolation.

In the second experiment, we have evaluated the level curve mapping algo-
rithm in an objective manner in combination with different interpolation tech-
niques: bilinear and Catmull-Rom interpolation (both prefiltered with con-
strained isophote smoothing (5 iterations) in order to remove jagged edges);
cubic b-spline and 32-point 4-term Blackman-Harris windowed sinc interpo-
lation (both without isophote smoothing). To treat colour images, we have
evaluated our algorithm in 3 colour spaces: the level curve mapping is applied
separately on the red, green and blue channels (rgb) and furthermore on the
luminance channel only (yuv and L*a*b*). The psnr is measured on the red,
green and blue channels. Our test images are the 24 photographic images ob-
tained from the Kodak data set (see Figure 3.11).

A very important aspect is the way the original images are decimated (i.e., the
combination of anti-aliasing prefiltering and subsampling). In this experiment,
we compare four different decimation algorithms (with an 1 : 2 ratio in each
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(a) Bilinear (b) Proposed method (bilinear)

(c) Blackman-Harris (d) Proposed method (Blackman-Harris)

Figure 3.8: Image interpolation results (4× enlargement of Figure 3.2).
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(a) Nearest neighbour (linear) (b) Data-dependent triangulation

(c) aqua2 interpolation (d) nedi interpolation

(e) Iterated function systems (f) Mathematical morphology

Figure 3.9: Image interpolation results (4× enlargement of Figure 2.16).
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(a) Bilinear (b) Proposed method (bilinear)

(c) Catmull-Rom (d) Proposed method (Catmull-Rom)

(e) Blackman-Harris (f) Proposed method (Blackman-Harris)

Figure 3.10: Image interpolation results (4× enlargement of Figure 2.16).
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Figure 3.11: The 24 original test images from the Kodak set (768 × 512 pixels).

direction):

• d1: the low-resolution image is constructed by the samples lying on odd
lines and odd columns. In other words, there is no anti-aliasing pre-
filter and as a consequence, the low-resolution images suffer from aliasing
artefacts.

• d2: prior to the subsampling according to scheme d1, the images are
convoluted with a Gaussian kernel, which is a non-ideal anti-aliasing pre-
filter: frequency components of the replicated spectra are insufficiently
suppressed and additional blur is caused by the (needless) attenuation of
the frequencies in the passband (see discussion in Section 2.2.4).

• d3: a very fast and popular decimation scheme is simple averaging: each
low-resolution pixel value is the average of four high-resolution pixel in-
tensities. Like decimation algorithm d2, the low-resolution images suffer
from blur and aliasing effects.

• d4: the low-resolution images are constructed through bandwidth trun-
cation in the Fourier domain. This is exactly the same as resampling
using a sinc function (see Chapter 2). In this way, there is no aliasing in
the low-resolution images.

In practice, decimation algorithms d2 and d3 come close to the simplified ac-
quisition model of conventional camera-based applications (more details can
be found in Section 2.3.2), while decimation scheme d4 approximates for ex-
ample the acquisition process in magnetic resonance imaging (mri) (a more
elaborated discussion can be found in Chapter 8). The output of the different
decimation schemes is illustrated in Figure 3.12.
To achieve reliable and correct numerical psnr values, we have to align the
original and the interpolated images with subpixel accuracy. That is necessary
because during downsampling and upsampling, the interpolated image can be
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Figure 3.12: Illustration of the different decimation schemes, from top-to-bottom:
original high-resolution image and low-resolution images obtained by decimation
scheme d1, d2, d3 and d4 respectively.
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(a) (b)

Figure 3.13: Examples of lower resolution grids (the samples are indicated by black
circles): (a) an off-center grid and (b) an on-center grid. The samples of the high-
resolution grid are indicated by white circles.

shifted compared to the original high-resolution image. This is illustrated with
an on-center and an off-center example in Figure 3.13. The alignment is done
with 32-point 4-term Blackman-Harris windowed sinc resampling.

The psnr values (averaged over 24 images of the Kodak image set) are shown
in Table 3.1. In almost all cases, the level curve mapping postprocessing yields
higher psnr values compared to the linear interpolation techniques (up to
0.5 dB). The numerical gain is not significant by itself (compared to the vi-
sual improvement) because the proposed framework mainly affects edge pixels,
which account for a small fraction of pixels in the image. Compared to other
non-linear interpolation techniques, our method clearly yields higher psnr val-
ues (up to 1.5 dB) except for the low-resolution images that are constructed
with the (non-realistic) decimation scheme d1. In that case, the results of the
proposed methods are similar to those of the nedi and aqua2 interpolation.
If we compare the interpolated images obtained from the different decimation
schemes, we notice that the images after decimation d1 are reconstructed worse
because of the frequency aliasing present in the lr images (see Figure 3.12).
The interpolation algorithms fail in reconstructing textured areas, which penal-
izes the psnr values. Interpolation results obtained after decimation schemes
d2 (severe blur) and d3 (moderate blur) are worse those after scheme d4 be-
cause of blur: a smaller part of the frequency spectrum can be reconstructed
well. That is why decimation scheme d4 gives the best interpolation results in
terms of psnr despite the small ringing artefacts in the lr images.

There is no significant visual difference noticeable between the several colour
versions (rgb, yuv and L*a*b*) of our algorithm. However, psnr values show
that the L*a*b*-version produces slightly worse numerical results compared to
the other two versions.
Finally in Figure 3.17, we show the rgb colour interpolation results (4× en-
largement) applied on the parrot image compared to the nearest neighbour
(Figure 3.14), bilinear (Figure 3.15) and nedi interpolation (Figure 3.16). All
these methods are also applied in the rgb colour space. We can clearly see
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Table 3.1: Average psnr results in dB of a 2× interpolation experiment of the Kodak
data set. The best psnr result is written in bold letters for each decimation scheme.

Interpolation method d1 d2 d3 d4

Nearest neighbour 27.87 28.62 28.71 28.09
Data-dependent triangulation 29.09 28.55 29.18 29.23
aqua2 interpolation 29.18 28.84 29.48 29.26
nedi interpolation 29.35 28.96 29.60 29.25
Iterated function systems 27.61 29.70 29.57 28.85

Bilinear 28.95 28.29 28.86 29.07
+ level curve mapping (rgb) 29.21 28.60 29.27 29.43
+ level curve mapping (yuv) 29.21 28.59 29.27 29.42
+ level curve mapping (L*a*b*) 29.12 28.42 29.04 29.23

Cubic Catmull-Rom 29.25 29.18 29.79 29.84
+ level curve mapping (rgb) 29.17 29.38 30.01 29.95
+ level curve mapping (yuv) 29.18 29.38 30.01 29.94
+ level curve mapping (L*a*b*) 29.30 29.25 29.89 29.89

Cubic b-spline 28.99 29.44 29.96 30.26
+ level curve mapping (rgb) 29.03 29.61 30.19 30.34
+ level curve mapping (yuv) 29.04 29.61 30.20 30.34
+ level curve mapping (L*a*b*) 29.15 29.49 30.07 30.30

Blackman-Harris windowed sinc 28.31 29.58 29.88 30.64
+ level curve mapping (rgb) 28.65 29.73 30.15 30.68
+ level curve mapping (yuv) 28.65 29.72 30.16 30.68
+ level curve mapping (L*a*b*) 28.75 29.61 30.05 30.65
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Figure 3.14: The nearest neighbour interpolation.

that our method produces the sharpest image with almost no visible artefacts.

3.4 Conclusion

In this chapter, we gave an overview of the existing adaptive image inter-
polation techniques. The non-linear interpolation methods can be broadly
categorized into three classes: edge-directed, example-based and restoration-
based interpolation. These adaptive methods usually result in jaggies-free
or sharper interpolated images but most of them introduce new disturbing
artefacts such as painting effects, random pixels, slanted jagged edges, cartoon-
ing effects, and they yield important visual degradation in finely textured areas.
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Figure 3.15: The bilinear interpolation.
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Figure 3.16: The nedi interpolation.
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Figure 3.17: The proposed method (bilinear) in rgb colour space.
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We presented a novel approach to tackle artefacts (i.e. blur, staircase and
ringing effects) created by linear image interpolation methods. The algorithm
sharpens edges by mapping the image level curves using adaptive contrast
enhancement techniques. To avoid the amplification of jagged edges, we
restore the level curves by constrained isophote smoothing. We put additional
constraints on the level curve mapping to meet the interpolation conditions
and to reduce ringing artefacts. We briefly discussed various strategies to
extend greyscale interpolation methods to colour images.

The results show improvements in both numerical psnr results as well as
in visual quality: the edges are much sharper, while staircase and ringing
artefacts are heavily reduced. It is important to notice that almost no new
artefacts are introduced with the level curve mapping interpolation.

A drawback in the current implementation is the time-consuming part of the
iterative isophote smoothing: it takes about 5 seconds per iteration for an 1
megapixel high-resolution image on a computer with an amd xp 3000 proces-
sor and 512 Mb ram. Future work includes the implementation of real-time
approximations of these level set evolution methods.
However, the most important remark is that general adaptive image interpo-
lation can not deal with degraded images (e.g., corrupted with noise or com-
pression artefacts). Therefore, image restoration techniques are introduced to
take more accurate acquisition models into account (see Chapter 4).
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4
High-resolution image

restoration using colour
priors

Convergence of image, vision and graphics?
— Yah right... The truth is...

— Between vision and graphics communities:
“Vision is more solid research than graphics”

“But graphics people make more money!”
— Graphics and vision communities say:

“Image processing is low-level processing”
— Image processing community says:

“Graphics is only some fancy toys...”
“Vision is things that don’t work!”

—Fernando Pereira

Nowadays more and more security firms are installing cameras in both public
and private places to assist in the fight against crime. However, in order to
recognize the face of a criminal or to read the license plate of a getaway car,
we often need clean high-resolution (hr) images. Unfortunately, cheap camera
sensors with low resolution are used massively nowadays in webcams, mobile
phones and surveillance cameras, which often results in useless data. The
high cost for high precision optics and image sensors is therefore an important
concern in many commercial applications regarding hr imaging.
On the other hand, all digital imaging devices inevitably introduce blur and
noise (as discussed in Section 2.3.2). There is a strong limitation on increasing
spatial resolution by reducing the sensors (i.e. increasing the number of pixels
per unit area) by manufacturing techniques. If the pixel size decreases, the
amount of incoming light per pixel unit also decreases. This generates shot
noise that degrades the image quality severely.
Due to the huge amount of data, images and video sequences are compressed
before transmission or storage. Image quality will typically be lost in the
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form of block artefacts (intrinsic to the used block structure in jpeg- and
mpeg-algorithms) and mosquito noise (random noise originating from the
quantization of high frequent information). With the growing popularity of
high definition television (hdtv), these artefacts become more bothersome.
That is why digital hr image restoration as a postprocessing tool becomes very
important. Note that image restoration is distinct from image enhancement
(such as unsharp masking). Image enhancement techniques are designed to
manipulate an image in order to produce visually pleasing results, but without
making use of any particular degradation model.

In this chapter, we start with a brief overview of the existing image restoration
techniques. Afterwards, we describe the Bayesian image restoration frame-
work and we introduce two new colour image priors. The adaptive bimodal
colour image prior assumes that an edge pixel has a colour value that is
typically a mixture of the colours of two connected regions, each having a
dominant colour distribution. The global multimodal colour image prior is
proposed for images with a strong multimodal colour distribution, i.e. just a
few dominant colours, such as cartoons and logos. The main novelty of this
work is to incorporate and to adapt the bimodal black-and-white text prior
for a more general class of images. The key achievements are the automatic
determination of the parameters (both locally adaptive as globally) and the
extension to the multimodal case. We show that the use of these priors is
very powerful in the restoration of cartoons and logos, thereby outperform-
ing other existing state-of-the-art techniques in visual quality. This work led
to two publications in the Springer’s Lecture Notes on Computer Science se-
ries [Luong et al., 2007,Luong and Philips, 2007b].

4.1 Image restoration techniques

The goal of classical image restoration is to reconstruct a sin-
gle clean output image from a single given degraded observed im-
age. The literature on digital image restoration is very broad
and extensive and spans several decades, see e.g. [Katsaggelos, 1991,
Klette and Zamperoni, 1996, Bertero and Boccacci, 1998]. For a concise but
representative review of digital image restoration, we refer the interested reader
to [Banham and Katsaggelos, 1997]. In the next sections, we give a very brief
overview and a rough classification of different image restoration techniques.

4.1.1 Classification of image restoration techniques

There are many types of image degradation processes. Most image restora-
tion techniques focus on a specific degradation task, while other treat
(jointly) several degradations at once. The two most common and popular
goals by far in digital image restoration are image denoising and deconvolution.
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4.1.1.1 Image denoising

In the design of classic noise reduction methods, the objective is to
remove noise, while preserving the original image details and fine
structures. During the past decade, numerous and diverse denois-
ing methods have been proposed to this end. Many methods, like
total variation [Rudin and Osher, 1994], bilateral filtering or kernel re-
gression [Tomasi and Manduchi, 1998, Takeda et al., 2007] and wavelet-
based techniques [Pižurica and Philips, 2006, Şendur and Selesnick, 2002,
Portilla et al., 2003] estimate the denoised pixel intensities based on the
information provided in a limited surrounding neighbourhood. These methods
only exploit the spatial redundancy in a local neighbourhood and are therefore
referred to as local methods.

Recently, a number of non-local methods have been developed,
e.g. [Dabov et al., 2007, Dauwe et al., 2008, Goossens et al., 2008a]. These
methods estimate every pixel intensity based on information from the
whole image, thereby exploiting the presence of similar patterns and
structures in an image. This relatively new class of denoising meth-
ods originates from the non-local means, introduced by Buades et
al [Buades et al., 2005b,Buades et al., 2005a]. We will return to the non-local
image processing method in Chapter 5.

4.1.1.2 Image deconvolution

The first encounters with digital image deconvolution can be
found in the area of astronomical imaging in the 1950s and early
1960s [Banham and Katsaggelos, 1997]. Extraterrestrial observations of
the planets were subject to motion blur as a result of slow camera shutter
speeds relative to rapid spacecraft motion. Ground-based imaging systems
suffer from blur due to the rapidly changing index of refraction of the
atmosphere. A more published problem arose in the early 1990s with the
main mirror imperfection of the Hubble Space Telescope.1 Nowadays, image
deconvolution finds its way in many application areas, such as forensic science,
remote sensing and confocal microscopy.

The point spread function (psf) varies from application to application, some
examples are:

• in the presence of fast object motion or camera panning, the motion blur
is represented as 1d uniform local averaging of neighbouring pixels.

• in remote sensing and aerial imaging, the atmospheric turbulence blur is
commonly represented by a Gaussian psf.

1We refer the reader to http://hubble.nasa.gov , http://spacetelescope.org and
http://heritage.stsci.edu for more information about the Hubble Space Telescope.

http://hubble.nasa.gov
http://spacetelescope.org
http://heritage.stsci.edu
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• in photographic defocusing, the out-of-focus blur is often modelled as a
uniform distribution within a circular disk or rectangle.

However, in practice, the psf is often unknown or only partially known
and therefore, the blur kernel must be estimated prior to the restoration
process (this is called blur identification or estimation) or, in the other
case, the blur kernel and the deblurred image are estimated simultaneously
from the data (which we refer to as blind deconvolution). A good sur-
vey of blind deconvolution and blur estimation techniques can be found
in [Rooms, 2005,Campisi and Egiazarian, 2007].

4.1.1.3 Restoration of other degradations

Besides image denoising and deblurring, many other image restoration
techniques exist, depending on the source of degradation. We discuss
some examples, but for a more detailed treatment, we refer the reader
to [Banham and Katsaggelos, 1997,Katsaggelos, 1991].

One of the most important area of application of digital image restoration in
the consumer market segment today is that in the field of image and video
coding. Typically in jpeg- and mpeg-based compression schemes, block
artefacts become very annoying, especially on high-resolution screens (e.g.,
hdtv). Block artefacts are a result of the coarse quantization of transform
coefficients, usually from a discrete cosine transform (dct) on blocks of 8 × 8
pixels. Block transitions become more and more apparent when bit rates of
the coded image or sequence are further reduced as illustrated in Figure 4.1.
Most deblocking schemes apply spatially adaptive smoothing of the pixels
along the block boundaries [Lee et al., 1995,O’Rourke and Stevenson, 1995].

Another interesting application in the field of media is the use of digital tech-
niques to restore aging and deteriorated films. Much of this work belongs
to the field of computer graphics (e.g. colourizing black-and-white films) and
enhancement (e.g. motion stabilization and jitter correction), but a subset of
the vast amount of work can be classified as spatially adaptive image restora-
tion. Specific tasks are for example the elimination of scratches, dust and film
grain noise, the correction colour fading problems, the reduction of flickering,
etc. [Kokaram, 1993]. An example of an aging film is given in Figure 4.1.

4.1.2 Joint denoising and deconvolution

In literature, deblurring and denoising are commonly treated jointly because
inverting a blur operator inherently amplifies the noise. Therefore, the most
common model for a linear degradation caused by blur and additive noise is
given by the following matrix-vector formulation:

g = Hf + n, (4.1)
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(a) (b)

Figure 4.1: Examples of source degradations: (a) jpeg-encoded image (0.32 bits
per pixel) resulting in block artefacts and (b) a deteriorated film (1918) with dust,
scratches and film grain noise.

where g, f and n ∈ R
n are the observed, ideal (or hypothetical desired) and

noise images respectively in a column-stack ordering (i.e. the columns of each
image are stacked into a vector) and H ∈ R

n×n represents the superposition
blur operator.

In literature, stationary (or shift-invariant) blur models are commonly em-
ployed in the acquisition model. The use of a space-varying degradation model
is also possible, but leads to more complex solutions. When using the station-
ary model, the matrix H becomes a Toeplitz-block-Toeplitz (tbt) matrix. In
a Toeplitz matrix T, the elements t(i, j) are such that t(i, j) = t(i− 1, j − 1).
A block matrix (also called partitioned matrix ) is a partition of a matrix into
smaller rectangular sub-matrices called blocks. A tbt matrix is thus a Toeplitz
matrix of blocks where each squared sub-matrix itself has a Toeplitz structure.
The approximation of a tbt matrix by a circulant-block-circulant (cbc) ma-
trix has been addressed in [Bose and Boo, 1998]. A circulant matrix C is a
special kind of a Toeplitz matrix, in which each column is obtained by doing a
wrap-around downshift of the previous column:

C =

⎛
⎜⎜⎜⎜⎜⎝

c(0) c(n− 1) c(n− 2) . . . c(1)
c(1) c(0) c(n− 1) . . . c(2)
c(2) c(1) c(0) . . . c(3)

...
...

...
. . .

...
c(n− 1) c(n− 2) c(n− 3) . . . c(0)

⎞
⎟⎟⎟⎟⎟⎠ (4.2)

Since cbc matrices can be diagonalized using the 2d discrete Fourier transform
(dft), this leads to desirable discrete Fourier domain properties and eventually
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to efficient computations in solving equation (4.1), as discussed in the next
section.

4.1.2.1 Inverse filtering and ML estimator

Let us have a closer look at the classical signal processing problem stated in
equation (4.1). We assume that the additive noise n ∈ R

n is white and has a
zero-mean Gaussian distribution with a standard deviation σn:

p(n) =
1

(2π)n/2σn
n

exp
{
−nTn

2σ2
n

}
. (4.3)

Because f is known and in the presence of additive Gaussian noise, the mea-
surement vector g is also a Gaussian random vector with a shifted mean and
so the likelihood function p(g|f) becomes

p(g|f) =
1

(2π)n/2σn
n

exp
{
− 1

2σ2
n
‖g − Hf‖2

2

}
. (4.4)

The maximum likelihood (ml) estimator suggests to choose f̂ML that maximizes
the likelihood function or equivalently minimizes the negative loglikelihood
function or the l2-norm ‖g − Hf‖2

2 in this case:

f̂ML = arg max
f

p(g|f)
= arg min

f
− log (p(g|f))

= arg min
f

‖g − Hf‖2
2 . (4.5)

Clearly, this provides a least squares fit to the measurement data. In cases
where the Gram matrix HTH is positive definite, the problem is considered
well-posed (see discussion in Section 2.3.3) and the generalized inverse filter
leads to a unique solution to the above minimization, being

f̂ML = (HTH)−1HTg. (4.6)

In cases where HTH is singular, the problem is considered ill-posed and more
information is needed to obtain a unique valid solution. This leads naturally
to the notion of regularization, as discussed in the next section.
In cases where the matrix HTH is positive definite nevertheless and where the
problem is well-posed, the ml estimator is still weak. This can for example
simply be illustrated by the image denoising problem, where H = I. The ml
denoising result according to equation (4.6) is equal to the noisy observed
image f̂ML = g. Again, some regularization is needed here to get a proper result.

We assume now that the psf is spatially invariant and we consider that H has
a cbc structure, which means that H (and therefore HT) can be diagonalized
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using the 2d dft F(H) = H where H is thus a diagonal matrix. Using this
diagonalization approach, the inverse matrix problem of the inverse filter given
by equation (4.6) can then be solved efficiently in the discrete Fourier domain
at frequencies u as

F̂ (u) =
H∗(u)G(u)
|H(u)|2 , (4.7)

where F̂ , H and G denote the dft of the restored image f̂ , the psf H and the
observed image g respectively and where the ∗-operator denotes the complex
conjugative. Clearly, division by very small-valued H(u) results in a strong
amplification of the noise. Assuming that the degradation is a low-pass filter,
the small values of H are found at high frequencies, where the noise is dominant
over the image. Therefore, it is highly desirable to stabilize the methods to solve
the restoration problem by imposing prior knowledge.

4.1.2.2 Regularization techniques

From a pure algebraic point of view, regularization of equation (4.6) is achieved
by turning the penalty function into a strictly convex one, thus guarantee-
ing a unique solution. The use of deterministic prior information about
the original image can also be used for regularizing the image restoration
problem. This can be done via constrained least squares (cls), which mini-
mize the following Lagrangian (this is also known as the Tikhonov-Miller ap-
proach [Tikhonov et al., 1990]):

f̂CLS = arg min
f

‖g − Hf‖2
2 + λ ‖Cf‖2

2

= (HTH + λCTC)−1HTg, (4.8)

where CTC is assumed to be positive definite and Cf generally represents
a high-pass filtered version of the image f . This is essentially a smoothness
constraint that suggests that most images are relatively flat with limited
high-frequency activity. One typical choice for C is the 2d Laplacian oper-
ator [Banham and Katsaggelos, 1997]. λ represents the Lagrange multiplier,
commonly referred to as the regularization parameter, which balances the
fidelity to the data ‖g − Hf‖2

2 (also referred to as the data fidelity term) and
the smoothness of the solution ‖Cf‖2

2 (also referred to as the smoothness term
or regularization term).

If the psf is spatially invariant and HTH + λCTC has a cbc structure, equa-
tion (4.8) may be solved directly in the discrete frequency domain as

F̂ (u) =
H∗(u)G(u)

|H(u)|2 + λ|C(u)|2 , (4.9)

where F(C) = C with C being a diagonal matrix. Note that this solution is
equivalent to the well-known Wiener filter when λ and C(u) are chosen such
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that
λ|C(u)|2 =

Snn(u)
Sff(u)

, (4.10)

where Sff represents the power spectrum of the ideal image (which is in generally
unknown, and has to be approximated or estimated) and Snn denotes the power
spectrum of the noise. The power spectra are defined as

Sff(u) = E [F ∗(u)F (u)] , (4.11)

and
Snn(u) = E [N∗(u)N(u)] , (4.12)

where F(f) = F and F(n) = N . From equation (4.10), we can clearly see that
spectral components with Snn(u) � Sff(u) are amplified because

Snn(u)
Sff(u)

� |H(u)|2. (4.13)

On the other hand, all spectral components with Snn(u) ≈ Sff(u) are attenu-
ated in order to suppress noise in the restored image (at the expense of the
signal components). For a more detailed treatment of this matter, we refer the
interested reader to [Rooms, 2005].

While direct approaches to restore noisy and blurred images in the Fourier
domain are intuitively simple and computationally attractive, they are
poorly suitable for accommodating general scene observation models (such
as spatially varying complex degradation) and they can not utilize general
a-priori constraints or noise models. However, the formulation of restoration
techniques in the spatial domain offers considerable flexibility in the range
of degradations and observation models, and they are well suited to include
prior knowledge. These benefits come typically at the expense of increased
computational complexity.

Among the restoration techniques in the spatial domain, several approaches
for computing regularized solutions have gained prominence in the last
decades. These are for example pde-based methods (we refer the reader
to [Tschumperlé and Deriche, 2005,Tschumperlé, 2006] for a good and techni-
cal survey of pde-based applications), Bayesian methods that are based on the
stochastic estimation theory (a more detailed discussion follows in Section 4.2)
and the deterministic set theoretic methods, also known as projection onto
convex sets (pocs). The latter provides an intuitive and convenient framework
for the inclusion of a-priori information [Borman, 2004].

The pocs method defines constraints (i.e. the desirable characteristics of the
ideal image) as convex sets in the solution space that contains all possible im-
ages. The feasible solution space is the region of the intersection of a collection
of convex sets. These sets encapsulate constraints such as the fidelity to the
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observed data, positivity, smoothness, etc. The pocs approach is an itera-
tive procedure that locates a point in the solution space that simultaneously
satisfies all the constraint sets.
Given k convex constraint sets such that the intersection of the sets is non-
empty, pocs projects the point (i.e. the image f) onto each constraint set in
turn using the projection operators Pi (i = 1 . . . k). The current image f (j) is
iteratively updated using a sequence of projections:

f̂ (j+1) = P1P2 . . .Pk f̂ (j). (4.14)

Closedness and convexity of the constraint sets ensure convergence of the
iteration. A more detailed theoretical discussion of the pocs method can
be found in [Youla and Webb, 1982]. pocs techniques are widely used in
different image restoration areas such as high-resolution image reconstruc-
tion [Gerchberg, 1974, Gerchberg, 1989, Papoulis, 1975], image denoising and
deblurring [Stark, 1988,Özkan et al., 1994,Kundur and Hatzinakos, 1996], de-
blocking algorithms [Yang et al., 1995], reconstruction of mri images and com-
puted tomography images [Oskoui-Fard and Stark, 1988,Peng et al., 2006].
A variant on the pocs-based formulation is the bounding ellipsoid method: the
centroid of the bounding ellipsoid from a set of ellipsoidal constraint sets is the
estimate of the restored image [Katsaggelos, 1990]. Since direct computation
of this point is infeasible, an iterative procedure is employed.

Combining the desirable characteristics of the Bayesian map framework and
the flexible pocs methods results in a hybrid optimization scheme. The
general idea of these hybrid methods is to maximize the posterior pdf while
ensuring that the solution remains within a constrained space specified
using a set theoretic formulation (e.g. non-negative intensities). We refer
the interested reader to [Borman, 2004] for an overview of such hybrid methods.

Besides iterative approaches, recursive filtering operations can be used for
image restoration problems. These techniques can easily incorporate spatial
adaptivity into the filter model and they usually require less memory than di-
rect or iterative methods. An example is the discrete Kalman filter, which is
the recursive equivalent of the Wiener filter. This filter is based on a auto-
regressive (ar) parameterization of the prior statistical knowledge of the im-
age [Banham and Katsaggelos, 1997].

4.1.2.3 Non-regularized approaches

We briefly mention some existing non-regularized approaches to restore noisy
and blurred images. Among them, multiscale restoration methods are often
used, which operate for example in the wavelet domain or in the steerable pyra-
mid domain [Banham and Katsaggelos, 1996, Portilla and Simoncelli, 2003,
Rooms, 2005]. In [Immerkær, 2001], Immerkær employed a Gaussian blur-
space to extrapolate the deblurred image from a blurred image.
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With the emergence of very powerful denoising techniques, hybrid techniques
are developed that apply a simple deconvolution technique (mostly operating
in the Fourier domain) followed by the suppression of coloured noise (because
the noise at the high frequencies is amplified stronger than at the low frequen-
cies). Examples of such hybrid techniques are presented in [Kalifa et al., 2003,
Neelamani et al., 2004,Katkovnik et al., 2005,Dabov et al., 2008a].

Learning-based (or training-based) algorithms for image restoration learn
the prior knowledge from training data: codebooks are built using the
frequency information obtained from original images and their blurred
versions. During the restoration, the high-frequency information of a given
degraded image is estimated from its low-frequency information based on the
codebooks [Nakagaki and Katsaggelos, 2003].

A large class of iterative restoration methods deals with a simulate-and-
correct approach to restoration, which is known as iterative back-projection
(ibp).2 The iterative process consists of two steps: in the first step, the
observed images are constructed from the current estimated image through
simulation. This requires the imaging system or the acquisition model to
be known. The residual error is computed between the observed and the
simulated images. In the second step, this residual error is used to cor-
rect and update the current estimated image by a process called back-
projection [Borman, 2004, Irani and Peleg, 1991]. See also Section 7.1.2 for a
more technical treatment.

4.2 Regularization from a Bayesian point of view

The image acquisition process consists of capturing a continuous scene into a
(discrete) digital image. However, in practice, the acquired image lacks resolu-
tion and is corrupted by noise and blur. These linear degradation operations
are illustrated in Figure 4.2. The recovery of the unknown high-resolution (hr)
image f from an observed low-resolution (lr) image g is related by

g = DHf + n = Af + n, (4.15)

where g ∈ R
n and f ∈ R

r2n are the observed and ideal (or hypothetical de-
sired) images respectively with a magnification factor r. In this equation, the
matrices D and H (with dimensions of n × r2n and r2n × r2n) represent the
decimation operator and the blur operator respectively and n ∈ R

n describes
the additive noise (typically zero-mean white Gaussian noise with a standard
deviation σn). We also assume that the blur operator H in the imaging model
is denoted by a psf (typically Gaussian blur, which is characterized by its
standard deviation σb or a r × r block averaging operator). Because of the

2The term is adopted from the computed tomographic community, where a similar ap-
proach is widely used.



4.2 Regularization from a Bayesian point of view 85

lr image

continuous
scene

acquisition model

sampling without
frequency aliasing ideal image

reconstructionhypothetical desired
hr image

observed

blur decimation

noise

Figure 4.2: Observation model for high-resolution image reconstruction of noisy,
blurred low-resolution images.

high dimensionalities (and the sparse representations), these matrix multipli-
cations are replaced with their actual image operators in our implementation.
The combination of decimation and blur can be represented by a general linear
degradation operation A = DH with a matrix dimension of n× r2n.

Via the Bayes rule, the probability p(g|f) in the likelihood function is replaced
by the posterior probability p(f |g), because f is assumed to be random as well:

p(f |g) =
p(g|f)p(f)

p(g)
. (4.16)

The two most popular approaches based on the Bayesian formulation are the
maximum a posteriori (map) and the minimum mean squared error (mmse)
methods.

The map estimator suggests to choose f̂MAP that maximizes the posterior prob-
ability [Van Trees, 1968]:

f̂MAP = arg max
f

p(f |g)

= arg max
f

p(g|f)p(f)

= arg min
f

(− log (p(g|f)) − log (p(f))) . (4.17)

Note that the denominator in equation (4.16), p(g), does not affect the
maximization, since it is considered constant with respect to the optimization
task. The ml estimator of equation (4.5) can be seen as a special case of the
map method where the a priori probability density function (pdf) is uniformly
distributed [Van Trees, 1968].
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The mmse estimator chooses the expected value of f based on its conditional
density p(f |g):

f̂MMSE =
∫
f∈Rr2n

fp(f |g)df , (4.18)

which is simply the mean of the posterior distribution and minimizes the

mse measure E

[∥∥∥f̂ − f
∥∥∥2

2

]
. Since the integral is r2n-dimensional, such an

approach is typically prohibitive for non-scalar cases [Elad and Aharon, 2006].
If we look at computational convenience, the use of conjugate priors leads
us to a tractable posterior pdf, which is on its turn a member of the same
family of the prior pdf [Van Trees, 1968]. When no analytic solution is
available, we can still find the mmse (or map) solution via simulation of the
posterior distribution. Markov-chain Monte-Carlo (mcmc) methods attempt
to approximate the posterior pdf by the statistics of samples generated from
a Markov chain [Campisi and Egiazarian, 2007]. These methods can provide
solutions close to the optimal one. However, they are very computationally
intensive: although in theory convergence to the global minimum of the
posterior energy is guaranteed with a high probability, in practice, it is hard
to tell when convergence has been reached. Note that the mmse estimate of f
is the mean of all samples from the mcmc generator, while the map solution
is the one reached when mcmc converges.

In both cases, the map and mmse estimator need a clear definition of the
prior pdf p(f). In general, the amount of prior knowledge plays a major
part in achieving the best image restoration, whether the knowledge is about
the degradation (e.g., noise, blur, etc.) or the knowledge is about the ideal
image. It is obvious that correct and complete degradation models, i.e. with
a correct identification of the type of degradation (e.g., white versus coloured
noise, atmospheric versus out-of-focus blur, etc.) and a good estimation of
the degradation parameters (e.g., σn and σb) is quite critical in solving the
restoration problem. In the next section, we discuss the prior models for ideal
hr images, which we call image priors, and we also introduce two new colour
image priors.

4.3 Image priors
A general way to describe the prior pdf p(f) is the Gibbs distribution, be-
cause every non-negative function can be written as the following exponential
form [Datsenko and Elad, 2007]:

p(f) = const · exp{−αG(f)}, (4.19)

where the constant in front of the exponential is a normalization factor, guar-
anteeing that the integral over all f is 1. The term G(f) is a non-negative
energy function that is supposed to be low for signals with a high probability
and high otherwise.
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In the presence of additive zero-mean white Gaussian noise, the map estimator
of equation (4.17) becomes

f̂MAP = argmin
f

(
‖g − DHf‖2

2 + αG(f)
)
. (4.20)

We can clearly see that the map method leads to the concept of cls regu-
larization as described earlier in equation (4.8), except that we now have a
probalistic meaning of the regularization term G(f).

4.3.1 The evolution of image priors

In the last few decades, a considerable amount of research attention has been
given to the design of image priors. We briefly mention some important
milestones, showing how image priors have become more complex in an
attempt to describe the image content in more accurate way.

For the sake of algebraic stability reasons, the Tikhonov regularization
chooses the image prior G(f) = ‖Cf‖2

2 with C as the Laplacian opera-
tor [Tikhonov et al., 1990]. This prior promotes spatial smoothness across the
image in a uniform way. Of course, enforcing smoothness can be achieved by
other high-pass operators C or derivatives, such as G(f) = ‖Dhf‖2

2 + ‖Dvf‖2
2,

with Dh and Dv being the horizontal and vertical derivatives, respec-
tively. Such first-order derivatives promote constant values, while second-order
derivatives, such as the Laplacian, allow tilted planes and saddle points as well.

Enforcing smoothness across the whole image tends to blur edges and textures.
That is why researchers have been proposing to adapt the smoothness
spatially across the image from the early 1990s. A simple way to achieve such
adaptation is the weighted least-squares expression G(f) = (Cf)T W (Cf) with
W being a diagonal matrix whose values are 1 for smooth regions and close
to 0 in edge and texture regions. Unfortunately, frequency domain solutions
are no longer possible and iterative restoration techniques become unavoidable.

Since the restoration process is iterative, the weight matrix W can be esti-
mated in each iteration based on the current solution, which is assumed to
be better than the measurements. This process is called iterative re-weighted
least-squares (irls) and as it turns out, this concept is very closely related
to robust statistics and m-estimators more in particularly. The field of robust
statistics concentrates on estimation in the presence of outliers. While most of
the regions in the image are smooth, edges appear as outliers when enforcing
the smoothness constraint. The m-estimators are generalizations of ml estima-
tors and least-squares [Stewart, 1999]. The use of these robust loss functions
ρ(Cf) instead of the l2-norm is very popular, because it suppresses the noise
better while retaining important edge information [Pižurica et al., 2005]. E.g.,
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Figure 4.3: Examples of connectivity neighbourhoods: (a) the 4-connectivity neigh-
bourhood ℵ4(x) and (b) the 8-connectivity neighbourhood ℵ8(x) (or also denoted as
ℵ3,3(x), where 3 denotes the size of the neighbourhood).

using the first-order derivatives, we have:3

G(f(x)) =
∑

x′∈ℵk,k(x)

ρ (‖f(x) − f(x′)‖1) , (4.21)

where ℵk,k(x) denotes the k × k-connectivity neigbourhood centered around
the pixel position x on the hr grid. The 4-connectivity and 8-connectivity
neighbourhoods are illustrated in Figure 4.3. Such local spatial interactions
can be modelled by Markov random fields (mrf) in a convenient way. For more
details about mrf, we refer the interested reader to [Geman and Geman, 1984,
Pižurica, 2002].
It can be proven that the minimization of the function ρ(x) (x being the resid-
ual, i.e. the l1-norm, between the measurement and current estimate) according
to the map principles is equivalent to the irls process with the weight function
w(x) = ψ(x)/x where ψ(x) = ρx(x) [Stewart, 1999]. Some commonly used
robust loss functions with their associated ψ functions are given in Table 4.1
and some weight functions are plotted in Figure 4.4. With such functions, the
image prior and the overall restoration algorithm become non-linear. A unique
solution is guaranteed if G(f) is convex, otherwise the irls process converges
to a local minimum. To overcome this problem, optimization strategies such
as graduated non-convexity (gnc) can be employed [Blake, 1989].

In [Black et al., 1998], Black et al. showed that different robust loss functions
in the robust statistical estimation framework are closely related to the
so-called edge-stopping or diffusivity functions in the anisotropic diffusion of
the pde-based image processing. Therefore, several contributions such as
the popular total variation (tv) by Rudin et al. [Rudin and Osher, 1994],
the Beltrami flow by Kimmel et al. [Kimmel et al., 2000] and the directional
filter by Weickert [Weickert, 1998] are connected to techniques from robust
statistics, although pde’s are originally formulated for continuous images. In
the spirit of the directional anisotropic diffusion, we derive a geometry-driven
smoothness prior in the next section.

3We remind that f and g are the vector formulation (in column-stack ordering) of the
images f and g respectively and therefore, their representations can vary in accordance with
the formulation.



4.3 Image priors 89

Table 4.1: Several popular m-estimator functions and their associated ψ functions
where h is a smoothing parameter and x the residual between the measurement and
current estimate.

Robust loss function Definition

Total variation (l1-norm) ρ(x) = |x|
ψ(x) = sign(x)

Tikhonov (l2-norm) ρ(x) = 1
2x

2

ψ(x) = x

Huber ρ(x) =
{

1
2x

2 if |x| ≤ h
1
2h(2|x| − h) else

ψ(x) =
{
x if |x| ≤ h
sign(x)h else

Cauchy-Lorentzian ρ(x) = h2

2 log
(
1 +

(
x
h

)2)
ψ(x) = x

1+(x/h)2

Geman-McClure ρ(x) = x2

h+x2

ψ(x) = 2hx
(h+x2)2

Beaton-Tukey ρ(x) =

⎧⎨
⎩

h2

6

[
1 −

(
1 − (

x
h

)2)3
]

if |x| ≤ h

h2

6 else

ψ(x) =

{
x
[
1 − (

x
h

)2]2

if |x| ≤ h

0 else

Le Clerc ρ(x) = h2

2 − h2

2 exp
(
− (

x
h

)2)
ψ(x) = x exp

(
− (

x
h

)2)
Andrews ρ(x) =

{
h
π − h

π cos(πx/h) if |x| ≤ h
h
π else

ψ(x) =
{

sin(πx/h) if |x| ≤ h
0 else
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Figure 4.4: Plots of the weighting functions w(x) = ψ(x)/x for commonly used
robust loss functions (h = 1/2). Less weight is given to outliers (larger x) compared
to the Tikhonov regularization.

Besides enforcing edge-preserving constraints, researchers from the field of
approximation theory promote using the degree of non-sparsity of the wavelet
coefficients as a regularization. This is because most wavelet coefficients are
almost 0. The same empirical observations lead also to new applications such
as compressive sampling [Candès and Wakin, 2008, Romberg, 2008]. The im-
age prior in the regularization expression becomes the lp-norm G(f) = ‖Cf‖p

p

(p ≤ 1), where C is now a wavelet transform operator in matrix form. Also
the multiresolution principle is an important and powerful aspect in the
restoration framework, since the wavelet transform can be interpreted as a set
of multi-scale derivatives.

It is unfortunately impossible to grasp the complexity and wealth of general
image content in a simple analytic expression G(f). Therefore, a lot of research
effort is recently done in learning-based (or exemplar-based) restoration. Ex-
amples can be used to learn the prior parameters, to learn the posterior pdf
directly (i.e. using a codebook for the restoration that contains samples of the
posterior pdf) or to build a regularization expression from the examples. A
good survey of these techniques can be found in [Datsenko and Elad, 2007].
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4.3.2 Geometry-driven smoothness prior
We assume that images are locally smooth except near edges. When dealing
with image upscaling problems, we have to face an additional potential
trap: preserving the edge discontinuities usually leads to the amplification of
staircase artefacts. We can avoid this problem by taking the local geometry
of the image into account, i.e. we perform a directional smoothing along the
edge directions and simultaneously avoid smoothing orthogonally to these
edges [Weickert, 1998]. These edge directions are estimated at a coarse scale
such that these staircase artefacts do not affect the estimation (because jagged
edges only appear at a fine scale). A similar strategy is applied in edge-directed
image interpolation techniques as discussed earlier in Section 3.1.1.

The local geometry can be represented in the more convenient form of
a 2 × 2 symmetric and semi-positive matrix, called the diffusion tensor
T [Tschumperlé, 2006]. The constructed diffusion tensor T = ληηη

T + λξξξ
T

has two orthonormal eigenvectors η = ∇fσ/ ‖∇fσ‖ and ξ = η⊥ = ∇f⊥σ / ‖∇fσ‖
with corresponding eigenvalues λη and λξ respectively, where ∇fσ denotes the
smoothed gradient ∇f ∗ Lσ (where Lσ is a 2d isotropic Gaussian kernel with
standard deviation σ).
The direction ξ corresponds to the edge direction, when there is an edge, while
η is then the vector perpendicular to the edge (also called the normal vector).
The proposed positive values λη = max

( ‖∇fσ‖2 , 1
)

and λξ = 1 (due to nor-
malization) are related to the local strength of the edge. Given the diffusion
tensor T, we can construct the 2d oriented Gaussian kernel:

LT(x),t(x′) =
1

4πt
exp

{
−x′TT−1x′

4t

}
, (4.22)

where parameter t is related to the diffusion strength. The shape and size of
these Gaussian kernels are different at different locations depending on the
local edge content and thus the eigenvalues 1/λη and 1/λξ of T−1. Note
that these space-varying kernels can be constructed from two oriented 1d ker-
nels [Tschumperlé, 2006].
In smooth regions, the edge strength ‖∇fσ‖ is small and 1/λη ≈ 1/λξ = 1,
which yields an isotropic Gaussian kernel for smoothing. Near sharp edges,
‖∇fσ‖ will be large and 1/λη ≈ 0 � 1/λξ = 1, which yields a highly anisotropic
Gaussian kernel oriented along the edge direction. The whole concept is illus-
trated in Figure 4.5.
Based on these oriented kernels we define the Gibbs geometry-driven smooth-
ness prior with first-order derivatives as

G(f(x)) =
∑

x′∈ℵk,k(x)

L(x′ − x)ρ (‖f(x) − f(x′)‖1) , (4.23)

where ℵk,k(x) denotes the local neighbourhood of x (as illustrated in Figure 4.3)
and where the weight function is the Gaussian steering kernel L = LT(x),t of
equation (4.22).
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η

ξ

Figure 4.5: Illustration of several footprints of the oriented Gaussian kernel: the
kernel is highly anisotropic near edges and isotropic in smooth regions.

Note that equation (4.23) can be seen as a generalization of the pop-
ular bilateral diffusion with L being an isotropic spatial weighting ker-
nel [Tomasi and Manduchi, 1998] and the edge-preserving diffusion image pri-
ors, where the term L(·) is equal to 1 as described in equation (4.21). Another
example that falls into this category is the bilateral total variation (btv) image
prior as proposed by Farsiu et al. [Farsiu et al., 2004]:

G(f(x)) =
∑

x′∈ℵk,k(x)

γ‖x
′−x‖1‖f(x) − f(x′)‖1, (4.24)

where γ is a weight parameter that takes spatial distance into account.

4.3.3 Proposed colour image priors
Almost all scientific publications in the last decades about image priors are
focused on spatial and/or temporal (e.g. in video applications) smoothness and
edge-preserving constraints. However, it is also possible to incorporate prior
knowledge about pixel colours or intensities directly in addition to spatial
diffusion of neighbouring pixels.

Bimodal colour priors have been successfully applied in low-resolution text
enhancement [Donaldson and Myers, 2005, Thouin and Chang, 2000]. Typi-
cally the intensities of the text pixels tend to cluster around black and the
intensities of the background pixels tend to cluster around white. Taking
the bimodality into account improves the contrast and thus the readability.
We extend this concept for general image restoration. Another use of mul-
timodality is employed in image retrieval [Matas et al., 2000]: local windows
with one, two or three colours (respectively unimodal, bimodal and trimodal
neighbourhoods) describe the features being matched in the image database.

Because we are dealing with distributions with several modes, these mul-
timodal priors are closely related to the well-known finite mixture models
(fmm) in statistics. Such models represent a probability distribution
that is a convex combination of other probability distributions. These
models are for example used for the estimation of the statistics between the
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grey and white brain tissues for mri data segmentation [Schroeter et al., 1998].

In the next sections, we describe two different colour image priors, namely the
adaptive bimodal colour prior and the multimodal colour prior. The adaptive
bimodal colour prior expresses that an edge pixel has a colour value that is typi-
cally a mixture of the colours of two connected regions, each having a dominant
colour distribution. Local adaptation of the parameters of the bimodal prior is
made to handle neighbourhoods that have typically more than two dominant
colours.
In some applications the number of colours in the ideal image is limited. There-
fore the multimodal colour prior is proposed for images that normally just have
a few dominant colours. In spite of this, real world images contain many more
colours due to noise, compression artefacts and edge pixels between two or
more connected smooth regions.

4.3.3.1 Adaptive bimodal colour prior

The number of different colours in a small image region is very small in gen-
eral, if we do not take noise and gradients into account. Depending on the
number of modes of the probability distribution of pixel colour values, the
regions are characterized as unimodal (one dominant colour), bimodal (two
modes), or in general, multimodal neighbourhoods. Unimodal neighbourhoods
appear in flat regions, while bimodal neighbourhoods occur in edge regions.
For bimodal regions we use a Gibbs prior with a non-negative fourth-order
polynomial [Donaldson and Myers, 2005]:

G(f(x)) = ‖f(x) − μ1(x)‖2
2 ‖f(x) − μ2(x)‖2

2 , (4.25)

where μ1(x) and μ2(x) are the means of the background and foreground pixel
distribution respectively. The one-dimensional bimodal pdf is illustrated in
Figure 4.6.
When μ1(x) and μ2(x) are equal (or close) to each other, the bimodal pdf
has a much lower peak than the normal distribution as plotted in 1d in Fig-
ure 4.6. This means that the kurtosis, i.e. the degree of peakness, is lower than
3 (i.e. lower than the value for a Gaussian distribution) and this is known as
platykurtosis. In 1d, this gives

4
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where σ is the standard deviation and Γ(α) =
∫∞
0 tα−1e−tdt. Because the

platykurtic pdf has a large dispersion and no clear peak, the mode can not be
determined accurately and as a consequence, we can not take full advantage
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Figure 4.6: 1d plot of the Gibbs pdf of the bimodal priors and the unimodal prior.

of this prior model. That is why it is important to group modes that are the
same or close to each other and replace them by a single mode.

In case of a single mode, we switch to a unimodal pdf if the Euclidean distance
‖μ1(x) − μ2(x)‖2,L*a*b* is lower than a threshold τ in the L*a*b* colour space.4
The unimodal Gaussian pdf is given by:

G(f(x)) = ‖f(x) − μ(x)‖2
2 , (4.27)

where μ(x) is the average between μ1(x) and μ2(x).

If an image should contain two colours only, e.g. a black-and-white cartoon or a
text document, we use a global μ1 (e.g. white) and a global μ2 (e.g. black). Via
the expectation maximization (em) algorithm, we can obtain the parameters
μ1 and μ2 of the mixture of Gaussian distributions [Dempster et al., 1977].
Nevertheless, for general colour images, the assumption of one or two colours
is only valid in a small image patch. That is why we need to estimate μ1 and
μ2 locally from the colour content of the neighbourhood of a pixel at position x.

4The L*a*b* colour space is much more perceptually uniform compared to the rgb colour
space, which means that a linear change of data should result in a linearly perceived colour
change. However, note that the uniformity is less correct in the presence of extreme intensi-
ties.
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(a) (b) (c) (d)

Figure 4.7: The local colour mode selection: (a) original image, (b) μ1 (light), (c)
μ2 (dark) and (d) bimodal regions.

An edge pixel has a colour value that is typically a mixture of the colours of
two connected uniform regions. To estimate the colour of each uniform region
accurately, we construct the image f ′ by clustering similar colour values using
the mean-shift algorithm [Comaniciu and Meer, 2002]. This mean-shift filter-
ing preserves discontinuities and retains local image structures. We distinguish
the colour modes μ1(x) and μ2(x) as the lightest (μ1(x)) and darkest (μ2(x))
colour in a local neighbourhood. This is determined by the luminance fL(x)
(in the L*a*b* colour space):

μ1(x) = f ′(x̂′) where x̂′ = argmax
x′

fL(x′),

μ2(x) = f ′(x̂′) where x̂′ = argmin
x′

fL(x′), (4.28)

where x′ ∈ ℵr,r(x) with r being the magnification factor (the 3, 3-connectivity
neighbourhood is for example illustrated in Figure 4.3). In short, equa-
tion (4.28) selects the pixel colour of the mean-shift-filtered image accord-
ing to the ordering of the luminance in the L*a*b* colour space. This is
closely related to colour mathematical morphology, which is treated exten-
sively in [De Witte, 2007]. Examples of μ1- and μ2-images are illustrated in
Figure 4.7.

4.3.3.2 Multimodal colour prior

The number of different colours in an image neighbourhood is very small in gen-
eral, if we do not take noise and edge pixels into account. The same assumption
also holds for images with just a few dominant colours like cartoons, drawings
or logos. For multimodal colour images with m colour modes, we use a Gibbs
prior with a non-negative 2m-order polynomial, which is a generalization of the
bimodal prior presented earlier in equation (4.25):

G(f(x)) =
m∏

i=1

‖f(x) − μi‖2
2 , (4.29)

where μi is the mean of the colour distribution around the ith mode.
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If we know how many colours an image contains a priori, we can find
the parameters μ1, . . . , μm easily by locating the peaks of the multimodal
distribution. Via the em algorithm, we can for example obtain the means μi

of the mixture of Gaussian distributions [Dempster et al., 1977]. A typical
application where such prior knowledge is present is the restoration of scanned
documents with only two colours, namely the foreground colour (e.g. black)
and the background colour (e.g. white).

With the exception of black and white documents, we normally do not know
how many dominant colours there are in an arbitrary image. Therefore, we
propose a method to calculate the parameters μi robustly in a three-step al-
gorithm. In the first step, we preselect some candidate colour modes μc. This
is done by counting the number of neighbouring colours for each pixel g(x) on
the lr grid. Two colours μc and g(x) are neighbours if ‖μc − g(x)‖2,L*a*b* < τ
(i.e. the Euclidean distance between g(x) and μc in the L*a*b* colour space
is smaller than τ). We now select n > m colours with the highest number of
neighbouring colours, where we neglect the neighbours of the already selected
colours.
In the second step, we apply mean-shift filtering on the selected candidate
colour modes μc. To establish the location of the modes of the colour distribu-
tion, the mean-shift algorithm is applied in the L*a*b* colour space. Starting
from each candidate colour mode μc, the mean-shift procedure iteratively finds
a path along the gradient direction away from the valleys and towards the
nearest peak that is equivalent to a gradient ascent to the local mode of the
distribution [Comaniciu and Meer, 2002]. The positions of the modes are iter-
atively updated as follows:
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∑
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g(x)r

⎛
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⎛
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c
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∥∥∥∥∥
2
⎞
⎠

, (4.30)

where Ω(g) contains all the pixels of the lr image g, h repre-
sents the window bandwidth and r is the profile that defines the ker-
nel [Comaniciu and Meer, 2002]. Using the multivariate Gaussian kernel, the
profile r becomes

r(x) = exp
(
−x

2

)
(x ≥ 0). (4.31)

In the last step, we group colour modes μc together that are equal or close to
each other (due to the platykurtosis effect as explained in the previous section).
These colour modes are then replaced by their average μi.
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4.4 Optimization

In order to solve the map estimation problem as stated in equation (4.20),
we determine the regularization parameter α, which balances the fidelity to
the data and the prior knowledge, and we derive a numerical solution that
minimizes the cost criterium.

4.4.1 The choice of regularization parameter

For the sake of completeness, we briefly mention some popular
methods for choosing α. A more detailed treatment can be found
in [Galatsanos and Katsaggelos, 1992]. Intuitively, the regularization pa-
rameter α depends on the noise level: in the noise-free case, the restored
image should completely depend on the observed data and little regularization
is needed to overcome potential numerical instabilities, and in the case the
observed data contains only noise (and no signal information), the restored
image depends entirely on the prior information. A trivial choice for α
is then the inverse of the signal-to-noise (snr) ratio. Such an approach
requires the knowledge of the noise variance, which can be estimated before
restoration [Galatsanos and Katsaggelos, 1992].

The scalar regularization parameter α can also be optimized with a 1d line
search method, such as golden section search, inverse parabolic interpolation
and Brent’s method [Press et al., 1988]. The optimal parameter corresponds
with the minimum mse or total error between the observed and the re-simulated
image (i.e. the restored image after applying the observation model). This
process is also known as the constrained least squares method [Rooms, 2005].
Note that parameters that have been selected based on trial and error, i.e. to
produce the visually most appealing results, also follows a similar but simple
strategy, based on visual (subjective) perception and not on objective measures.
Another practical method for choosing α in the presence of noisy data is the
L-curve criterion [Hansen and O’Leary, 1993]. The L-curve criterion is based
on the plots of the norm of the regularized solution versus the norm of the
corresponding residual. The regularization parameter is related to the charac-
teristic L-shaped corner of the graph. The corner is determined as the closest
point to the origin or as the point with the maximum curvature. A variant on
this matter is the use of U -curves [Krawczyk-Stańdo and Rudnicki, 2007].

One of the most popular ways to determine the value of α without requir-
ing knowledge of the noise variance is the generalized cross-validation (gcv)
method [Golub et al., 1979]. The idea of cross-validation is quite simple: we
divide the image data into two parts, one part is used to construct an approx-
imate solution (the so-called training set), and the other is used to validate
that approximation. The choice of the value α is the one that minimizes the
cross-validated prediction error, which is usually the mse. A special type com-
monly being used is the leave-one-out cross-validation (loocv): the training
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set consists of all restored pixels, except the one under consideration.

4.4.2 Gradient-based minimization

The maximization problem of the map estimator becomes a minimization prob-
lem after taking the logarithm which is expressed by equation (4.17). The ex-
plicit minimization can be performed by computing the gradient of the cost
function ∇Ψ(f) and equating this gradient to zero. The minimum of the cost
function Ψ(f) can then be found by the following iterative sequence (also known
as the steepest descent algorithm):

f̂ (j+1) = f̂ (j) − λk∇Ψ(̂f (j)), (4.32)

where the scalar parameter λk determines the convergence speed or step
size. The optimal choice of λk, which takes the optimal step in the steepest
descent direction, can usually be determined theoretically. However, for
complex non-linear functions, the solution for the optimal λk can not be
obtained in a closed form. In practice, a fixed value of λk is used for all itera-
tions and the parameter λ is chosen preferably as the largest value that does
not cause the algorithm to diverge (i.e. ‖f̂ (j+1)− f̂ (j)‖ decreases with each step).

More powerful techniques can be used to solve the same minimization problem
in less iterations. Some examples are the implicit iterative miminization
schemes (e.g., Picard’s iteration), the conjugate gradient methods (e.g., the
Fletcher-Reeves algorithm and the closely related Polak-Ribière algorithm),
the Gauss-Newton methods (and the covering Levenberg-Marquardt algorithm
which actually combines the Gauss-Newton and the steepest descent algo-
rithms) and the quasi-Newton or variable metric methods (e.g., symmetric
rank 1, the Davidon-Fletcher-Powell algorithm or the closely related Broyden-
Fletcher-Goldfarb-Shanno algorithm) [Press et al., 1988]. However, the more
powerful methods require more complex computations (e.g., the Hessian or
the analysis of successive gradient vectors) at each iteration step. As the
number of variables in the problem increases, the simpler methods become
more attractive and competitive (they require more iterations but also the
fewer computations per iteration so that they can still be faster) than the
more complex techniques. Therefore, the steepest descent formulation offers a
reasonable trade-off between the number of iterations and the computational
complexity at each iteration, particularly for the large number of variables in
the digital image restoration framework [Hunt, 1977].

Based on the proposed adaptive bimodal colour prior and the multimodal colour
prior (as introduced in Section 4.3.3), we have developed two methods for
restoring images corrupted by loss of resolution and additive zero-mean white
Gaussian noise.
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DT

D

Figure 4.8: Illustration of the effect of the downsampling operator D and the up-
sampling operator DT. The samples indicated by white circles on the high-resolution
grid are filled with zeros.

4.4.2.1 Restoration with adaptive bimodal colour prior

The first method assumes that the linear degradation operator A in equa-
tion (4.15) denotes a simple block averaging operator, which is commonly used
in fast and simple downscaling algorithms. Based on the simple Tikhonov reg-
ularization (see Table 4.1) and the adaptive bimodal colour prior, the solution
can be found plugging the following closed-form expression in equation (4.32):

∇Ψ(f̂ (j+1)(x)) =
([

AT] ([A] f̂ (j) − g
))

(x) + αbΦ(f̂ (j)(x)) +

2αs

∑
x′∈ℵ4(x)

(
f̂ (j)(x) − f̂ (j)(x′)

)
, (4.33)

where αb and αs are the weights or regularization parameters, [A] is the lin-
ear degradation operator (which operates on the whole image, [A] f is thus
the simulated lr image) and the operator

[
AT

]
=

[
HTDT

]
projects the val-

ues from the lr grid to the hr grid according to an upsampling scheme DT

(which is the inverse operation of D as illustrated in Figure 4.8) followed by
the operator HT, which performs a convolution with a new psf kernel. This
psf kernel is constructed by flipping the columns of the original blur kernel in
the left-right direction (i.e. about the vertical axis) and then flipping the rows
in the up-down direction (i.e. about the horizontal axis) [Farsiu et al., 2004].
In case of isotropic psf kernels, the kernel is exactly the same as the one in
the degradation model, because HT = H. The initialization of the iterative
procedure is obtained by the nearest neighbour interpolation f̂ (0).

The regularization term Φ(f̂ (j)(x)) for the bimodal regions (see equation (4.28)
for the parameters μ1(x) and μ2(x)) becomes:

Φ(x) = 2 (x− μ1(x)) ‖x− μ2(x)‖2
2 + 2 (x− μ2(x)) ‖x− μ1(x)‖2

2 , (4.34)

while minimizing the quadratic term of the unimodal pdf in equation (4.27)
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leads to the following simple regularization term:

Φ(x) = 2 (x− μ(x)) . (4.35)

The parameters used in the experiments are λ = 0.125, αs = 0.5, αb = 0.5 and
αb = 2e-5 for unimodal and bimodal regions, respectively. The regularization
parameters are chosen according to the maximum possible size of the regular-
ization terms. The parameter τ , which distinguishes unimodal from bimodal
regions as described in Section 4.3.3.1, is set to 10. The number of steepest
descent iterations is 100.

4.4.2.2 Restoration with multimodal colour prior

The second method integrates the proposed geometry-driven smoothness prior
with l2-norm (see Section 4.3.2) and the global multimodal prior (see Sec-
tion 4.3.3.2) in an map restoration framework. On the one hand, we solve
the minimization problem of the map estimator by substituting the previously
defined priors in the steepest descent algorithm. On the other hand, we opti-
mize the parameters μi of the multimodal priors on the hr grid. The latter
can be solved by computing the steepest ascent in the mean-shift algorithm as
discussed in Section 4.3.3.2. More precisely, we iteratively perform alternating
optimizations (ao) over the image f and the parameters μi by substituting the
following closed-form expression in the steepest descent formulation:

∇Ψ(f̂ (j+1)(x)) =
([

HTDT] ([DH] f̂ (j) − g
))

(x) +

2αs

∑
x′∈ℵk,k(x)

LT(x),t

(
f̂ (j)(x) − f̂ (j)(x′)

)
+

αmΦ(j)(f̂ (j)(x)), (4.36)

and jointly updating the m parameters μ(j+1)
i (i = 1, . . . ,m) of the multimodal

prior:
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where αs and αm are the regularization parameters, h represents the window
bandwidth [Comaniciu and Meer, 2002] and the profile r is the Gaussian kernel
given by equation (4.31). The regularization term Φ(j)(f̂ (j)(x)) is given by:

Φ(j)(x) =
m∑

i=1

2
(
x− μ

(j)
i

) m∏
k=1;k 
=i
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2
. (4.38)
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(a) f̂ (0) (b) f̂ (1) (c) f̂ (3)

(d) f̂ (6) (e) f̂ (10) (f) f̂ (50)

Figure 4.9: Iterative restoration example of a jpeg-compressed patch with 3 colour
modes.

The parameters for the experiments are β = 0.125, τ = 10, h = 10, αs = 0.5,
αm = (1/2552)m−1 and the algorithm employs 100 iterations for the restoration
process. The regularization parameters are again chosen according to the maxi-
mum size of the regularization terms. The iterative procedure is initialized with
the nearest neighbour interpolation f̂ (0) and the parameters μ(0)

i are retrieved
from the three-steps algorithm described in Section 4.3.3.2. The evolution of
an iterative image restoration process is shown in Figure 4.9.

4.5 Experimental results

We now present results, which demonstrate the effectiveness of our methods
in upscaling images with a strong colour modality like cartoons, logos and
maps, especially, when such images are compressed with jpeg or mpeg schemes
(which are not optimally suited for this type of images). The colour priors are
very powerful in removing introduced colour artefacts (e.g. due to mosquito
noise).
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(a) Cubic b-spline (b) Tikhonov regularization

Figure 4.10: Image restoration results (4× enlargement of Figure 4.7).

4.5.1 Restoration with adaptive bimodal colour prior

In Figures 4.10, 4.11 and 4.12, we compare the proposed method for a magnifi-
cation factor of 4 with the popular cubic b-spline interpolation, with Tikhonov
regularization (i.e. the proposed method but without the adaptive bimodal
colour prior), with total variation (tv) regularization (see Table 4.1), with bi-
lateral total variation (btv) regularization [Farsiu et al., 2004] (also given by
equation (4.24)) and with the curvature preserving pde’s [Tschumperlé, 2006].
The original image is given in Figure 4.7. Note that the tv and btv regulariza-
tion schemes are initialized with a cubic b-spline interpolation result instead of
with a nearest neighbour interpolated image, because these methods sharpen
the edges in the image, but do not remove jagged edges. The cubic b-spline in-
terpolation shows clearly the compression artefacts, which are largely removed
by the restoration methods. At first glance, our method produces sharper im-
ages compared to the other methods, for example at the pupil of the eye.
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(a) tv regularization (b) btv regularization

Figure 4.11: Image restoration results (4× enlargement of Figure 4.7).
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(a) Curvature preserving pde’s (b) Proposed method

Figure 4.12: Image restoration results (4× enlargement of Figure 4.7).
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Detailed region of the mouth: (a) cubic b-spline, (b) Tikhonov reg-
ularization, (c) tv regularization, (d) btv regularization, (e) curvature preserving
pde’s [Tschumperlé, 2006] and (f) proposed method.

Figure 4.13 shows an enlarged region of interest in order to achieve a better
visibility. We can observe that our method outperforms the other methods in
visual quality. Noise and compression artefacts are heavily reduced compared
to traditional interpolation techniques. Jagged edges are removed very well
while tv regularization tends to preserve jaggedness. In our method, intensity
staircase artefacts (i.e. piecewise constant regions) do not occur as opposed to
the curvature preserved pde method for example. The results of our method
also contain less blur compared to other methods. Additionally, our method
has a built-in anti-jaggies filter, thanks to the Tikhonov regularization, which
is also visually more pleasant.

4.5.2 Restoration with multimodal colour prior
As a first experiment we have enlarged a jpeg-compressed image with a lot
of mosquito noise as illustrated in Figure 4.14. We compare the proposed
method using a magnification factor of 4 with nearest neighbour interpolation,
with the popular cubic b-spline interpolation, with mean-shift postfilter-
ing [Comaniciu and Meer, 2002], with btv regularization [Farsiu et al., 2004]
and with the curvature preserving pde’s [Tschumperlé, 2006]. The mean-shift
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Restoration results of traffic sign: (a) nearest neighbour, (b) cubic
b-spline, (c) mean-shift postfiltering [Comaniciu and Meer, 2002], (d) btv regulariza-
tion, (e) curvature preserving pde’s [Tschumperlé, 2006] and (f) proposed method.

and the btv regularization schemes are initialized with the cubic b-spline
interpolation.

We can clearly see that our method outperforms the other methods in visual
quality. Noise and compression artefacts are totally removed compared to the
traditional interpolation techniques. The mean-shift postfilter reduces noise
and compression artefacts, but the result suffers from intensity staircase effects
due to the transitional colours along the edges. btv regularization and curva-
ture preserving pde’s produce much more blur than our method.

In Figure 4.15 we have enlarged an image that is corrupted by colour quan-
tization and error diffusion artefacts. We also compare the proposed method
to the restoration algorithm with the anisotropic geometry-driven smoothing
prior only (without the multimodal colour prior, thus αm = 0) and with the
combination of the multimodal colour prior and the isotropic smoothing prior
(this corresponds to the bilateral diffusion with L being an isotropic Gaussian
kernel in equation (4.23)).

Our method delivers the best visual results concerning noise, compression arte-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Restoration results of Lisa: (a) nearest neighbour, (b) cubic b-spline,
(c) restoration with isotropic smoothing and multimodal colour priors, (d) restoration
using geometry-driven smoothing without multimodal colour priors, (e) curvature
preserving pde’s [Tschumperlé, 2006] and (f) proposed method.
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facts and blur (see Figure 4.15). Jagged edges are removed very well by the
geometry-driven smoothing, while isotropic regularization tends to retain some
jaggedness. It is clear that the use of the proposed multimodal colour priors
influences the end result positively: the image is visibly much sharper than the
images produced by other methods and colour quantization artefacts are also
removed. Intensity staircase artefacts (i.e. piecewise constant regions) do not
occur in our method either as opposed to other methods, e.g. the curvature
preserved pde method.

4.6 Conclusion

In this chapter, we gave a broad overview of the existing adaptive image
restoration methods where the focus was on the joint denoising and deconvo-
lution problem. Among these numerous restoration methods, regularization
techniques (e.g., the pde-based methods, the deterministic set theoretic
methods and the Bayesian methods) are very powerful because they are able
to include prior knowledge about the degradation and the hypothetical ideal
image. We derived the regularization techniques from a Bayesian point of
view (based on the stochastic estimation theory and the map framework in
particularly) and discussed the image priors in more detail.

We derived the steepest descent algorithm for enlarging images with a
comprehensive smoothness prior that takes the local geometry of edges into
account, and we presented two new image priors, namely the adaptive bimodal
colour prior and the multimodal colour prior. The adaptive bimodal colour
prior expresses that the value of an edge pixel is a combination of the colours
of two connected regions, each having a dominant colour distribution. The
multimodal colour prior is proposed for images that normally just have a few
dominant colours such as cartoons, logos, maps, etc.

Restoration results show the effectiveness and the visual superiority of our
map scheme with the proposed colour priors to other interpolation/restoration
schemes for images with a strong colour modality: noise and compression
artefacts (like mosquito noise and colour quantization effects) are removed
and our method produces less blur and other annoying artefacts (e.g. jagged
edges, intensity staircase effects, etc.).

Future applications based on colour priors are for instance re-colourizing
old movies from aging and deteriorated films, displaying compressed cartoon
movies (e.g., from dvd’s) on high-resolution screens such as hdtv and the en-
hancement of data coming from surveillance cameras (e.g. for reading license
plates or recognizing a particularly logo on a criminal’s sweater). Perhaps, one
of the most interesting application today is the use of colour priors in the image
demosaicing problem. Recently, in [Bennett et al., 2006], the authors employed
a similar idea (each pixel is assumed to be a linear combination of two colours,
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which are retrieved by k-means clustering) successfully to the demosaicing of
Bayer cfa patterns: less colour fringing or false colours are introduced com-
pared to traditional demosaicing techniques.
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5
Non-local reconstruction

methods

Quotes, damned quotes, and. . .
—John Bibby

Traditional image restoration methods produce a clean (hr) image from an
observed degraded (lr) image following an acquisition or degradation model.
Such a model describes how each output pixel is related to one or more input
pixels, which is incorporated via the data fidelity term in the regularization
framework as discussed in Chapter 4. Additionally, prior knowledge such as
piecewise smoothness can be incorporated to improve the image restoration
result. The impact of an observed pixel on the restored pixels is thus local ac-
cording to the degradation model and the prior knowledge. So, the traditional
methods only exploit the spatial redundancy in a local neighbourhood and are
therefore referred to as local methods.

However, in this chapter, we demonstrate that the estimation of the re-
stored pixel intensity can be based on information retrieved from the
whole image, thereby exploiting the presence of similar patterns and fea-
tures in the image, which we call repetitive structures. In the next sec-
tion, we describe the relationship between this relatively new class of non-
local methods and the exemplar- and fractal-based algorithms. In the
rest of the chapter, we focus on the use of repetitive structures in im-
age denoising (based on the non-local means algorithm as introduced by
Buades et al. [Buades et al., 2005b, Buades et al., 2005a] and the improve-
ment of this algorithm led to three conference publications [Dauwe et al., 2008,
Goossens et al., 2008a,Goossens et al., 2008c]) and we introduce this non-local
approach in image resolution enhancement, which is the main novelty. The
blocks are selected based on the newly proposed dual matching criterion that
enables a fast and robust filtering of these blocks. This work led to an icip pub-
lication [Luong et al., 2006c] and another publication in the Springer’s Lecture
Notes on Computer Science series [Luong et al., 2006b].
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Figure 5.1: Example of self-similarity in nature (fern).

5.1 Repetitive structures, examples and self-
similarity

Since the early 1980s, the idea of self-similarity plays an important role in
mathematics and physics. Fractal-based methods suppose that many natural
objects possess fractalness, i.e., parts of the image repeat themselves on an ever-
diminishing scale, hence the term self-similarity. This process is illustrated in
Figure 5.1.
From a historical point of view, most fractal-based methods focused on
its compression capabilities, i.e., the image is approximated by a small
group of image blocks provided at different scales, the so-called domain
pool [Ebrahimi and Vrscay, 2008b]. A similar strategy can be found in block-
based video compression schemes such as mpeg: frames can be predicted very
well by taking advantage of the statistical property that image blocks are very
similar to other image blocks from neighbouring frames. Thanks to the scale-
invariance property of the fractal-based methods, self-similarity lends itself to
image resolution enhancement applications (see also Section 3.1.2).
In practical applications, the self-similarity property is exploited via a contrac-
tive affine transformation of image blocks across different scales [Jacquin, 1992].
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The affine transformation of image blocks is applied geometrically (i.e. spa-
tially) as well as photometrically, i.e. in intensity/colour space.

Unlike fractal-based methods, non-local methods exploit the similarity of small
patches at the same scale, without rotation or photometrical corrections. To
avoid confusion, we will use the term repetitivity or repetitive structures. We
can hypothetically assume that repetitive structures could serve as multiple
noisy observations of the same structure. Results of our experiments in
Section 5.4 will confirm that this hypothesis holds for real situations. Another
class of methods that also takes advantage of repetitivity (but in time), is called
super-resolution (sr) reconstruction. sr is a signal processing technique that
obtains a hr image from multiple noisy and blurred lr images (see Chapter 7).

The concept of repetitive structures was successfully introduced in the
image denoising field as the non-local means algorithm by Buades et
al. [Buades et al., 2005b,Buades et al., 2005a] and was used for detecting dig-
ital image forgery [Fridrich et al., 2003,Li et al., 2008]. Besides repetitivity in
texture, we can also find repetitivity in other parts of the image, some examples
are illustrated in figure 5.2.

Closely related to the non-local method, is the training-based (or learning-
based) approach, which restores images based on image blocks or examples
that are retrieved from ideal images, and therefore, these techniques are
also referred to as exemplar-based methods. Codebooks with examples are
built by applying the degradation model on these ideal (degradation-free)
images. These image blocks and their ideal counterparts are then used to
guide the restoration process. The exemplar-based approach was success-
fully used in image denoising [Aharon et al., 2006,Elad and Aharon, 2006], im-
age deblurring [Nakagaki and Katsaggelos, 2003], image interpolation or super-
resolution [Freeman et al., 2002,Datsenko and Elad, 2007].
As discussed in Section 3.1.2, the performance of these exemplar-based al-
gorithms depends heavily on the given training data, which can provide in-
sufficient or wrong lookup results, and structural artefacts become more vis-
ible and disturbing because they are treated as part of the image. From a
Bayesian point of view, there is also an important difference between non-local
and exemplar-based methods: in non-local methods, similar patches provide
information about the likelihood function for a given patch while in exemplar-
based methods, similar training patches are assumed to be ideal, which also
tells us something about the prior information.

5.2 Non-local image denoising

In the classic image denoising problem, the objective is to design an algorithm
that can remove additive white stationary Gaussian noise, while preserving
the original image details and fine structures and thereby having a high visual
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(a) Repetition in different objects.

(b) Repetition along edges.

(c) Repetition in uniform areas.

Figure 5.2: Illustration of repetitive structures in images.



5.2 Non-local image denoising 115

quality. To this end, the original non-local means algorithm as introduced
by Buades et al. [Buades et al., 2005b, Buades et al., 2005a] is quite intuitive
and potentially very powerful in removing noise with state-of-the-art denoising
results as illustrated in Figure 5.3. However, the algorithm is computationally
impractical due to the enormous number of weight calculations between image
blocks.

In the next sections, we describe briefly the original non-local means algorithm
and we discuss and point out some directions for improvements.

5.2.1 The original non-local means algorithm

We assume that the image is corrupted by zero-mean white stationary Gaussian
noise. The denoised value f̂(x) of the pixel intensity at position x is computed
as the weighted average of all pixels in the image, which can be seen as a linear
spatially adaptive filter:

f̂(x) =

∑
x′∈Ω(g)

w(x,x′)g(x)

∑
x′∈Ω(g)

w(x,x′)
(5.1)

where g(x) denotes the intensity of the noisy pixel at position x and Ω(g)
is the domain of the image g. We will refer to this filter as the pixel -based
non-local means. Alternatively, a block -based non-local means filter also
exists [Buades et al., 2005b].

The weights w(x,x′) depend on the image content. Specifically, they depend
on the similarity between the neighbourhoods N(x) and N(x′) of the image
pixels at positions x and x′. Typically, squared neighbourhoods of fixed prede-
fined size are used (e.g., 7×7 or 9×9). The similarity between neighbourhoods
is computed by means of the mean squared deviation (msd) ‖N(x)−N(x′)‖2,
i.e. the Euclidean distance between the two image patches. In the original non-
local means algorithm [Buades et al., 2005b,Buades et al., 2005a], the weight-
ing function is defined as follows:

w(x,x′) = exp
(
−‖N(x) − N(x′)‖2

h2

)
, (5.2)

where h is a constant, proportional to the noise variance σ2
n. The weights

w(x,x′) decay at an exponential rate, which results in large weights for a
small msd (similar windows) and small weights for a large msd (non-similar
windows).

Note that the popular bilateral filter [Tomasi and Manduchi, 1998], which is
an iterative local method, is closely related to the non-local means filter. For
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(a) (b)

(c) (d)

(e)

Figure 5.3: Denoising results of a texture image: (a) original 256 × 256 tex-
ture image, (b) image corrupted with additive white Gaussian noise (σn =
70), (c) Portilla et al. [Portilla et al., 2003] (psnr: 16.20 dB), (d) Pižurica et
al. [Pižurica and Philips, 2006] (psnr: 16.99 dB) and (e) non-local means algorithm
by Dauwe et al. [Dauwe et al., 2008] (psnr: 18.36 dB).
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the bilateral filter, the weighting function is given by:

w(x,x′) = exp
(
−‖g(x) − g(x′)‖2

h2
1

)
exp

(
−‖x− x′‖2

h2
2

)
, (5.3)

where the first factor (called the photometric distance) is inversely proportional
to the Euclidean distance between the pixel intensities g(x) and g(x′) and the
second factor (called the geometric distance) measures the Euclidean distance
between the positions x and x′.

Many proposed denoising filters in the literature are closely related to this
concept. For example, the Yaroslavsky neighbourhood filter sets the geometric
distance factor to 1 if the geometric distance ‖x − x′‖2 is within a predefined
radius and 0 otherwise [Yaroslavsky, 1985]. Other well-known local variants are
Lee’s σ-filter [Lee, 1983], adaptive smoothing [Saint-Marc et al., 1991], small-
est univalue segment assimilating nucleus (susan) [Smith and Brady, 1997],
trilateral filter [Choudhury and Tumblin, 2003], etc. A concise overview and
their mutual relations can be found in [Kervrann and Boulanger, 2006].

The weighting function of the non-local means algorithm can be interpreted
as a vector-extension of the weighting function of the bilateral filter, omitting
the geometric distance factor (actually, this factor distinguishes local from non-
local methods). Note that both weighting functions as given in equations (5.2)
and (5.3) are chosen heuristically and it is thus not guaranteed that these
choices are optimal for a given criterion.

5.2.2 On the improvement of non-local means

Even though the original non-local means method is quite intuitive and po-
tentially very powerful, the psnr and visual results are somewhat inferior to
other recently proposed state-of-the-art non-local algorithms, such as bm-3d
as proposed by Dabov et al. [Dabov et al., 2007]. However, the main drawback
still is the gigantic computation time due to the excessive amount of evalua-
tions of the weighting function given by equation (5.2). The complexity of the
algorithm is O(n2) with n the total number of pixels in the image. This follows
directly from the fact that n weights have to be computed for every pixel in the
image. Just to give some idea about the computation time: denoising a single
512 × 512 image on a P4 3.0 GHz with 1024 Mb ram lasts about 5 hours and
20 minutes. In the next sections, we point out several possible improvements
on the non-local means algorithm in terms of computational complexity and
restoration quality.

5.2.2.1 Accelerating the non-local means filter

Several papers in the literature are dedicated to the acceleration of the non-local
means algorithm. For example, Mahmoudi and Sapiro reduced the original
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quadratic computational complexity to a linear one by putting a hard limit
on the number of contributing weights and by preclassifying neighbourhoods
based on average greyvalues and gradients [Mahmoudi and Sapiro, 2005],
while Coupé et al. used the mean and the variance of the neighbour-
hood as the preclassification conditions in a parallel computation frame-
work [Coupé et al., 2008]. Orchard et al. quickly ruled out dissimilar
neighbourhoods via singular value decomposition (svd) [Orchard et al., 2008].
Brox et al. arranged image data in a cluster tree, which allows for a fast and
accurate preselection of similar neighbourhoods [Brox et al., 2008]. Wang et
al. replaced the msd calculations with an efficient summed square image scheme
using fast Fourier transform in a limited search window [Wang et al., 2006].
Using a limited search window centered around the processed pixel can indeed
accelerate the denoising process enormously, however, in some applications we
wish to exploit the full search space, i.e. the whole image or video sequence.
Similar objects or texture can be located anywhere in the image after all.
Additionally, the non-local property of the algorithm partially vanishes due to
the limited search window and is so related back to local denoising methods.

In [Dauwe et al., 2008] and [Goossens et al., 2008a], we presented several im-
provements for speeding up the non-local means filter. In [Dauwe et al., 2008],
a preclassification (based on the first three statistical moments, namely the
mean, the variance and the skewness) is used to ignore the very small weights
from dissimilar neighbourhoods. To decide whether a window is similar or
dissimilar, we derive thresholds for images that are corrupted with additive
white Gaussian noise. Further preclassification using fourth and higher order
statistical moments is not very beneficial in most cases, at the contrary,
it works even counterproductive: the denoising time increases because the
computational cost of further checks exceeds the gain of the excluded weight
computations.

Since most distance measures between neighbourhoods, such as the msd, are
symmetrical, we can reduce the computation time by approximately a fac-
tor 2 by exploiting the fact that weighting functions are also symmetrical
(i.e. w(x,x′) = w(x′,x)). We first initialize the accumulated weight matrix
and the accumulated contribution matrix with zeros. Both matrices have the
same size as the input image and actually represent the numerator (i.e. the
accumulated contribution matrix) and the denominator (i.e. the accumulated
weight matrix) of equation (5.1). When processing a pixel x with the contri-
bution of a pixel x′, we add the products w(x,x′)g(x′) and w(x,x′)g(x) to the
accumulated contribution matrix at the pixel positions x and x′ respectively.
The accumulated weight matrix is also updated at the same pixel positions
with w(x,x′). As a result, we only need to compute weights of neighbourhoods
for x′ > x. Note that this does not mean that the accumulated weights on posi-
tions x′ and x are equal, thus updating both accumulated matrices on positions
x′ and x is still needed. Finally, we normalize the accumulated contribution
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matrix via element-wise division by the accumulated weight matrix, in order
to obtain the estimated image.
The Euclidean distance between different neighbourhoods ‖N(x) − N(x′)‖2

can be computed very efficiently across the whole image using a mov-
ing average filter (with x − x′ being a constant position difference each
time) [Goossens et al., 2008a]. Note that the same strategy also affects the
neighbourhood preclassification step: we do not need to compare the already
processed neighbourhood pairs because of the symmetry of the statistical
features.

Evaluating the exponential function in equation (5.2) is still a time consuming
task for a cpu. Since the bandwidth parameter h is constant, these exponential
functions are evaluated in advance and stored in an efficient lookup table. In
this way, the number of evaluations is fixed. The relative gain in computation
time can be tremendously large as the image size (n pixels) increases, which
normally needs n2/2 evaluations. Note that the time needed for looking up a
weight is much shorter than the actual weight computation, but still has to be
considered in the evaluation of the total computation time.

The total gain in computation time depends heavily on the degree of repetitive-
ness in the image. For example, experimental results in [Dauwe et al., 2008]
show acceleration factors from 10 (for texture images with a lot of repetitivity)
to 34 (for real world images) compared to the original method.

5.2.2.2 Enhancing the visual quality

In the last few years, many variants and several improvements on the non-
local means algorithm have been proposed in the literature. Kervrann and
Boulanger improved the non-local means filter by introducing adaptive lo-
cal neighbourhoods as well as a statistical estimation of the model param-
eters [Kervrann and Boulanger, 2006]. Brox et al. suggested an iterative ver-
sion of the filter, which is derived from a variational principle [Brox et al., 2008].
In [Chatterjee and Milanfar, 2008], the authors have extended the existing non-
local means to higher orders of (kernel) regression, which allows more flexibil-
ity to the local image data model [Chatterjee and Milanfar, 2008]. Azzabou
et al. have investigated in better similarity measures by building a compact
dictionary in order to compare similar neighbourhoods using principal com-
ponent analysis (pca) [Azzabou et al., 2007]. Kervrann et al. have improved
the non-local means by introducing adaptive local dictionaries and a new sta-
tistical distance measure to compare neighbourhoods [Kervrann et al., 2007].
In [Zimmer et al., 2008], the authors have proposed a rotationally invariant
similarity measure.
Dabov et al. use block matching, group similar blocks in a 3d stack and then
filter these blocks in 3d (e.g. shrinking the wavelet coefficients), hence the
name bm-3d [Dabov et al., 2007]. Once these blocks are filtered, the authors
again apply block matching on the denoised image and use the motion vectors



120 Non-local reconstruction methods

to group similar blocks of the noisy image in a 3d stack and then filter these
blocks with a collaborative Wiener filtering. This method applies re-estimation,
which uses the result of an estimation method as the input data for a different
method with the same estimation purpose [Guerrero-Colón et al., 2008].
In [Dabov et al., 2008b], the authors combine the ideas of bm-3d with the
pointwise shape-adaptive dct (sa-dct) filter, which adapts the neighbour-
hoods to the image content [Foi et al., 2007].

An improvement of image quality towards the original algorithm is to ignore
the contributions from too dissimilar neighbourhoods. Even though their
weights are very small anyway, the newly estimated pixel value can be severely
biased because there are many dissimilar neighbourhoods. This bad influence
of dissimilar windows can be eliminated by setting their corresponding weights
to zero. So, preclassification helps both in accelerating the algorithm and
in enhancing the visual quality. Experimental results on natural 512 × 512
images corrupted with additive zero-mean white Gaussian noise (σn = 20) give
a moderate gain of 1.44 dB in psnr [Dauwe et al., 2008].

In analogy to [Elad, 2002], we showed that the non-local means algorithm is
basically the first iteration of the Jacobi optimization algorithm for robustly
estimating the noise-free image [Goossens et al., 2008a]. It turns out that the
weighting function in equation (5.2) appears to be the Le Clerc robust loss
function. Substantial improvements can be obtained by replacing the weighting
function with other robust loss functions, such as the modified bisquare func-
tion, and by applying multiple iterations according to the Jacobi algorithm.
Note that the iterative version can be speeded up by using limited surrounding
search windows without sacrificing the non-local property (the effective search
window becomes larger after each iteration).
In some circumstances (e.g. in case of non-repetitive structures), one iteration
of the non-local means filter may not remove all of the noise. Clearly,
the noise variance in the processed image becomes dependent on the po-
sition in the image, which means that we are dealing with non-stationary
noise. Therefore, a postfilter, based on a locally adaptive basis of prin-
cipal components, is applied after each iteration to remove the remaining
noise [Goossens et al., 2008a]. For white noise, psnr results show that
the non-local method with all improvements is very competitive with the
state-of-the-art bm-3d method [Dabov et al., 2007], while the visual quality of
our method is better due to the lower number of artefacts.

In [Goossens et al., 2008a], we also extended the non-local means algorithm
to treat coloured (correlated) noise. This is efficiently implemented via a
pre-whitening filter. Experimental results show that this extension outper-
forms state-of-the-art wavelet techniques for coloured noise, such as bls-
gsm [Portilla et al., 2003] and mp-gsm [Goossens et al., 2007], both visually
as in terms of psnr.
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Figure 5.4: Block diagram of the proposed non-local resolution enhancement
method.

5.3 Non-local resolution enhancement
We propose a novel image upscaling approach that exploits the repetitive be-
haviour of small structures in an image. Our resolution enhancement scheme
is conceptually simple and consists of three consecutive steps as illustrated in
Figure 5.4:

1. Selection of similar patches and subpixel registration of these repetitive
structures on the hr grid.

2. Robust data fusion, i.e. the aggregation of all registered structures into
one hr image.

3. Image restoration (i.e. denoising and deblurring, see also the more de-
tailed discussion in Chapter 4).

In the next sections we treat each component in more detail.

5.3.1 Selection and registration of repetitive structures
For the sake of simplicity, we define small rectangular windows as basic struc-
ture elements. The image is divided in half overlapping reference blocks Bref.
Two matching criteria are used in our algorithm to find similar windows or
blocks B across the whole image for each reference block, namely the zero-
mean normalized cross correlation (cc):

Ecc =

∑
x∈Ω(B)

(B(x) −B)(Bref(x) −Bref)

√ ∑
x∈Ω(B)

(B(x) −B)2
∑

x∈Ω(B)

(Bref(x) −Bref)2
(5.4)

and the mean absolute difference (mad):

Emad =
1

κ(Ω(B))

∑
x∈Ω(B)

‖B(x) −Bref(x)‖1 (5.5)
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where Ω(B) contains all the pixels of the window B and κ(Ω(B)) is the cardi-
nality (i.e. the number of pixels) of Ω(B). B and Bref are denoted as the mean
values of respectively B and Bref.
The main motive to use both cc and mad criteria is because they are
somewhat complementary: cc is a measure for the similarity of the structural
or geometrical content (however, cc can not discriminate between “light” and
“dark” windows with the same structural information, e.g. edges), while mad
tells us more about the luminance and colour differences (however, mad can
not discriminate between windows that have a small difference over all pixels
and windows that have a large difference in a few (edge) pixels). A matched
window is accepted if the two measures Ecc and Emad satisfy to the respective
thresholds τcc and τmad, more specifically: Ecc > τcc and Emad < τmad.
Because we are only interested in positive correlation, Ecc must be between
0.0 and 1.0. The choice of τcc and τmad depends on the noise level (e.g. due to
additive noise or due to artefacts by dct-based compressed schemes such as
jpeg): the higher the noise variance, the lower τcc and the higher τmad must
be chosen in order to be capable to find the repetitive structures.

To simplify the matching problem and in particular to save computation time,
we assume that we are only dealing with pure translational shifts of the windows
B (extension to rotations or affine transformations is trivial, but at the expense
of computational complexity).
Our current implementation uses a simple exhaustive search in order to find
the matching windows, but more intelligent (pattern-based) search algorithms
could reduce the computation time enormously. Some possible acceleration
strategies are already discussed in Section 5.2.2.1 and for document processing
applications, character segmentation eliminates a lot of unnecessary calcula-
tions, both in search space and region of interest (roi) selection (see Chapter 6).

Common ways to achieve subpixel accuracy in the image registration, is to
interpolate either the image data or the correlation data. For a more detailed
treatment of subpixel registration, we refer the reader to Section 7.2. We first
interpolate the image by the level curve mapping algorithm as described in
Chapter 3. We then estimate the subpixel shifts in a fast way by minimizing
the mad criterion between the interpolated blocks. However, the accuracy of
these shifts are limited to 1/r with r being the magnification factor.

5.3.2 Robust data fusion

In the data fusion step, we determine an initial pixel value for each pixel position
on the hr grid, which results in the fused image. After subpixel registration,
we assign each pixel of the repetitive structures to a hr grid point using the up-
sampling operator as illustrated in Figure 4.8. The whole process is illustrated
in Figure 5.5. For each point on the hr grid, we now consider the following
cases:
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reference block repetitive structures

. . .
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upsampling subpixel registration
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fused hr image

Figure 5.5: Robust data fusion: the fused hr image contains pixels from the lr im-
age (class (or) as indicated by black circles), unknown pixels (class (un) as indicated
by white circles) and fused pixels (class (fu) as indicated by grey circles).

Fixing the original pixels: the original pixels of the lr image are un-
changed on the hr grid, because we assume that the noise variances of
these pixel values are lower than those of the similar structures (because
they contain noise and errors due to wrong matches and misregistration).

Several pixels are available: starting from the maximum likelihood prin-
ciple, it can be shown that minimizing the l1-norm of the residuals is
equivalent to median estimation [Farsiu et al., 2004]. A residual is the
difference between an observed pixel value and the predicted pixel value.
The median is very robust against outliers, such as the combination of
noise and errors due to mismatching and misregistration. For this reason
the fused hr pixel is computed as the median of all observed pixels on
the hr grid point.

No pixel is available: these unknown hr pixel values are initialized with
pixel values given by the level curve mapping algorithm. We do not
need additional computations since the interpolated image is already con-
structed for the registration step as mentioned in the previous section.
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In a nutshell, the hr grid contains pixels of three classes: the original pixels
(or), the unknown pixels (un) and the fused pixels (fu). The last mentioned
class provides the extra information for the resolution enhancement process as
opposed to conventional upscaling techniques.

5.3.3 Joint denoising and deblurring
In the image restoration step, we perform joint denoising and deblurring on
the fused hr image. In Chapter 4, we have treated joint image restoration
and resolution enhancement from a Bayesian point of view. In this section, we
derive the steepest descent solution of a robust regularization that performs
image deblurring.

We assume that the blur in the acquisition model is fully determined by a
shift-invariant psf kernel H (typically Gaussian blur, which is characterized
by its standard deviation σb). This blur is simulated by a linear degradation
operator A. The inverse problem becomes highly unstable in the presence of
noise. This can be solved by imposing some prior knowledge about the image.
Typically we will try to force spatial smoothness in the desired hr solution.
This is usually implemented as a penalty factor in the generalized minimization
cost function:

f̂(x) = arg min
f(x)

⎛
⎝ ∑

x′∈ℵ4(x)

ρr(f(x) − f(x′)) + α(x)ρd (([A]f − g)(x))

⎞
⎠ , (5.6)

where ℵ4 denotes the 4-connectivity neighbourhood (illustrated in Fig-
ure 4.3) and α(x) is the regularization parameter between the two terms,
respectively called the regularization term ρr and the data fidelity term ρd.
Both ρ-functions can be chosen from the family of M-estimator functions
(given in Table 4.1). Image g(x) is the hr fused image obtained in Section 5.3.2.

The minimization of the cost function (5.6) is solved using the steepest descent
algorithm described in Section 4.4.2. The steepest descent direction is given
by the gradient of the cost function ∇Ψ:

∇Ψ(f̂ (j+1)(x)) =
∑

x′∈ℵ4(x)

ψr(f (j)(x) − f (j)(x′)) +

α(x)
(
[AT]ψd

(
[A]f (j) − g

))
(x), (5.7)

where ψd computes ψd elementwise (i.e. on each element of the matrix)
and both ψ-functions are given in Table 4.1. The operator [AT] performs a
convolution with a flipped psf kernel (see Section 4.4.2.1).

As discussed in Section 4.3, the use of the so-called edge-stopping functions in
the regularization term is very popular because it suppresses the noise better
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while retaining important edge information [Pižurica et al., 2005]. Therefore,
we apply one of the most successful edge-preserving regularization terms pro-
posed for image denoising, namely the total variation (tv):

ρr(f(x) − f(x′)) = ‖f(x) − f(x′)‖1 . (5.8)

We assume that the noise in the fused hr image is modelled by a Laplacian pdf
due to the inaccuracy of the image registration, blur, additive noise and other
kinds of error that are not explicitly modelled [Farsiu et al., 2004]. The max-
imum likelihood estimate of data in the presence of Laplace noise is obtained
through the l1-norm minimization. That is why we use the l1-norm function
for the data fidelity term:

ρd(H ∗ f(x) − g(x)) = ‖H ∗ f(x) − g(x)‖1 . (5.9)

The corresponding ψ-functions are very computationally efficient because they
simply compute the sign of their argument (see Table 4.1).

We adapt the regularization parameter α(x) in equation (5.7) locally to the
different kind of pixels on the hr grid:

• Class or: because we assume that these pixels contain the least noise
as discussed in Section 5.3.2, very little regularization has to be applied.
This means that these pixels mainly depend on the data fidelity term and
thus α(x) is set to αmax.

• Class un: these pixels are most likely noise . The optimization depends
thus only on the regularization term, i.e. α(x) = 0.

• Class fu: these pixels contain both noise (and errors) and relevant infor-
mation. If we have a lot of overlapping pixels on the hr grid point, the ini-
tial estimation is then more robust against errors such as mismatches and
misregistration. Therefore, we apply the regularization with α(x) linearly
proportional to the number of overlapping pixels and α(x) ∈ [0, αmax].

5.4 Experimental results
As a proof of concept, we demonstrate the power of the proposed non-local
resolution enhancement technique with regular images and text images.

5.4.1 Resolution enhancement of regular images
As a first experiment, we enlarge a region of the original image, given in Fig-
ure 5.6, with a magnification factor of 8. As we can see in the image, there
are lots of repetitive structures present such as the wall, the fence, the sky, the
grass (texture), etc. For the proposed non-local resolution enhancement tech-
nique, we use 5 × 5 basic structure elements. To decide whether a structure
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Figure 5.6: Part of the lighthouse image.

is similar to the reference block, we use the threshold parameters τcc = 0.9
and τmad = 9.0. With these settings we obtain the following partition of the
different classes on the hr grid: 1.6% (or), 30.9% (fu) and 67.5% (un). In
the image restoration step, we apply 100 iterations of the steepest descent al-
gorithm and we employ the Gaussian blur kernel with σb = 4.0 and maximum
regularization parameter αmax = 10.

Figures 5.7 and 5.8 compare the results of the proposed non-local method
to the linear interpolation methods nearest neighbour and cubic b-spline,
the non-linear aqua2 interpolation [Muresan, 2005] and iterated function
systems (ifs) interpolation, which exploits the self-similarity of the image
across scales [Gharavi-Alkhansari et al., 1997]. In Figure 5.8, we also show
the fused image g (i.e. the noisy and blurred hr image after robust data fusion).
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Table 5.1: Average psnr results in dB of a 4× upscaling experiment. The best psnr
result is written in bold letters.

Upscaling method psnr

Iterated function systems 25.78
+ deconvolution 26.55

aqua2 interpolation 26.95
+ deconvolution 27.27

Blackman-Harris windowed sinc 27.34
+ deconvolution 27.49

Level curve mapping interpolation 27.12
+ deconvolution 27.54

Proposed method (non-local) 27.61

We can notice significant improvements in visual quality in the result of our
non-local method: there is a very good reconstruction of the edges and the
result contains less annoying artefacts, such as jagged edges and blur. The
result produced with our method is also better denoised while important edges
are preserved.

As a second experiment, we create 10 synthetic 256 × 256 lr images from
1024 × 1024 images. The hr images are first convoluted with a Gaussian
blur kernel (σb = 1.0) before the subsampling. We enlarge the lr images
with a magnification factor of 4. For the proposed non-local method, we
use 5 × 5 basic structure elements, and threshold parameters τcc = 0.9 and
τmad = 9.0. For the image deconvolution, we apply 100 iterations of the
steepest descent algorithm and we employ the Gaussian blur kernel with
σb = 1.0 and maximum regularization parameter αmax = 10.

In Table 5.1, we compare the average psnr results of several interpolation
methods. We also apply an additional image deconvolution step (with the same
parameters) to compensate for the Gaussian blur in the lr images. We notice
that the image deconvolution improves the performance of all interpolation
methods. The psnr results of our non-local resolution enhancement method is
slightly better than those of the other methods.

Figures 5.10 and 5.11 show the enlarged results from the pentagon image
(given in Figure 5.9). We compare the images of the proposed non-local
method to those of the linear Blackman-Harris windowed sinc interpolation,
the non-linear aqua2 interpolation [Muresan, 2005] and the ifs interpola-
tion [Gharavi-Alkhansari et al., 1997].
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(a) Nearest neighbour

(b) Cubic b-spline

(c) aqua2 interpolation

Figure 5.7: Image interpolation results (8× enlargement of Figure 5.6).
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(a) Iterated function systems (self-similarity)

(b) Non-locally fused image g

(c) Proposed method (non-local)

Figure 5.8: Image restoration results (8× enlargement of Figure 5.6).
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Figure 5.9: The pentagon image.

We notice that our non-local method produces less disturbing artefacts com-
pared to the other methods and the straight edges in the image are recon-
structed much better with the proposed method.

5.4.2 Resolution enhancement of text images

As a real-world experiment, we print and scan one a4 paper containing the
Lorem ipsum text with the hp psc 2175 machine at 75 dpi as shown in Fig-
ure 5.12. The Lorem ipsum text is very popular as default model text, but
additionally it has a somewhat normal distribution of letters.1 The scanned
text image is compressed with standard jpeg and contains block artefacts as

1We refer the reader to http://www.lipsum.com for more information about Lorem ipsum.

http://www.lipsum.com
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(a) Original hr image

(b) lr image

(c) Blackman-Harris windowed sinc

Figure 5.10: Image interpolation results (4× enlargement).
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(a) Iterated function systems (self-similarity)

(b) aqua2 interpolation

(c) Proposed method (non-local)

Figure 5.11: Image restoration results (4× enlargement).



5.4 Experimental results 133

Figure 5.12: Part of the lorem ipsum text image.

a consequence.

We choose an 18 × 12 rectangular window as the basic structure element
and we enlarge the roi by a factor of 8. The parameters for our method
are σb = 4.0, τcc = 0.6, τmad = 40.0, αmax = 100 and 100 iterations for the
restoration process. The parameter selection was based on trial and error,
i.e. to produce the visually most appealing results. We obtain the following
partition of the hr grid: 1.6% (or), 14.0% (fu) and 84.4% (un).

In Figure 5.13, we compare our result with the nearest neighbour, the popular
cubic b-spline and the non-linear level curve mapping interpolation techniques
(see Chapters 2 and 3). We can clearly see that our method outperforms the
traditional and non-linear interpolation techniques: the letters are much better
readable and reconstructed (e.g. the character “e”), noise and jpeg-artefacts
are heavily reduced and less blur, staircase and ringing artefacts are created.
Due to the presence of aliasing, we are able to restore the true high resolution
based on the multiple occurrences of the noisy blurred lr characters.

For comparison purposes, we scan the same text at 150 dpi and use that
image as ground truth as shown in Figure 5.14 (we point out that the images
in this figure are 4× enlarged by the nearest neighbour interpolation in order
to achieve better visibility). If we visually inspect the 2× enlargement of
the version scanned at 75 dpi, we can conclude that our method manages
to reconstruct the characters much better than the cubic b-spline interpolation.
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(a) Nearest neighbour (b) Cubic b-spline

(c) Level curve mapping (d) Proposed method (non-local)

Figure 5.13: Image restoration results (8× enlargement of Figure 5.12).

We also compute the correlation coefficient between the restored image and the
ground truth data after proper registration with translational shifts. Note that
the ground truth image also contains noise and jpeg artefacts. The correlation
coefficient as computed by equation (5.4) is 0.88 for the cubic b-spline and 0.95
for our non-local method, which is clearly better.
More non-local restoration results on text images are given in Chapter 6. In
that chapter, we also describe a more efficient implementation of the non-local
restoration technique for document processing.

5.5 Conclusion

In this chapter, we discussed the similarities and differences between the
relatively new class of non-local methods and the exemplar- and fractal-based
algorithms. Fractal-based methods exploit the self-similarity via a contractive
affine transformation of image blocks across different scales, while non-local
methods exploit shifted repetitive structures in the same scale. Exemplar-
based methods build codebooks from ideal images in order to guide the
restoration process. These ideal images contain inherently prior knowledge
and therefore, they give more information about the posterior pdf, while
exploiting repetitive structures gives more information about the likelihood
pdf. Multi-frame super-resolution techniques form a special class of methods
that also exploits repetitivity (across multiple images), we treat this topic in
more detail in Chapter 7.



5.5 Conclusion 135

(a) Ground truth at 150 dpi (b) Cubic b-spline

(c) Proposed method (non-local)

Figure 5.14: Image restoration results (2× enlargement of Figure 5.12).

We described the non-local means algorithm for image denoising as intro-
duced by Buades et al. [Buades et al., 2005b, Buades et al., 2005a]. The
algorithm is quite intuitive and potentially very powerful in removing noise
with state-of-the-art denoising results, but is computationally impracti-
cal due to the enormous amount of weight calculations. We discussed
numerous improvements both on accelerating the non-local means filter
as well as on enhancing the visual quality in joint works as presented
in [Dauwe et al., 2008,Goossens et al., 2008a].

We presented a novel resolution enhancement scheme based on the repetitive
character of the image. Exploiting repetitivity brings more information at our
disposal, which leads to much better estimates of the unknown pixel values.
Results show the effectiveness of the proposed non-local upscaling technique
and its superiority at very large magnifications to other resolution enhancement
methods: edges are reconstructed well and artefacts are heavily reduced.
Future work includes for example employing more intelligent (pattern-based)
search algorithms that reduce the computation time, replacing the hard
thresholds for finding similar structures by soft thresholds that generate
weights for the restoration process and combining the non-local strategy with
self-similarity properties.

Because of the close relationship with super-resolution, we can also denote our
non-local method as an intra-frame sr technique. Combinations of inter- and
intra-frame sr techniques can help to improve sr in video applications when
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very few lr images are available. Very recently, the interest for non-local reso-
lution enhancement techniques in the image processing community has started
to grow, see e.g. [Ebrahimi and Vrscay, 2007, Ebrahimi and Vrscay, 2008a,
Danielyan et al., 2008a,Danielyan et al., 2008b,Protter et al., 2009].

Our method is very suitable to some applications such as gigantic satellite
images in remote sensing applications (long roads and a lot of texture provide
a huge amount of self-training data). In special applications with text images,
we can achieve excellent results: characters could be made much better readable
again. This could be very advantageous for optical character recognition (ocr)
applications or when the image resolution can not be improved at the sensor
because of technological limitations or because of high costs. A more efficient
implementation for document image restoration is described in Chapter 6.



6
Application to document

image processing

Divide et impera
—Phillippus II from Macedonia

In these days, improving image text resolution is important in many ap-
plications. Some examples are improving the readability (e.g. of license
plates provided by surveillance cameras or for office automation) and
simple spatial magnification (e.g. printing low-resolution documents on
high-resolution printer devices, displaying text in low-resolution pictures on
the next-generation e-papers or displaying on-film subtitles on high definition
television (hdtv) screens). Optical character recognition (ocr) is a useful
tool in digitalizing libraries, computer-assisted indexing and retrieval of video
archives, etc. However, text observed in low resolution (e.g. in poor quality
video or with very small font size) heavily reduces the ocr performance. That
is why we need document restoration methods in order to improve the ocr
accuracy.

In this chapter, we present a new approach for restoring low-resolution greyscale
document images. Unlike other conventional restoration methods, the unknown
pixel values are not estimated based on their local neighbourhood but on the
whole image, like the non-local methods discussed in Chapter 5. In particular,
we exploit the multiple occurrence of characters in the scanned document.
In order to take advantage of this repetitive behaviour, we divide the image
into character segments and match similar character segments to filter relevant
information before the restoration. The character segmentation reduces the
computation time drastically in two ways: the algorithm only has to focus on
these regions of interest and the search space for possible matching candidates
is enormously reduced.
A major advantage of the proposed approach over conventional approaches is
that we have more information at our disposal, which leads to a better recon-
struction of the high-resolution (hr) image. Experimental results confirm the
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effectiveness of the proposed method, which is reflected in a better ocr accu-
racy and visual superiority over other traditional interpolation and restoration
methods. This work led to a journal publication [Luong and Philips, 2008]
and another conference publication [Luong and Philips, 2007a]. Additionally,
we present a similar approach for binary document images, which gives very
promising results.

6.1 Related work

Many resolution enhancement and restoration techniques for text appli-
cations have already been proposed in the literature. Ledda et al. tackle
unwanted jagged edges using mathematical morphology [Ledda, 2006]. An-
other class of adaptive image enlargement methods is the exemplar-based
approach, which maps blocks of the low-resolution image into predefined
high-resolution blocks [Freeman et al., 2002]. This has been success-
fully applied to text images [Dalley et al., 2004, Datsenko and Elad, 2007].
However, the results depend heavily on the used training set and thus
also on the font type, which must be known in advance (see also
Section 5.1). Other specific text enhancement and restoration meth-
ods focus on contrast improvement [Chiandussi and Ramponi, 1996],
pixel patterns [Zheng and Kanungo, 2001], fixing broken or touch-
ing characters [Allier et al., 2006, Cannon et al., 1999], deblurring and
noise reduction [Taylor and Dance, 1998, Tonazzini et al., 2004] and/or
incorporate the bimodal property of text images in their restoration
model [Donaldson and Myers, 2005,Thouin and Chang, 2000].

When multiple acquisitions of the same document are avail-
able, in for example video, conventional multi-frame super-
resolution can be applied on the set of low-resolution (aliased) im-
ages [Liang et al., 2005]. Several successful attempts have been made for
super-resolution text [Capel and Zisserman, 2000,Donaldson and Myers, 2005,
Li and Doermann, 1999, Mancas-Thillou and Mirmehdi, 2007]. A more de-
tailed discussion about multi-frame super-resolution is given in Chapter 7.

In Chapter 5, we applied the concept of repetition or non-localization suc-
cessfully to general image denoising [Dauwe et al., 2008,Goossens et al., 2008a]
and to resolution enhancement of regular images. Obviously in scanned tex-
tual documents, such repetition is more frequent than in general images. In
the next section, we exploit the multiple occurrence of characters irrespective
of font, character set and even the scan orientation. Note that each occur-
rence is slightly different from the others due to the noise, different spreads of
ink and the irregularity of the paper. In [Kia et al., 1998, Yang et al., 2000],
the authors present a binary document compression scheme based on multi-
ple occurrence of the characters, a similar strategy is used in our method.
In [Bern and Goldberg, 2000, Hobby and Ho, 1997], binary text enhancement
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methods cluster instances of the same symbol and compute a reconstructed
binary prototype (average) for each cluster. In contrast to these methods,
the proposed scheme does not cluster characters (no misclustering is possi-
ble), operates in the greylevel domain and uses robust Bayesian restoration to
upsample, deblur and denoise the degraded lr characters.

6.2 Robust restoration of greyscale document
images

The document image acquisition process produces a (discrete) digital image
from a paper document. However, in practice, the acquired image is distorted
with noise and blur. Most ocr systems require images with at least 300 dpi
resolution, which is much more than in common images (e.g. fax documents
are typically 75 dpi). Re-acquisition is in some cases not possible (if the
document or book is lost) or burdensome due to the amount of work (e.g. in
digital libraries). Therefore, the development of resolution enhancement
techniques is desired in those cases.

The unknown high-resolution image f is related to the captured low-resolution
image g (both in matrix-vector notation) by

g = Af + n. (6.1)

In this equation, A represents some linear degradation operation, which is a
combination of blur and decimation in our case, and n is the additive noise,
which is assumed to be zero-mean Gaussian distributed (with a standard
deviation σn). The relationship between the paper document, the observed
low-resolution image g and the desired high-resolution image f is illustrated in
Figure 6.1.
To take advantage of the repetition in our restoration framework, we define

windows and then seek similar patterns. In Chapter 5, fixed rectangular blocks
combined with a full search algorithm are used to find repetition across the
image. The computational complexity of these non-local methods is in the
order of O(n2) for an n-pixels input image. The blocks are preferably chosen
such that the frequency of occurrences is maximized while the number of
possible mismatches is minimized. In case of document images, we have prior
knowledge of the structures of interest, i.e. letters and symbols. We exploit
this in two ways: on the one hand we use adaptive blocks that fit the symbols.
On the other hand we take advantage of the fact that the number of different
symbols in the document is limited in practice. This helps us to reduce the
search space for similar symbols.

Based on this prior knowledge and the non-local resolution enhancement
method as discussed in Chapter 5, we briefly enumerate the three consecutive
components in our algorithm:
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image

paper
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Figure 6.1: Observation model of the document image acquisition.

1. Segmentation of the individual characters.

2. Seeking and aligning repeating characters.

3. Restoration (i.e. upsampling, deblurring and denoising) of the characters
from a Bayesian point of view taking the repetition into account.

6.2.1 Character segmentation
In this component of our algorithm, we focus on locating characters and seg-
menting them. This preprocessing part is typical in ocr algorithms. In the
next section, we will describe the four consecutive steps of our character seg-
mentation method:

1. Distinguish the characters from the paper/background.

2. Find the text lines in the image.

3. Find the non-linear segmentation paths in each text line that separate
the individual characters.

4. Determine the bounding box for each character.

6.2.1.1 Background modelling

We assume for simplicity that document images have a uniform background.
To cope with uneven backgrounds (e.g. due to poor non-uniform illumination),
several methods exist. We refer the interested reader to [Yang and Yan, 2000].

To distinguish ink pixels (symbols) from non-ink pixels (paper), many algo-
rithms use simple thresholds (binarization). Actually, the problem is not triv-
ial as illustrated in Figure 6.2. This figure clearly shows that the peak in the
histogram corresponding to the foreground colour vanishes at low resolutions.
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Figure 6.2: Histograms of a document image scanned at different resolutions: 75
and 200 dots per inch (dpi).

To solve this problem we estimate the parameters of the statistical distribution
of the background colour, which is assumed to follow a normal distribution.
In the presence of outliers (i.e. printed characters), we can utilize the uni-
variate Student-t distribution to estimate the parameters of the Gaussian pdf
robustly [Lange et al., 1989]. The maximum likelihood (ml) of the parameters
of the Student-t distribution can not be obtained in closed form, but the mean
μb (this is the background colour) and the standard deviation σb can be com-
puted by the expectation maximization (em) algorithm [Dempster et al., 1977].
We use a parameter expanded scheme to accelerate the convergence of the em
algorithm [Liu et al., 1998].

6.2.1.2 Segmentation of lines

The locations of text lines in a document can be determined by horizontal and
vertical projection profiles in greyscale images [Lee et al., 1996]. A projection
profile is a measure of the contribution of a row or column to the foreground
or background. In the binary image case, the projection profile is obtained by
simply counting the foreground/background pixels in a row or column. In the
greyscale image case, we propose to use order statistics and only calculate the
sum of the n (e.g. n = 5) smallest pixel contributions to the background (using
the background density function as described in the previous subsection). That
sum is then compared to a threshold. This way we can robustly distinguish
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Figure 6.3: Multistage graph representation of a character segmentation region.

lines with very few characters from noise. It is clear that the lines can only
be determined successfully if the text lines are close enough to the horizontal
prior to segmentation, that is why deskewing is needed for rotated images.

6.2.1.3 Search for non-linear segmentation paths

Now, we segment each strip into individual characters. As in [Lee et al., 1996]
we formulate this problem as finding the top-to-bottom path with minimum
accumulated cost in a graph defined over a line or segmentation strip. The
cost function is defined such that the cost of a background pixel is less than
that of a foreground pixel. The top-to-bottom path is called the non-linear
segmentation path or the non-linear character boundary. All optimal candidate
paths are obtained via the Viterbi algorithm, which is a typical dynamic
programming method with a linear time complexity [Forney, 1973]. Among
these candidates, the accumulated costs of the non-linear segmentation paths
are compared with a predefined threshold.

We modify the algorithm of [Lee et al., 1996] in three ways: we take the back-
ground pixel distribution into account, we find multiple paths in a segmenta-
tion strip in one step and we favour vertical paths by adding additional costs
to slanted paths. The latter prevents that character ‘i’ for example is divided
in a upper and lower segment.

The character segmentation region with height h and width w can be repre-
sented by a multiline graph as illustrated in Figure 6.3 where each row corre-
sponds to a row of pixels in the image and each vertex to a pixel. We choose
the cost of an arc between a vertex in one row and a vertex in the previous row
inversely proportional to the Gaussian probability (see Section 6.2.1.1) of the



6.2 Robust restoration of greyscale document images 143

pixel being a background pixel:

g(x) =

⎧⎨
⎩

0 if f(x) > μb,

1 − e

−(f(x) − μb)2
2σb if f(x) ≤ μb,

(6.2)

where f(x) represents the greyscale value of the pixel located at the coordinates
x = (x, y). Let cy(x) be the minimum accumulated cost at position (x, y) and
Ψy(x) the x-positions of row y − 1 of the corresponding path. The vertices of
row y − 1 connected to the vertex at (x, y) are (x − 1, y − 1), (x, y − 1) and
(x+1, y−1) as illustrated in Figure 6.3. The non-linear segmentation paths can
be found by the following recursive algorithm, motivated by the work presented
in [Lee et al., 1996]:

Modified non-linear segmentation path search algorithm:

• Initialization: In the first step, c1(x) and Ψ1(x) are initialized with
the costs and positions of the top row of the segmentation strip,
respectively. For 1 ≤ x ≤ w,

c1(x) = g(x, 1), (6.3)

Ψ1(x) = x. (6.4)

• Recursion: The minimum accumulated cost cy(x) can be recursively
computed at each row. We also add an additional cost cs to cy(x) for
slanted paths (i.e. i �= x). For 1 ≤ x ≤ w and 1 ≤ y ≤ h− 1,

cy+1(x) = min
x−1≤i≤x+1

g(i, y) + cy(i) + (1 − δxi)cs, (6.5)

Ψy+1(x) = arg min
x−1≤i≤x+1

g(i, y) + cy(i) + (1 − δxi)cs. (6.6)

• Backtracking: We backtrack each path with ending vertices on the
last row and reach all candidate starting vertices m1. For 1 ≤ x ≤ w
and y = h− 1, h− 2, . . . , 1,

my = Ψy+1(my+1). (6.7)

Note that when two paths are crossing, i.e. passing through the same
vertex, they have both the same starting vertex m1. Since each vertex is
connected to only one starting vertex by construction.

• Termination: Each starting vertex m1 is connected to multiple
candidate ending vertices mh and the one with the minimum
accumulated cost c∗(m∗

h) is the candidate for the minimum cost path
(m1,m

∗
h). ∀m1,

c∗(m∗
h) = min

0≤x∗≤w
ch(x∗), (6.8)
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(a) Unmodified segmentation algorithm based on [Lee et al., 1996]

(b) Our modified segmentation algorithm

Figure 6.4: The non-linear character segmentation paths.

m∗
h = argmin

0≤x∗≤w
ch(x∗), (6.9)

where x∗ are the ending vertices of the paths reached from the starting
vertex m1.

• Selection: The candidate path (m1,m
∗
h) becomes an actual non-linear

character boundary (m1,m
†
h) if its accumulated cost is less than a

threshold τp:

m†
h = m∗

h if c∗(m∗
h) < τp. (6.10)

In a blank space, multiple parallel (vertical) shortest paths lie near each other.
In such a group of paths, we select the one with the smallest accumulated
cost c∗(mh). Figure 6.4 compares the results produced by the proposed seg-
mentation method and by the unmodified non-linear segmentation path search
algorithm [Lee et al., 1996]. Our method has a lower miss rate in boundary de-
tection: for example, in the original algorithm all minimum cost paths between
‘amet’ and ‘,’ cross with paths between ‘,’ and ‘conse’ on the first line and
thanks to the additional cost cs for slanted paths, we can avoid these crossings
and recover the segmentation path. Remark that slanted paths are necessary
to segment ‘f’ correctly in the words ‘fringilla’ and ‘felis’ on the last line and
these non-linear paths are also needed in case of italic or cursive characters.
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6.2.1.4 Bounding box determination

We label each character segment using a connected components labeling
algorithm. The pixels are connected if there is no non-linear character
boundary in between and if they are located in the same segmentation strip.
Afterwards we assign a bounding box to each character segment. This is the
smallest rectangle that entirely encloses the character. The contours of the
characters are determined by horizontal and vertical projection profiles as
discussed earlier in Section 6.2.1.2.

Remark that the bounding boxes can be overlapping because the segmentation
boundaries are not always straight (e.g. in case of cursive characters or char-
acter ‘f’ in Figure 6.4). When we consider a specific bounding box, we set the
pixel values that lie inside the bounding box, but outside the segment to the
background colour. Also all pixel values outside the bounding boxes are set
to the same background colour. In that way, these pixels will not affect the
matching criteria. To simplify the explanation we will omit such details in the
rest of this chapter.

6.2.2 Matching and aligning similar characters
6.2.2.1 Reduction of search space

For simplicity, we assume that occurrences of the same character undergo the
same rotation or scale transformation. This means that only translational
shift operations are needed, which of course saves a lot of computation time.
In case of multiple pages, we first deskew these text images such that there
are no differences in rotation.

A simple exhaustive block matching algorithm across the whole image would
require too much computation time. However, in this case we exploit prior
knowledge: there is no point in matching characters to background areas, so
we only have to match with blocks that overlap with segmented characters.
We convert the labeled bounding box mask into a binary mask M (with
the same size of the image): a pixel value is 1 if it is located in a bounding
box and 0 elsewhere. The block matching needs only to be performed at
the 1-positions of the mask. These 1’s actually represent the search space.
We further reduce the 1’s on the mask by applying binary mathematical
morphology operators [Serra, 1982].

Different occurrences of the same character can slightly have different bounding
box dimensions (e.g. sometimes the bounding box could be a pixel smaller or
larger due to blurred edges). That is why, we first apply a dilation on the
mask M with a structuring element Sd (M∗ = M ⊕ Sd), which is defined as
a 3 × 3 squared window with the origin positioned in the center. The dilation
operation enlarges the search area and prevents missing matching characters
due to different sizes of bounding boxes.
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Afterwards, we apply an erosion on the mask M∗ with structuring element Se

(M∗ � Se), which has the same size as the bounding box of Bref. The origin
of structuring element Se is located at the upper-left corner. The erosion
operation optimizes the search space according to the shape of the reference
block: there is no point in matching large characters to small characters for
example. The 1’s in the binary mask M † = ((M ⊕ Sd) � Se) are the positions
where we need to check for matching characters.

6.2.2.2 Matching characters

We define the characters Bref, obtained after character segmentation and
bounding box determination, as the reference windows or blocks. We use the
zero-mean normalized cross correlation (cc) as criterion to find matching
windows B (with the same size of Bref) as defined in equation (5.4). The cc
criterion is a measure for the similarity of patterns (such as lines, curves, etc.).

Blocks are said to be matching if Ecc (∈ [−1, 1]) is larger than a threshold τcc:
Ecc > τcc. The choice of τcc depends on the noise level of the image (e.g. due
to additive noise or due to quantization noise in dct-based compressed images
such as jpeg). The influence of wrong matches will be further reduced by a
pixel outliers rejection component discussed in Section 6.2.3.1.

6.2.2.3 Dealing with imperfect character segmentation

In case of imperfect character segmentation, i.e. due to over- or undersegmen-
tation, we can apply the split-and-merge strategy, which is common in ocr
applications [Casey and Lecolinet, 1996]. In case of oversegmentation, i.e. seg-
mentation into too many small segments, it is important that the mask M †

still contains enough 1’s after erosion such that we still can find the matching
characters. This is solved by dilating first with a structuring element Sd.
In case of undersegmentation, i.e. multiple characters are erroneously grouped
into one bounding box, we search for an additional non-linear character
boundary in that specific segment. This split-strategy is applied when we do
not find enough similar character segments.

In a worst scenario case, imperfect character segmentation can link (parts of)
different characters erroneously. An example of such a confusion is the under-
segmentation of the following combination ‘rn’ (this is the combination of the
characters ‘r’ and ‘n’ and is illustrated in the segmentation of the word ‘urna’
in Figure 6.4), which can be easily matched with the single character ‘m’ in
most font types. This type of errors can be solved with a dictionary-based ocr
postprocessing by which unknown words are replaced by their most resemblant
counterpart found in the dictionary.
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6.2.2.4 Subpixel registration

A common way to achieve subpixel accuracy in the registration, is to interpolate
either the image data or the correlation data. In order to save computation
time we only resample the reference window as discussed in Section 5.3.1. As
a simplification of the registration problem, the possible subpixel shifts are
limited to multiples of (1/r, 1/r), with r the magnification factor in horizontal
and vertical direction.

6.2.3 Robust Bayesian restoration
Let us have a closer look at the inverse problem stated in equation (6.1). The
linear degradation operator A is the combination of the blur operator H and
the decimation operator D as illustrated in Figure 6.1. We assume that the
blur in the scan model can be modelled by a space-invariant point spread func-
tion (psf), which is typically a two-dimensional isotropic Gaussian function
characterized by its standard deviation σb. The relationship between the high-
resolution character fC and m registered low-resolution observations gk of the
same character is given by

gk = DkHfC + nk k = 1, . . . ,m, (6.11)

where gk are the characters that satisfy the cc match criterion and Dk is the
corresponding shifted decimation operator according to the subpixel registra-
tion. We break the complex problem of finding fC that best complies with the
measurements gk into two separate steps:

1. fusing the low-resolution repetitive structures gk into a blurred hr version
t̂C = Hf̂C of the character;

2. estimating the deblurred and denoised character f̂C from t̂C .

This two-step restoration scheme is much faster than finding fC via a joint
optimization algorithm [Farsiu et al., 2004]. We will discuss these two steps in
more detail in the next sections.

6.2.3.1 High-resolution fusion

In this step we determine a pixel value for every pixel of the hr grid. With the
shifted decimation operators, the pixel values of character gk are mapped onto
the hr grid. In this way, we obtain zero (because of under-determination) or
more pixels for each hr grid point. We refer the reader to Section 5.3.2 for a
more detailed discussion.

In case of multiple pixels on the hr grid point, the additive noise can not simply
be assumed to have a Gaussian distribution in equation (6.11) because of errors
due to a combination of noise, misregistration and mismatching as discussed
in Section 5.3.2. In [Farsiu et al., 2004], the Laplace pdf is suggested in the
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presence of different sources of outliers. The hr pixel of the blurred character
t̂C can be found via the maximum likelihood (ml) principle:

t̂C(x) = arg min
tC(x)

m∑
k=1

‖gk(x) − (DktC)(x)‖1 . (6.12)

The l1-norm or simply norm ‖gk(x) − (DktC)(x)‖1 is very robust against
outliers and the minimization of equation (6.12) corresponds to a pixelwise
median of the repetitive structures [Farsiu et al., 2004].

In case there is no pixel for a given hr grid point, the hr pixel t̂C(x) will
be initialized with the interpolated pixel value of the reference block (see Sec-
tion 5.3.2).

6.2.3.2 Joint deconvolution and denoising

The desired hr character f̂C is obtained by deblurring t̂C . The inverse problem
becomes highly unstable in the presence of noise. This can be solved by
imposing some prior knowledge about the image in a Bayesian framework as
explained in Chapter 4.

We incorporate two image priors into the restoration framework. The first reg-
ularization term is the smoothness term, where we use a Gibbs prior with the
Lorentzian edge penalty function in a 4-connectivity neighbourhood (see Ta-
ble 4.1). In Figure 6.5 the Lorentzian edge-stopping function is plotted together
with the popular Tikhonov’s smoothness function x2. Since the Lorentzian
function increases less quickly than x2 for large gradients, sharp edges are pre-
served.

Since hr document images have generally a bimodal histogram as illustrated in
Figure 6.2, we use a Gibbs prior with a non-negative fourth-order polynomial
as the second regularization term:

G(f(x)) = (f(x) − μf )2 (f(x) − μb)
2
, (6.13)

where μb and μf are the expected background (i.e. paper) and foreground
(i.e. ink) greyvalues respectively. Note that parameter μb has already been
calculated in Section 6.2.1.1 and μf can be retrieved in the same way but is
calculated on the current hr estimate.
Optimizing the regularization using the steepest descent algorithm requires the
derivative of the fourth-order polynomial in equation (6.13), which is given by
the following expression (see Section 4.4.2 for more details):

Φ(x) = 4x3 − 6(μf + μb)x2 + 2(μ2
f + 4μfμb + μ2

b)x− 2μfμb(μf + μb). (6.14)

For the data fidelity term, we use the l1-norm as given by equation (5.9) for the
same reasons given in Section 5.3.3. The weights or regularization parameters
for the data fidelity term, the smoothness term and the bimodal term are
denoted by αd, αs and αb respectively.
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Figure 6.5: Plot of the Lorentzian gradient penalty function and the popular
Tikhonov’s smoothness function.

6.3 Experimental results

As a first and simple experiment we scan two sets of 30 pages of A4-documents
each at a resolution of 75 dots per inch (dpi) using the HP Scanjet 8250 and
Epson Precision 4990 Photo machines. We choose to scan at 75 dpi because
fax documents are typically scanned at that resolution and it is also much
faster than scanning at 300 dpi. One set contains 177647 characters (in total
including punctuation marks) of random non-English text (e.g. coming from
the Lorem ipsum-generator) and the other set contains 177972 characters
of random English text (coming from various articles from the Wikipedia site1).

The parameters for our method in the scanning environment are σb = 3.0 (for
a magnification factor of 4), τcc = 0.8 and 100 iterations for the restoration
process with a constant step size λ = 0.1 in the steepest descent direction. The
regularization parameters αd = 30 (for observed pixels, otherwise the weight
is set to 0), αs = 1 and αb = 4e-6 are chosen according to the maximum
possible size of the regularization terms and the rest of the parameter selection
was based on trial and error. In very bad conditions (e.g. in the presence
of noise or compression artefacts), the regularization parameters αs and αb

should relatively have more weight compared to αd because the restoration
will depend more on the prior knowledge.

1Surf to http://www.wikipedia.org .

http://www.wikipedia.org
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Table 6.1: Relative mean absolute difference after proper registration with the
ground truth image (at 300 dpi) compared to the original image (nearest neighbour
interpolation) (HP Scanjet 8250 / Epson Precision 4990 Photo).

Upscaling method relative mad (%)

Nearest neighbour 100.0/100.0
Cubic b-spline 93.2/90.4
bsa reconstruction 90.4/90.5
Bayesian restoration 89.0/87.7
Proposed method 85.2/84.3

We compare our method with the popular cubic b-spline interpolation and
the bimodal-smoothness-average (bsa) reconstruction method, which is a non-
linear optimization technique that maximizes the bsa score of the enlarged
document image [Thouin and Chang, 2000]. For comparison purposes, we also
scanned the same documents at 300 dpi. Although, this version contains a
certain amount of blur and noise, we consider it as our ground truth data.

After visual inspection, we can clearly see in Figures 6.6 and 6.7 that our non-
local method outperforms traditional linear interpolation techniques (e.g. near-
est neighbour and cubic b-spline interpolation) but also the bsa method: the
letters are much better readable and our method manages to reconstruct the
characters much better, noise is heavily reduced and blur artefacts are less
present. In Figure 6.7, we can observe true resolution improvement in the
characters ‘y’ and ‘e’.

Concerning the reconstruction time on a 3.0 Ghz amd Athlon xp machine
with 512 Mb ram, the proposed algorithm takes about 10 minutes per page
(with approximately 6000 characters in a 616 × 877 image). The main part of
the computation time goes to the matching between characters. This can be
speeded up in several ways, e.g. by reducing the search space by prefiltering
characters on a coarse scale or use a graph to store previous matches.

As a numerical measurement of the image quality, we calculate the average
mad criterion between the enhanced images and the ground truth images (both
images are aligned with subpixel accuracy). Table 6.1 shows us the relative mad
compared to the original image and we can see that our method produces an
image with the smallest deviation from the ground truth.

Since ocr is highly important in automated text applications, we have
tested the usefulness of our algorithm as preprocessing for several popular
commercial and open-source page-reading systems: Scansoft OmniPage 15.0,



6.3 Experimental results 151

(a) Document scanned at 300 dpi (ground truth image)

(b) Document scanned at 75 dpi

(c) Cubic b-spline

(d) bsa reconstruction

(e) Proposed non-local method

Figure 6.6: Restoration results of a 4× linear enlargement of a low-resolution
scanned document image obtained by the HP Scanjet 8250 machine.
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(a) (b) (c) (d) (e)

Figure 6.7: Detailed results of a 4× linear enlargement of the characters ‘y’ and ‘e’
of the words ‘adeya’ and ‘utegin’ respectively (see Figure 6.6), from left-to-right: (a)
ground truth (at 300 dpi), (b) original (at 75 dpi), (c) cubic b-spline interpolation,
(d) bsa reconstruction and (e) our method.

abbyy FineReader 8.0, Microsoft Office 2003 Document Imaging, gocr 0.45
and Tesseract 2.01.

The ocr-generated string of characters is compared with the ground truth
data. The similarity of two strings is often expressed in the Levenshtein-
distance L, which is the total minimum cost of transforming one string into
the other using the following edit operations: insertions, deletions and substi-
tutions [Navarro, 2001,Rice, 1996]. We assign the same cost, namely 1, to each
edit operation and we calculate the Levenshtein-distance L (which is then the
number of errors) based on the Ukkonen’s algorithm [Ukkonen, 1995].
The character ocr accuracy is then defined as

C − L
C

, (6.15)

where C is the total length of the correct string, i.e. the number of charac-
ters [Rice, 1996].

To prove the justification of the use of repetition, we also compare our method
with the proposed Bayesian restoration without taking advantage of the rep-
etition, i.e. only joint deblurring and denoising. Figures 6.8 and 6.9 show the
ocr accuracy for the different reconstruction techniques averaged over the five
ocr software (a comparison per ocr tool is given in Table 6.2). As we can see
in both figures, the reconstruction method without using repetition produces
quite similar ocr accuracy results compared to cubic b-spline interpolation
and the bsa method. When we take the repetitive character behaviour into ac-
count, we have a significant improvement in the average ocr results. Because
some ocr software is optimized for the English language, we investigate the
influence of the language aspect on the ocr results. We can observe a small
difference of 1 − 2% between the experiments with English and non-English
text as illustrated in Figures 6.8 and 6.9.
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Figure 6.8: ocr accuracy for the different methods averaged over all ocr software
using the HP Scanjet 8250 machine.

Table 6.2: The percentage of errors corrected by our method compared to the
original (nearest neighbour interpolation) and the Bayesian restored image for both
scanners (%).

Page-reading system original restored

Scansoft OmniPage 15.0 93.6 66.4
abbyy FineReader 8.0 86.5 47.7
Microsoft Office 2003 88.5 30.8
gocr 0.45 71.0 54.3
Tesseract 2.01 94.8 27.4

Table 6.2 gives us the percentage of ocr errors (or Levenshtein-distance) recov-
ered by the proposed method per ocr tool. When we compare to the original
image, we can correct up to 94% of the errors based on a total of 355619 char-
acters. When we compare to the Bayesian restored image, we can correct from
27% up to 66% of the errors. This gain is entirely due to the non-local strategy
of our algorithm.

As a second experiment, we test the robustness of our algorithm to noise. We
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Figure 6.9: ocr accuracy for the different methods averaged over all ocr software
using the Epson Precision 4990 Photo machine.

add artificial zero-mean white Gaussian noise with a standard deviation of
σn = 10 to the same 60 lr scans obtained by the Epson Precision 4990 Photo
machine. We change the parameters τcc = 0.7 (such that more blocks are
matched in the presence of noise) and αd = 20 (such that the image priors
have more weight in the regularization).

In Figure 6.10, we can clearly see that the noise is removed entirely and the
characters are much sharper than the traditional interpolation techniques and
the bsa reconstruction method. In Figure 6.11, the ocr accuracy results are
shown, again, we can observe the same trends as in the previous experiments:
our method outperforms the other techniques. Cubic b-spline interpolation,
the bsa method and the Bayesian restoration method produce similar re-
sults. Compared to the original experiment without added noise (shown in
Figure 6.9), we can see that our method has the smallest loss in ocr accuracy
(only 4%) while other techniques loose 6% up to 34% in ocr accuracy in the
presence of noise.

As a real-world experiment, we acquire the same documents via a 5 megapixel
Sony DSC-P120 digital camera. These images are compressed with a lossy
6:1 jpeg compression scheme (an example is given in Figure 6.12) and are
manually cropped and deskewed via control points and bilinear resampling.
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(a) Nearest neighbour

(b) Cubic b-spline

(c) bsa reconstruction

(d) Proposed non-local method

Figure 6.10: Restoration results of a 4× linear enlargement of a low-resolution
scanned document image obtained by the Epson Precision 4990 Photo machine with
additional artificial zero-mean white Gaussian noise (σn = 10).
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Figure 6.11: ocr accuracy for the different methods averaged over all ocr software
for noisy data and for data acquired by a digital camera.

We can see in Figure 6.13 that the proposed method removes different artefacts
such as noise, ringing and compression effects. The successful removal of ringing
artefacts is partly due to the bimodal prior. As shown in Figure 6.11, the same
conclusions as in the previous experiments can be drawn for the ocr accuracy
results. Despite the lower contrast and the more complicated artefacts, the ocr
accuracy results are comparable or even better than those for the simulated
noisy data. The reason is that the resolution of the images obtained by the
camera is higher than 75 dpi.

6.4 Robust restoration of binary document im-
ages

In the past decades, a massive amount of documents, newspapers and books
are scanned and stored in digital libraries. To limit the datavolumes, many of
these text images are stored in binary format, i.e. in black (or 0) and white
(or 1). In other text applications, the acquisition equipment can only cope
with black and white values, e.g., fax machines or high volume batch scanners.
That is why we develop a new non-local resolution enhancement algorithm for
binary text images.

In the same spirit of the previously proposed non-local restoration method, we
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Figure 6.12: Document acquired via a digital camera.
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(a) Nearest neighbour

(b) Cubic b-spline

(c) bsa reconstruction

(d) Proposed non-local method

Figure 6.13: Restoration results of a 4× linear enlargement of the images acquired
by a digital camera.
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define the following three consecutive components in our algorithm, which we
discuss elaborately in the next sections:

1. Clustering of repeating characters.

2. Aligning repeating characters within subpixel accuracy.

3. Aggregating and enhancing the characters using a noise smoothing
scheme.

6.4.1 Clustering

We simply assume for the sake of explanation that the characters are in black
and the background (i.e. the paper) is white, handling the opposite case is
quite trivial. The first step of our non-local restoration method is to find
an initial set of patterns in the image that can be used to build an alphabet
(also referred to as codebook or library). We form this initial set by detecting
and segmenting each character/pattern using connected component analysis.
The black pixels are connected if they are neighbours in a 4-connectivity
neighbourhood as illustrated in Figure 4.3. After labeling each segment, we
put a bounding box around each character, i.e. the smallest rectangle that
entirely encloses the character.

We refer the interested reader to [Kia et al., 1998] for a concise overview of
symbolic clustering algorithms. We employ a simple and very fast clustering
algorithm to group similar characters/symbols. We compare each observed
segment to all previously chosen prototypes of existing clusters (classes).
If the character matches to a prototype, we assign the character to that
cluster and refine the prototype of the cluster (which has the majority colour,
black or white, for each pixel). If the observed segment is not similar to any
prototype, we define a new cluster and we take the observed segment as the
prototype for that class. After we have processed all segments, we obtain
the alphabet, which is the reduced representation of the document image. A
major advantage of this algorithm is that we do not need to know in advance
how many clusters there are.

In our implementation, we use a two-step matching algorithm. The first
step is simply to check if the bounding box dimensions of the characters are
close enough to the size of the prototypes. This check/filter prevents lots
of unnecessary computations. The second test is applied to the patterns
filtered by the first test. It consists of pattern matching, where we use a
distance-based template matching criterion. We briefly discuss and compare
this difference measure with simple exclusive or (xor) and weighted Hamming
distance. More difference measures for binary images can for example be
found in [Kia et al., 1998]. In [Hobby and Ho, 1997], the authors describe
different shape features for the matching procedure, such as projection profiles,
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contours and subsampled versions.

The simplest method of matching two binary images is to measure their dis-
similarity by the number of pixels that have a different colour. An error map
calculated from the xor of the observed character and the prototype. Since
the xor operation returns a value of 1 for a mismatch and 0 otherwise, the
difference measure is simply the sum of the error map. In Figure 6.14, we
illustrate this with an example, where we compare the observations ‘c’ and ‘e’
to a prototype ‘c’. The xor-based difference measure fails to distinguish the
characters ‘c’ and ‘e’ because the distance between observation ‘c’ and proto-
type ‘c’ is larger than the one between ‘e’ and prototype ‘c’.

The weighted Hamming (xor) distance measure is an improved version of the
Hamming distance. It assigns a larger weight to error pixels that appear in
close proximity to other error pixels because they tend to correspond more
to structurally meaningful features and less to isolated noise pixels. The
distance measure is calculated by summing over a 3 × 3 neighbourhood of
each error pixel on the xor map as illustrated in Figure 6.14. Note that the
distance measure is a small step in the right direction, but we still can not
distinguish the characters ‘c’ and ‘e’ and a more robust measure is thus needed.

In [Kanungo and Haralick, 1993], the authors show that pixel errors due to
document image degradations (e.g. due to binarization and scanning) occur
more often close to the edges of characters. Therefore, we give more weight
to error pixels far away from edges because they are likely to be the result of
a meaningful structure. We simplify this model by multiplying the xor-based
error map with a weight map that takes the distance to the edge into account.
We initialize the weight map with 1 at the edge positions and we iteratively as-
sign an incrementing cost to the remaining unknown weights. In each iteration
the cost is incremented with a constant (e.g. 3) and we assign this cost to an
undefined weight if there is at least one defined weight in a 4-connectivity neigh-
bourhood. We repeat this process until all weights are assigned. In Figure 6.14,
we notice that the distance-based difference measure is able to discriminate be-
tween the characters ‘c’ and ‘e’ and clustering is correct with an appropriately
chosen threshold (e.g. 25).

6.4.2 Subpixel alignment of binary characters
As in the greyscale case, we assume that there are only translational shifts
between similar characters (and thus no rotations or general affine transfor-
mations). Alignment of binary characters within pixel accuracy can simply be
obtained by minimizing the mutual differences, i.e. minimizing the total sum
of the error map (e.g. based on the xor operation). However, this strategy can
not just be applied for finding the subpixel shifts because interpolation of ideal
step edges in binary images give no new information to subpixel registration.
In [Hobby and Ho, 1997], the authors omit the subpixel registration by aver-



6.4 Robust restoration of binary document images 161

prototype

observations

xo
r

w
ei

gh
te

d
xo

r
di

st
an

ce
-b

as
ed

(10)

(13)

(13)

(28)(29)

(39)

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1 1 1

1

1

1

1

11

1 1

1 1

1

1

1

1

1 1

1

111

1

1

1

1

1

111

1

1

1

2

2

22

2

2

3

3

4

44

4

4

4

44

4

4

4

4

4

4

4

5

5

5

55

5

5

5

5

555

5

5

5

5

5

7

7

7

7

7

7

7

7

77

7

7

77

7

8

8

8

8

8

8

8

8

88

10

10

10

10

10

10

10

10 10

10

10

11

11

13

13

13

1

11

1

1

11

11

11

111

11

11

11

11

1 1

1 1

1 1

1 1

1 1

1 1

1 1 1 1 1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

111

1

1

1

1

1

1 1 1 1 1 1 1

1

1

111

2 2

2

3

3

3 3 3 3 3

33

4

4

4

4

5 78 10

Figure 6.14: Matching results for xor-based, weighted xor-based and distance-
based template matching (the computed distance between the observation and the
prototype is given in parentheses).
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aging over all clustered characters, determine a polygonal outline and rasterize
this outline at a higher resolution. Although, this algorithm is capable of
removing error pixels (such as noise and quantization errors), it cannot achieve
super-resolution because of the lack of subpixel alignment [Park et al., 2003].
Therefore, we present a new and effective way to align binary images within
subpixel accuracy, which is the key to true resolution enhancement.

Note that translational shifts can be decomposed in a horizontal and vertical
component Δx and Δy respectively. That is why we build horizontal and
vertical projection profiles, i.e. feature vectors containing the sum of foreground
pixels (black) along rows and columns respectively. Minimizing the sum of
absolute differences (sad) between these vectors separately yields a very fast
registration. Note that these feature vectors need to be zero-padded properly
before computing the sad. After the raw registration, we can simply obtain
the fine registration parameters at subpixel accuracy by linearly interpolating
the projection profiles of the reference character (or prototype). The whole
alignment procedure is illustrated with an example in Figure 6.15.

6.4.3 Noise smoothing

After subpixel alignment, we fuse all members of a cluster into one hr
prototype. Each member of the cluster is placed on the hr grid using the
upsampling operator as illustrated in Figure 4.8. We refer the reader to
Section 5.3.2 for a more detailed discussion. In case we have multiple pixels
on a hr grid point, we take the majority pixel value (black or white), which
is much the same as the median estimate (i.e. minimizing the l1-norm).
Afterwards, the remaining artefacts in the binary prototype can be enhanced
using mathematical morphology operations. However, binary images have
an annoyingly jagged appearance due to the hard black-white transitions.
Therefore, we propose another restoration scheme that produces greyscale text
images, in the same spirit as the anti-aliasing filter, in order to create a more
pleasant view [Crow, 1977].

We perform a very simple but effective edge-preserving noise smooth-
ing on the hr prototype inspired by the algorithm proposed by Im-
merkær [Immerkær, 2001]. We first apply a Gaussian blur operation followed
by a sharpening operation (e.g. unsharp masking) on each hr prototype.
This operation results in a greyscale hr prototype. Because the number of
prototypes are quite small compared to the total number of characters, the
smoothing step takes only a very small fraction of the computation time.

Finally, we reassemble the output documents by replacing each connected com-
ponent by the enhanced prototype of its cluster. We take hereby the subpixel
registration parameters into account to prevent ragged baselines.
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Figure 6.15: Subpixel registration process of binary patterns for a 2× enlargement
factor. The minimum sad gives the correct registration parameters.
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6.4.4 Results

As an experiment, we enlarge a portion of a 4-page scanned and binarized
document2 with a magnification factor of 2. The binary document contains
18675 connected components spread over 140 clusters. This real-world example
contains several artefacts such as noise and zipper artefacts along edges, as
shown with the nearest neighbour interpolation in Figure 6.16.

For comparison, we process the degraded image using mathematical morphol-
ogy operations [Serra, 1982]. We perform a morphological closing on the image
f with a horizontal and vertical linear structuring element (with 3 pixels and
the centre at the middle position) f •Sl = (f ⊕Sl)�Sl (i.e. a dilation followed
by an erosion) in order to remove holes and zipper artefacts. Afterwards, we
remove the remaining protrusive black pixels and thin lines using a hit-and-
miss transform with structuring elements [−1 1 − 1] and [−1 1 − 1]T. A
more detailed and mathematical treatment of these morphological operations
can be found in [Ledda, 2006,Serra, 1982]. Finally, we apply the mathematical
morphology interpolation for binary images (mmint) [Ledda, 2006].

The end result of the morphological operations is shown in Figure 6.16. We
can clearly see some artefacts, for example the legs of the letter ‘m’ in the
word ‘same’ are connected and the curvature along the edges are not smooth.
Different observations of the same characters are also reconstructed each time
in a different way.
In Figure 6.17, we show the results for our non-local method and a binarized
version (obtained via simple uniform quantization). The reconstructed charac-
ters show significant improvements compared to the other methods: the curva-
ture of the characters is much smoother and less annoying artefacts are created.
Also note that the font type is more or less preserved by the proposed method.

In Figure 6.18, we show a full-scale part of the document processed by the
different restoration techniques. At first sight, the restorated text images show
not a lot of difference compared to the original image. The image restoration
will not improve the readability for most people.
We also compute the ocr accuracy over the 4 pages using several popular
commercial and open-source page-reading systems: Scansoft OmniPage 15.0,
abbyy FineReader 8.0, Microsoft Office 2003 Document Imaging, gocr 0.45
and Tesseract 2.01. All page-reading systems give 100% correct ocr results,
except gocr 0.45: these results are given in Figure 6.18. We notice that
our method produces slightly better recognition results, which improves the
readability for a machine.

2We would like to acknowledge the library of the university of Antwerp for providing this
document.
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(a) Nearest neighbour

(b) Mathematical morphology reconstruction and interpolation

Figure 6.16: Image restoration results (2× enlargement of a binary document).
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(a) Proposed method (greyscale)

(b) Proposed method (binary)

Figure 6.17: Image restoration results (2× enlargement of a binary document).
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(a) Original scan (93.7%)

(b) Mathematical morphology (82.3%)

(c) Proposed method (94.8%)

Figure 6.18: Full-scale image restoration results. The ocr accuracy result of gocr
0.45 is given in parentheses.
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6.5 Conclusion
In this chapter, we have described robust reconstruction techniques to
enhance the quality of low-resolution greyscale and binary document images.
Exploiting the multiple occurrences of characters brings more information
at our disposal, which leads to much better estimates of the unknown pixel
values. In order to take advantage of this repetitive behaviour in a practical
way, we divide the image into character segments. The character segmentation
reduces the computation time drastically in two ways: the algorithm only
has to focus on these regions of interests and the search space for possible
matching candidates is reduced enormously. Matching between the character
segments filters relevant information before the reconstruction. Information
originating from other similar characters are combined and the characters are
reconstructed in the Bayesian framework for greyscale text images. For binary
document images, we have proposed a simple and fast noise smoothing scheme.

Results of different experiments show the effectiveness of the proposed intra-
frame super-resolution technique: characters and symbols are reconstructed
very well and ocr results show a significant improvement of our method
compared to other reconstruction methods. A trivial extension to our method
is to take multiple pages of the same document, journals or book into account
or to combine our method with multi-frame super-resolution techniques (for
video applications). This would produce even better results because there is
more repetitive information available. The proposed method can also deal
with documents irrespective to their font type, it even preserves the font type
and is not restricted to characters of a particular alphabet, i.e. the document
can also contain generic symbols such as musical notes, hieroglyphics or
mathematical symbols.

The strategy of using the repeating symbol property is not restricted to the
reconstruction of document images that suffer from noise, compression arte-
facts, lr scanning, wear processes (e.g. in old manuscripts), etc., but can also
be applied in an exemplar-based search engine and combined with an effi-
cient document compression scheme (such as described in [Kia et al., 1998,
Yang et al., 2000]) for instance. The latter is useful for the storage of large
digital libraries or for transmitting documents. repeating characters contain
redundant information, this redundancy can be removed for compression by
constructing a prototype for each class/cluster of characters and encode the
remaining reconstruction errors [Kia et al., 1998,Yang et al., 2000]. Exemplar-
based search is useful in cases where ocr fails: a symbol, a prototype or a set
of symbols can be suggested as a search string after which the search engine
reports all similar symbols. ocr typically fails in situations where the charac-
ters are degraded too much or in case the alphabet is unknown (e.g. due to an
exotic font type, foreign symbols, mathematical equations, etc.).
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Multi-frame

super-resolution restoration

It is through science that we prove, but through intuition that we discover.
—Jules Henri Poincaré

In the last decades, the use of multiple images in the restoration process has
gained a lot of popularity among various researchers, especially in the digital
video processing community. Because video typically consists of a sequence of
non-identical, but still very similar frames, it becomes possible to use the inter-
frame motion information for improving the image resolution. This leads for
example to excellent results for video denoising [Zlokolica, 2006], video deinter-
lacing [Kwon et al., 2003, Van De Ville, 2001, Zlokolica et al., 2006], multiple
image (motion) deblurring [Katsaggelos, 1990, Šroubek and Flusser, 2005,
Rav-Acha and Peleg, 2005], etc. In this chapter, we concentrate on resolution
enhancement, i.e., on the multi-frame super-resolution (sr) restoration prob-
lem.

As discussed in Chapter 2, multi-frame sr image restoration becomes most
successful if there is motion over a non-integral distance between the frequency-
aliased images. In contrast to single-frame image restoration, multi-frame
techniques generate superior results (i.e. the recovery of true high frequency
content) provided that the inter-frame motion is estimated correctly. However,
even in absence of frequency aliasing (which is the case in mri images), it
is sometimes possible to restore the true high frequencies under restricted
conditions as discussed in Chapter 8.

In this chapter, we focus on a three-step implementation of the sr framework,
which consists of image alignment, image fusion and image restoration. In the
following sections, we briefly discuss the existing sr approaches (Section 7.1),
motion estimation and registration techniques (Sections 7.2 and 7.3) and re-
construction algorithms that fuse multiple aligned lr grids into one hr grid
(Section 7.4).
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In Section 7.3.2, we derive a new robust image alignment technique that per-
forms joint geometric and photometric registration in the total least square
sense. The novel idea is to use the total least square metrics instead of the
ordinary least square metrics, which is commonly used in the literature. In
image registration applications, the total least square solution of the motion
parameters is much more consistent and accurate in presence of noise compared
to existing registration algorithms.
In Section 7.4.3, we also propose an improved fusion algorithm in the total least
square sense, which is robust to additive noise and registration errors in con-
trast to existing fusion techniques. These improvements are important for the
performance of multi-frame super-resolution image reconstruction algorithms.
Furthermore, we show the effectiveness of the proposed sr method in real-
world examples and deinterlacing problems and we discuss sr reconstruction
along the temporal direction in Section 7.5. Finally, Section 7.6 concludes this
chapter.

7.1 Survey of multi-frame super-resolution tech-
niques

For excellent and recent surveys on multi-frame sr restoration methods, we
refer the interested reader to [Borman, 2004,Park et al., 2003]. These methods
can roughly be divided into three categories, i.e., the frequency-domain meth-
ods, the spatial-domain methods and the motionless methods. In the following
sections, we give a very concise overview of a wide variety of different existing
sr approaches.

7.1.1 Frequency-domain super-resolution restoration
Frequency-domain methods make explicit use of the frequency aliasing that is
introduced during the acquisition of the lr images. In 1984, Tsai and Huang
first presented such type of multi-frame methods to increase the resolution
of satellite images [Tsai and Huang, 1984]. Based on the shift and aliasing
properties1 in the Fourier domain, the authors compute the Fourier coefficients
of the bandlimited hr image from a set of linear equations, which relates the
discrete Fourier transform (dft) of the observed lr images to the continuous
Fourier transform (cft) of the hr image. The final image is obtained via the
inverse Fourier transform.

In [Kim et al., 1990], the authors proposed an extension of this approach
to address the problems of noise and blur during acquisition, resulting
in a weighted least squares formulation. Bose et al. proposed the use of
recursive total least squares method for sr restoration to reduce the effect

1The aliasing property tells us that the observed frequency spectra are sums of the phase
modulated true spectra and their replicas (see Section 2.1.3). The shift property describes
the spatial pixel shifts as linear phase modulations of the Fourier coefficients.
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of registration errors [Bose et al., 1993]. In [Rhee and Kang, 1999], the
authors reduced memory requirements and computational costs by employing
the discrete cosine transform (dct) instead of the dft. More variants on
the frequency-based methods can be found in [Borman, 2004,Park et al., 2003].

Although the frequency-domain methods are intuitively simple and computa-
tionally attractive, the observation model is restricted to global rigid geometric
transformation and spatially invariant linear blur, which limits their utility in
practical applications. These frequency-domain approaches can also not incor-
porate general a priori constraints and degradation models in the restoration
process (see also discussion in Section 4.1.2.2).

7.1.2 Spatial-domain super-resolution restoration

Since sr is typically an ill-posed inverse problem, regularization is often
required to achieve acceptable results. As discussed in Section 4.1.2.2, the for-
mulation of restoration techniques in the spatial domain offers a large flexibility
in the range of degradation and registration models with the ability to include
a large variety of prior information. There are four main trends in spatial-
domain sr approaches, i.e., back-projection methods, pocs-based techniques,
stochastic (or Bayesian) methods and interpolation of irregularly spaced
samples. This classification is very similar to the single-frame restoration
trends as discussed in Chapter 4, except for the non-uniform interpolation class.

Similar to the single-frame restoration problem, we can describe the relation-
ship between a continuous scene and a set of k (discrete) digital images. In
Figure 7.1, the observation model is illustrated with the inherent degradation
operations. Therefore, the ith observed lr image gi is related to the desired
hr image f by the following matrix-vector formulation:

gi = DiHiMif + ni = Aif + ni, (7.1)

where gi ∈ R
m are the observed images and f ∈ R

r2m is the ideal (or hypotheti-
cal desired) image, which has a resolution that is r times higher than that of the
gi. In this equation, the matrices D, H and M (with dimensions of m× r2m,
r2m× r2m and r2m× r2m) represent the decimation operator, the blur opera-
tor and the (motion) warping operator respectively and ni ∈ R

m describes the
additive noise. The combination of decimation, blur and transformation can
be represented by a general linear degradation operation Ai = DiHiMi with
a matrix dimension of m× r2m.

A popular class of sr restoration techniques deals with a simulate-and-correct
approach, which is known as iterative back-projection (ibp) [Peleg et al., 1987,
Keren et al., 1988]. In each iteration, the current estimated hr image is cor-
rected or updated by minimizing the residual error between the observed and
the simulated lr images on the lr grid. Given an estimate f̂ (j) of the hr image
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lr image

continuous
scene

observation model

sampling without
frequency aliasing

hypothetical desired
hr image

observed

blur decimation
with aliasing

noise

motion or
transformation

Figure 7.1: Observation model for sr image reconstruction of a set of noisy, blurred
low-resolution images.

at the jth iteration, we can easily simulate the set of lr images by applying
equation (7.1) to f̂ (j) as

ĝ(j)
i = Aif̂ (j). (7.2)

The ibp algorithm updates the current estimate of the sr solution by projecting
the residual errors via the back-projection operator A†

i , which is often the ad-
joint operator of the approximating linear degradation model [Borman, 2004].
The iterative procedure is formally described by

f̂ (j+1) = f̂ (j) +
k∑

i=1

A†
i

(
gi − Ai f̂ (j)

)
. (7.3)

In [Peleg et al., 1987,Keren et al., 1988], the authors applied the ibp procedure
to minimize the sum of absolute differences (sad) between the simulated and
the original observed images, where A†

i projects the correction of a lr pixel to
one hr pixel. In [Irani and Peleg, 1991], Irani and Peleg extended this work
by modifying the error functional to the sum of squared differences (ssd) and
introduce a back-projection kernel in the update procedure of the hr image,
i.e. A†

i is constructed in such a way that a hr pixel is updated by all contribut-
ing lr pixels according to the psf of the imaging model. In [Zomet et al., 2001],
the authors replaced the sum of projected errors in equation (7.3) by the pix-
elwise median, which results in a very robust sr algorithm. The ibp approach
is intuitively simple, but is neither theoretic optimal, flexible or general (it is
very hard to include prior constraints). The accuracy of the ibp algorithm is
only as good as the observation model and a solution does not always exist or
is not unique due to the ill-posed nature of the inverse problem. The final hr
image depends heavily on the initial guess f̂ (0).
A closely related algorithm is the non-iterative algebraic filtered back-
projection method [Borman, 2004], which computes the linear minimum mean
square error (lmmse) estimate of the hr image f̂ = (A†A)−1A†g (note
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that the set of observed images is aggregated in g and that the solution can
efficiently be computed by Fourier techniques if A†A has a cbc structure.2)
However, such an inverse filtering is highly sensitive to noise and therefore,
regularization is needed to achieve acceptable performance in the presence of
noise or missing data.

A more powerful framework to include prior knowledge is the pocs-based
approach as introduced for the multi-frame sr problem by Stark and Osk-
oui [Stark and Oskoui-Fard, 1989] (see also discussion in Section 4.1.2.2). The
data fidelity constraint projects each hr pixel into a certain bound (reflecting
the statistical confidence) of the contributing pixels of all lr images. To
improve the final hr image, additional image priors such as non-negativity
constraints can be included easily in the iterative process of equation (4.14).
Later, this model is extended to include spatially varying blur and observation
noise [Tekalp et al., 1992], non-zero aperture time (or motion blur), arbitrary
sampling lattices [Patti et al., 1997] and multiple object motions by introduc-
ing the concept of validity and/or segmentation maps [Eren et al., 1997], etc.
Tom and Katsaggelos estimated the hr image via the alternative bounding
ellipsoid method [Tom and Katsaggelos, 1996].

An alternative and very popular framework to include prior knowledge is known
as the stochastic or Bayesian approach. These regularization techniques are
extensively discussed in Section 4.2. In the presence of additive zero-mean
white Gaussian noise and according the degradation model described in equa-
tion (7.1), the traditional maximum a posteriori (map) estimate of the hr
image f̂MAP becomes

f̂MAP = argmin
f

(
k∑

i=1

‖gi − DiHiMif‖2
2 + αG(f)

)
, (7.4)

where G(f) denotes a well-chosen image prior (see Section 4.3.1 for some ex-
amples) and α is the regularization parameter. In [Cheeseman et al., 1994],
Cheeseman et al. applied Bayesian estimation with a Gaussian prior
model to the sr problem of multiple satellite images observed by the
Viking Orbiter. Schultz and Stevenson used a robust Huber-Markov ran-
dom field (hmrf) Gibbs image prior model to preserve edge discontinu-
ities [Schultz and Stevenson, 1996]. Hardie et al. presented a map frame-
work for the joint estimation of image registration parameters and the
hr image [Hardie et al., 1997]. Zibetti and Mayer proposed a robust and
edge-preserving simultaneous map sr algorithm that estimates all hr im-
ages simultaneously with an additional prior term that enforces similarity
of the hr images along the motion trajectories [Zibetti and Mayer, 2006,
Zibetti and Mayer, 2007].

2It is important to notice that the back-projection matrix A† is not, in general, equivalent
to the inverse A−1.
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In literature, several maximum likelihood (ml) estimators are applied to the sr
reconstruction problem. However, due to the ill-posed nature of the sr inverse
problems, map estimation is usually preferred to ml. Tom and Katsaggelos
proposed a ml sr algorithm that estimate the registration parameters, noise
variances of each degraded lr image and the hr image simultaneously by the
expectation maximization (em) algorithm [Tom and Katsaggelos, 1995]. Elad
and Feuer proposed a ml-pocs hybrid reconstruction approach that combines
the benefits of the stochastic approach (ensuring a single optimal solution) and
the pocs approach (utilizing powerful a priori constraints in a simple intuitive
way) [Elad and Feuer, 1997]. Note that steepest descent solution of the ml
estimation is actually a special case of the ibp procedure as expressed in equa-
tion (7.3) with A†

i = MT
i HT

i DT
i . A more detailed survey of these stochastic

methods can be found in for example [Park et al., 2003,Borman, 2004].

In the case of global translational motion and common stationary blur models
(i.e. ∀i : Hi = H), we can write the ml estimation of the hr image f̂ML in the
presence of additive zero-mean white Gaussian noise as

f̂ML = argmin
f

(
k∑

i=1

‖gi − DiHMif‖2
2

)
. (7.5)

Because H and Mi have a cbc structure, they commute (i.e. HMi = MiH
and HTMT

i = MT
i HT). Therefore, we can rewrite equation (7.5) as

f̂ML = argmin
f

(
k∑

i=1

‖gi − DiMiHf‖2
2

)
. (7.6)

We define h = Hf as the blurred version of the hypothetically desired hr image
and therefore, we can divide the sr reconstruction problem into three separate
steps [Elad and Hel-Or, 2001]:

• image registration: this is the estimation of transformation matrices Mi.

• image fusion: this is the estimation of the blurred hr image ĥ from the
observed lr data:

ĥML = arg min
h

(
k∑

i=1

‖gi − DiMih‖2
2

)
. (7.7)

• image restoration: this is the estimation of the desired hr image f̂ from
ĥ.

In [Farsiu et al., 2004], the authors replaced the l2-norm in equation (7.7) by
the l1-norm, resulting in a far more robust estimate of ĥ and they performed
a map restoration technique with the bilateral total variation image prior.
This three-step algorithm is an example of the more general class of non-
uniform interpolation sr techniques, which consist of three consecutive stages
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1. registration 2. fusion 3. restoration
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Figure 7.2: Schematic representation of the standard three-step paradigm of the
non-uniform interpolation sr approach.

as illustrated in Figure 7.2: motion estimation (see Section 7.2 for a more de-
tailed discussion), interpolation of the irregularly spaced samples on a regular
hr grid (see Section 7.4 for more details) and restoration to remove blur and
noise (see Chapter 4 for an overview).

A disadvantage of this non-uniform interpolation approach is that the degrada-
tion models are limited (e.g., blur and noise characteristics must be the same
for all lr images) and that the optimality of the whole reconstruction process
is not guaranteed because errors can propagate from one stage into another.
However, due to its relatively low computational load and low memory require-
ments (because the algorithm does not require all irregularly spaced lr samples
during the restoration process), it is the most suitable approach to real-time
applications. That is why we concentrate on this class of sr techniques in the
rest of this chapter.

7.1.3 Motionless super-resolution restoration

The sr restoration algorithms discussed so far require the estimation of relative
motions over non-integral distance between the observed lr images. However,
it is possible to perform multi-frame sr reconstruction without explicit motion
estimation or image registration. Therefore, we refer these techniques to as
motionless or motion-free sr techniques. We briefly discuss the principles of
these methods.

In [Elad and Feuer, 1997], Elad and Feuer applied multi-frame sr restoration
on differently blurred images without relative motion (i.e. a fixed camera
filming fixed objects with different defocusing) using a hybrid ml-pocs
approach. Rajan and Chaudhuri proposed a similar motionless sr tech-
nique for blurred images using a map framework with Markov random field
priors [Rajan and Chaudhuri, 2002]. In [Chaudhuri and Joshi, 2005], the
authors derived motionless sr techniques for images with relative zoom and
for images with different photometric characteristics, i.e. where the scene to
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be super-resolved is illuminated with a moving light source.

In recent years, a growing number of learning-based or exemplar-based
methods have been proposed in the literature to tackle the sr problem (see
also discussion in Section 5.1). This approach is only effective when very
few observed lr images are available. Due to the need of a vast number of
examples, exemplar-based methods are used in very specific scenarios, such as
face or text restoration [Baker and Kanade, 2002, Park and Lee, 2008]. Note
that the restoration of high frequency content is only apparent and not real.
That is why these learning-based methods are also referred to as hallucination
algorithms. Some examples of the learning-based methods can be found
in [Baker and Kanade, 2002,Freeman et al., 2002,Datsenko and Elad, 2007].

As discussed in Chapter 5, non-local resolution enhancement techniques
are closely related to sr techniques, except that each pixel may be as-
signed to several motion vectors, and not just one as in classical motion
estimation methods. Note that these fuzzy “motion” vectors are not re-
ally motion vectors but displacement vectors point to similar or repetitive
patches. Extension of single-frame to multi-frame sr techniques is relatively
easy. Rough motion estimation (i.e. without subpixel accuracy) with lim-
ited search windows can help to reduce the computational complexity enor-
mously. Some examples of multi-frame non-local sr techniques are discussed
in [Ebrahimi and Vrscay, 2008a,Protter et al., 2009,Danielyan et al., 2008b].

7.1.4 Super-resolution in the temporal direction

Recently, the challenge of simultaneous resolution enhancement in time as
well as space has received growing attention in the video processing com-
munity [Robertson and Stevenson, 2001, Schechtman et al., 2005]. Resolution
enhancement in the temporal direction corresponds to the increase of the
frame rate of the video sequence, which is the number of distinct and complete
images that the camera can capture per second. The frame rate is often
expressed in frames per second (fps) or in hertz (Hz). The standard frame
rate in pal and secam television is 25Hz (in progressive or non-interlaced
format, i.e. 25 actual fps), while the corresponding standard field rate is
50Hz (in interlaced format, i.e. 50 fields or half images per second). In ntsc
television, the standard field rate and frame rate are respectively 60Hz and
30Hz (or 30 × 1000/1001 = 29.97 fps to be more precise). In high-end hdtv
systems, frame rates of 50Hz and 60Hz are commonly used. In scenes with
high motion activities, a low frame rate or dropped frames may cause motion
to appear jerky and uneven.

In [Robertson and Stevenson, 2001], the authors increased the frame rate
by inserting interpolated images between the received frames. Spatial
compression artefacts are further reduced in a Bayesian restoration frame-
work. In [Schechtman et al., 2005], Schechtman et al. combined differ-
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ent video streams of the same event to reconstruct a video sequence
with a higher resolution in spatial and temporal domain. The differ-
ent video streams are aligned using a sequence-to-sequence registration
method [Caspi and Irani, 2002]. In contrast to the work of Robertson and
Stevenson [Robertson and Stevenson, 2001], Schechtman et al. are able to
restore the motion-based temporal aliasing (e.g. the wagon-wheel effect as
discussed in Section 2.1.3) through super-resolution.

Another interesting benefit of sr in the temporal direction is that the restora-
tion of object motion blur as a spatial artefact can be handled properly. The
camera integrates the light coming from the scene during the exposure time
in order to generate each image. As a result, fast moving objects produce a
noticeable blur along their trajectory, often resulting in distorted or unrecog-
nizable object shapes. Thus, motion blur is actual a temporal phenomenon
(with spatial artefacts) and not a spatial one [Schechtman et al., 2005].
In single-frame motion blur restoration techniques, the psf is modelled as 1d
uniform local averaging of neighbouring pixels in the direction of the object
movements. In combination with a static background, prior segmentation
and motion analysis of the object is needed, which is not always possible. In
contrast to these single-frame techniques, multi-frame motion blur restoration
performs a deconvolution in the temporal direction with a temporal rectangu-
lar blur function that models the exposure time. So, motion deblurring can be
done directly by reducing the exposure time without requiring explicit motion
analysis, segmentation or any scene interpretation. Because of the use of
multiple frames, image information that is lost due to partial occlusion effects
can also be recovered. To support these claims, we set up a small experiment
in Section 7.5.1.

Resolution enhancement in the temporal domain is not only important for the
frame rate conversion, e.g. displaying dvd on hdtv screens, but we can also
reduce the cost of high-speed camera systems, which acquire images at very
high frame rates (typically 1000 to 10000 fps). Such frame rates only permit
very low exposure times (with a lot of shot noise as a result) and require
extreme lighting conditions of the scene. With sr in the temporal direction,
we can build a high-speed camera system from several cheap camera’s with a
lower frame rate and thus higher exposure times (with the result that there is
less shot noise and that lighting conditions are less strict). Another interesting
application is to merge differently scalable coded versions of a video stream
or combining still hr images with a lr video stream to obtain a better video
quality and resolution, both in the spatial domain and the temporal domain.

7.1.5 On the performance of super-resolution techniques
A major weakness of many papers on sr algorithms is the lack of performance
quantification. Sometimes, the algorithms are evaluated on simulated data,
where an original hr image is processed to obtain multiple degraded lr images,
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which are then used for the sr algorithm. In this case, objective metrics such
as psnr or mse can be computed. Note that these synthetic lr images often
contain a lot of frequency aliasing, which makes the visual end result very
spectacular but not realistic because in practical data, frequency aliasing is
obscured by blur, noise and/or compression. On the other hand, for real-world
data, no hr reference image is available (except if the scene is also captured
by another camera in high quality). There are several possibilities to evaluate
the sr reconstruction results.
In [Pham, 2006], Pham proposed a range of objective measures such as im-
age sharpness, jaggedness of edges and the smallest available blob size to
evaluate the results of different sr algorithms. These quantitative measures
are presented in a radar chart per reconstructed hr image so that their
strengths and weaknesses (i.e. artefacts) are easily comparable. Reibman
and Shaper attempted to perform subjective performance evaluation on sr
results [Reibman and Schaper, 2006].
Various detection algorithms in specific applications help to measure
the performance in an objective and clear way. In multi-frame text
sr applications, ocr algorithms measure the readability of charac-
ters [Donaldson and Myers, 2005, Mancas-Thillou and Mirmehdi, 2007]. For
some specific task-based vision tasks, the discrimination of small objects/details
in an image is measured quantitatively using triangle orientation discrimina-
tion (tod), which measures the ability to discriminate the orientation of an
equilateral triangle under specific conditions [Van Eekeren et al., 2007].

In the last decades, various researchers have explored the limits on the
performance of sr algorithms. Schultz and Stevenson claim that the ac-
curacy of motion estimation is the limiting factor in sr restoration per-
formance [Schultz and Stevenson, 1996]. A possible approach to minimize
the effect of the registration errors is based on channel adaptive regulariza-
tion [Lee and Kang, 2003]. The basic concept of channel adaptive regular-
ization is that degraded lr images with a large amount of registration error
should contribute less to the estimate of the hr image than reliable lr images.
In [Marziliano and Vetterli, 2000], the authors developed numerical methods
that reconstruct a bandlimited signal from an irregular set of samples at un-
known locations, which can help to overcome possible registration errors.
In [Baker and Kanade, 2002], Baker and Kanade showed that any smoothness
prior results in sr reconstructions with very little high-frequency content for
sufficient large enlargement factors. Therefore, they proposed to break this
limit via exemplar-based image priors. Lin and Shum derived performance
limits for the case of translational motion, using matrix perturbation anal-
ysis [Lin and Shum, 2004]. They showed that under practical conditions,
sr reconstruction-based algorithms can improve the resolution by at most
a magnification factor r = 1.6. Cramér-Rao lower bounds for joint image
registration and sr reconstruction problems are derived by Robinson and
Milanfar [Robinson and Milanfar, 2006]. They showed that sr performance
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depends on a complex relationship between measurement snr, the number of
observed frames, set of relative motions between frames, image content and
the psf of the imaging system. In [Shahram and Milanfar, 2006], the authors
addressed the limitations of optical systems, where the objective is to study
how far beyond the classical Rayleigh resolution limit (resolving two closely
spaced point sources) one can reach at a given snr.

Relatively recently, various researchers (e.g. [Tom and Katsaggelos, 1995,
Hardie et al., 1997]) focused on the estimation problems related to joint image
registration and super-resolution. This avoids the chicken-and-egg problem:
sr reconstruction needs accurate subpixel motion information and accurate
motion estimation needs clean hr images. For the same reasons, the authors
of [Shen et al., 2007] jointly estimated the motion, the hr image and the seg-
mentation map.
In many image processing problems, super-resolution methods can be com-
bined with other application-specific restoration algorithms. Shekarforoush et
al. presented a Bayesian method to jointly reconstruct a sr image and the
surface albedo and height of the scene objects [Shekarforoush et al., 1996].
In [Farsiu et al., 2006a], the authors performed sr restoration on images
sampled with a Bayer cfa pattern. The sr reconstruction of image mosaics is
very popular in the literature, see e.g. [Zomet and Peleg, 2000,Ye et al., 2005].
Altunbasak et al. proposed a transform-domain sr restoration algo-
rithm to tackle block-based compression artefacts by incorporating dct
quantization information from mpeg sequences [Altunbasak et al., 2002].
In [Gevrekci and Gunturk, 2007], Gevrekci and Gunturk addressed the prob-
lem of super-resolution and high dynamic range (hdr) imaging in a unified
context.

So far, we have only discussed the classical multi-frame to single-frame (or
multi-input single-output (miso)) sr methods. The multi-frame to multi-frame
(or multi-input multi-output (mimo)) sr algorithms for a sequence of images
or video can be classified into three categories [Zibetti and Mayer, 2007]:

• traditional methods: these methods estimate one (reference) hr image
at a time from a set of sr images. This procedure is repeated for all hr
images.

• sequential methods: these methods also estimate one hr image at a time,
but in contrast to the traditional methods, sequential methods take ad-
vantage of the previously estimated hr images to reduce the cost of the
estimation of subsequent hr images, e.g. by employing an efficient approx-
imation of the Kalman filter [Elad and Feuer, 1999,Farsiu et al., 2006b].

• simultaneous methods: these methods estimate all hr images in one pro-
cess, e.g. [Zibetti and Mayer, 2006, Zibetti and Mayer, 2007]. A major
drawback of this approach is the large memory requirements because all
(temporary) hr images must be stored during several iterations.
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It is obvious that sequential methods are preferable to near real-time applica-
tions in terms of computational load and simultaneous methods are preferable
to achieve the highest possible quality.

7.2 Motion estimation
In most multi-frame sr algorithms, motion estimation or image registration
is the key to successful sr reconstruction. The estimation of motion plays
an important role in many other applications as well, e.g. mosaicing, com-
pression and tracking. Motion estimation algorithms consist of three basic
elements, namely, the motion model (i.e. the representation of the motion
field combined with the region of support), the matching criterion (i.e. the
cost function together with some penalties or prior constraints that have
to be optimized) and the search strategy (i.e. the way the cost function is
minimized) [Stiller and Konrad, 1999].

In the following sections, we will make a rough classification of motion estima-
tion techniques according to their motion model and their region of support
more specifically. There exists two kinds of motion representations. The most
common and most popular representations are the parametric models, some
of them are summarized for 2d motion in Table 7.1. The second kind are the
non-parametric models such as elastic or thin-plate spline deformation models.
For a more detailed treatment of these motion representations, we refer the
reader to [Glasbey and Mardia, 1998].

In general, the higher the number of parameters, the more precise the descrip-
tion of the motion field can be. A motion field is a vector-valued image of
continuous spatial coordinates that contains the perceived or estimated pro-
jection of the real 3d motion displacements. However, an excessive number
of parameters may result in motion over-modelling [Stiller and Konrad, 1999]:
like sr reconstruction, motion estimation is an ill-posed inverse problem. The
ill-posedness leads to multiple possible solutions, i.e. no unique solution is guar-
anteed due to the aperture and occlusion problem. Therefore, regularization is
needed to obtain a unique motion field. This regularization can be incorporated
explicitly as an additional smoothness term in the cost function, or implicitly
by assuming that all pixels within a specific region follow the same motion.
The choice of the region of support leads to the following classification:

• pixel -based methods: each pixel has a different motion vector. The trans-
lational representation is commonly employed for pixel-based methods,
which results in the use of motion vectors. Often in literature, the mo-
tion field is said to be dense because a motion vector is assigned to each
pixel. Smoothness terms are typically used in the cost function to obtain
a stable solution.

• region-based methods: the image is partitioned in several (non-
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Table 7.1: Several popular 2d parametric motion representations where κ(K) is the
cardinality of K.

2d model Definition # Parameters

translational
{
x′ = a00 + x
y′ = b00 + y

2

procrustes/rigid body
{
x′ = a00 + s cos θx+ s sin θy
y′ = b00 − s sin θx+ s cos θy 4

affine
{
x′ = a00 + a10x+ a01y
y′ = b00 + b10x+ b01y

6

projective/perspective

⎧⎨
⎩ x′ = a00 + a10x+ a01y

1 + c10x+ c01y

y′ = b00 + b10x+ b01y
1 + c10x+ c01y

8

polynomial

⎧⎪⎪⎨
⎪⎪⎩

x′ =
∑

{i,j}∈K

aijx
iyj

y′ =
∑

{i,j}∈K

bijx
iyj

2κ(K)

overlapping) regions, each having different motion parameters. The reg-
ularization is incorporated implicitly because all pixels in a region of
support are displaced in a uniform manner.

• image-based methods: the region of support consists of the whole image,
as a result the motion of all pixels is described by just a few parameters.
These methods are also referred to as global motion estimation, image reg-
istration or image alignment. Image registration is also a very important
tool to retrieve camera motions in many computer vision tasks.

For comprehensive surveys on motion estimation and image registra-
tion techniques, we refer the reader to [Brown, 1992, Barron et al., 1994,
Stiller and Konrad, 1999,De Smet, 2002,Zitová and Flusser, 2003]. In the fol-
lowing sections, we discuss the existing motion estimation methods and their
relation to multi-frame sr performance.

7.2.1 Pixel-based motion estimation

In literature, the pixel-based motion estimation techniques are commonly
known as optical flow3 methods. For a survey on optical flow techniques,

3Optical flow refers to the idea that changes in intensity is only caused by motion and
that a moving pixel preserves its greyvalue. Thus technically speaking, region-based and
image-based motion estimation techniques are as a matter of fact also optical flow methods.
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we refer to [Barron et al., 1994, Brox, 2005]. The first and most optical flow
techniques assume that pixel intensities are constant over a short time interval,
i.e., the constant image brightness condition. Practically in 2d motion estima-
tion, this implies that the pixel intensity at position (x, y) in the image at time
t is (almost) the same as the shifted pixel (x + u, y + v) in a successive image
at time t+ 1. This gives the following non-linear equation in u and v:

f(x, y, t) = f(x+ u, y + v, t+ 1). (7.8)

In order to solve u and v, we linearize the right-hand side of the equation by a
first order Taylor series expansion:

f(x, y, t) = f(x, y, t) + fxu+ fyv + ft + ε, (7.9)

which yields immediately the well-known optical flow formula:

fxu+ fyv + ft = 0, (7.10)

or alternatively, in vector-matrix formulation:

[
fx fy

] [ u
v

]
+ ft = (∇f)Tv + ft = 0. (7.11)

It is easy to see that the constant image brightness assumption is not sufficient
to determine a unique solution for the optical flow because there is only one
equation for two unknowns. We can thus only determine the normal flow v⊥
in the direction of the gradient in a reliable way:

v⊥ =
−ft∇f
‖∇f‖2

, (7.12)

while the tangent flow can not be determined at all, which leads to the well-
known aperture problem as illustrated in Figure 7.3. Note that the normal flow
is only reliable if ‖∇f‖2 �= 0, i.e. at edges or in non-smooth regions. If ft �= 0,
we can not measure the normal flow either.

Consequently, we need some prior knowledge or additional assumptions to ob-
tain a unique optical flow solution. Two popular approaches are used in the lit-
erature. The first approach is known as Lucas-Kanade optical flow and assumes
that the optical flow in a local neighbourhood or block can be described by the
same motion vector. Pixels that are further away from the central pixel of the
block get lower weights. These weights typically follow an isotropic Gaussian
kernel Lσ with standard deviation σ in function of the distance to that central
pixel. The optical flow solution at each pixel position can then be estimated
as the minimum of the following energy function [Lucas and Kanade, 1981]:

(û, v̂) = argmin
u,v

Lσ ∗ (fxu+ fyv + ft)2. (7.13)
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aperture

candidate
motion vectors

displaced edge position

initial edge position

Figure 7.3: Illustration of the aperture problem: only the normal flow is measurable
in a local region.

The minimum (û, v̂) can be found by setting the partial derivatives ∂u and ∂v
of the energy function to 0, leading to the following linear system:[

Lσ ∗ f2
x Lσ ∗ fxfy

Lσ ∗ fxfy Lσ ∗ f2
y

] [
û
v̂

]
=

[ −Lσ ∗ fxft

−Lσ ∗ fyft

]
. (7.14)

This linear system can be solved for û and v̂ if the neighbourhood (defined
by Lσ) is large enough to capture gradients of different directions such
that both eigenvalues of the system matrix are considerably larger than
0. In [Bab-Hadiashar and Suter, 1997], the authors proposed the use of
the robust least median of squares framework to solve the linear system of
equations. This framework has a higher performance because it can handle
errors such as noise as well as failures of the brightness or motion consistency.

The second popular approach is known as Horn-Schunck optical flow and in-
corporates regularization terms to ensure stable optical flow solutions. Horn
and Schunck proposed the Tikhonov smoothness constraint and minimize the
following energy function at each pixel position [Horn and Schunck, 1980]:

(û, v̂) = arg min
u,v

(fxu+ fyv + ft)2 + α(‖∇u‖2
2 + ‖∇v‖2

2). (7.15)

The optimum of this energy function satisfies to the following two Euler-
Lagrange functions: {

(fxu+ fyv + ft)fx − α�u = 0,
(fxu+ fyv + ft)fy − α�v = 0, (7.16)

where � denotes the spatial Laplace operator.
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These Euler-Lagrange equations lead to a sparse linear system of equations,
which can be solved iteratively by for example Gauss-Seidel, successive over-
relaxation (sor) or the highly efficient multigrid methods [Bruhn et al., 2005a].
Note that the linearized optical flow formula (7.9) is only valid near the op-
timum, that is why coarse-to-fine strategy is often used (also known
as hierarchical optimization) or alternatively, the motion field can be
initialized with another (fast and inaccurate) method such as block match-
ing [Kim and Sikora, 2005]. For a detailed treatment on the numerical details,
we refer the reader to for example [Horn and Schunck, 1980,Brox, 2005].

From the regularization framework stated in equation (7.15), we can
easily make the link to the Bayesian estimation framework (see also
Chapter 4), which incorporates prior knowledge on the motion field di-
rectly in the form of image priors. This leads to the use of non-
quadratic robust functions or variational terms in the smoothness assumption,
which results into piecewise smooth motion fields [Black and Anandan, 1996,
Brox, 2005, Bruhn et al., 2005a]. In [Feghali and Vincent, 2004], the authors
employed a spatio-temporal bilateral smoothness constraint. Note that
all smoothness priors can be extended easily to the spatio-temporal do-
main [Weickert and Schnörr, 2001]. An alternative way to preserve dis-
continuities in the motion field is the joint estimation of the segmenta-
tion field and the motion field (this is also known as object-based optical
flow) [Stiller, 1997,Mémin and Pérez, 2002].
In [Bruhn et al., 2005b], the authors combined the ideas of Lucas-Kanade and
Horn-Schunck into a single framework. Other improvements are obtained by
non-quadratic robust and/or non-linearized constancy assumptions (see equa-
tion (7.8)), which allow for larger displacements. This leads to a non-linear
system of equations, which can for example be solved by a steepest descent
or a fixed point iteration scheme [Brox, 2005]. In [Papenberg et al., 2006],
Papenberg et al. incorporated other constancy assumptions besides constant
image brightness such as the constancy of gradients, Hessian, Laplacian, etc.
These features are more invariant to varying intensity changes. Recently
in [Ince and Konrad, 2008] for example, the authors take occlusion models
into account to improve the optical flow estimation.

In literature, optical flow techniques are quite popular in combina-
tion with multi-frame sr restoration. A sr restoration framework that
uses the Lucas-Kanade optical flow approach is described in for exam-
ple [Baker and Kanade, 1999]. The Horn-Schunck method and its robust vari-
ants are used in for example [Schultz and Stevenson, 1997, Jiang et al., 2003,
Fransens et al., 2004].

7.2.2 Region-based motion estimation
In region-based motion estimation techniques, we assume that the motion vec-
tors in a particular region are denoted by the same parametric motion. A re-
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gion is defined as a set of pixels, which do not necessarily need to be connected.
There are three well-known approaches: block matching, segment-based and
mesh-based motion estimation. We will briefly discuss each class.

7.2.2.1 Block matching methods

The basic concept of block matching is very simple. We assume that the motion
field over a square region (e.g. 8 × 8 pixels) is constant and is described by a
translational model. We find for each block in the image at time t the most
similar block in the image at time t + 1. The motion vector is denoted by
the displacement between these two blocks and is given by the minimum of
the cost function (also called matching criterion). A popular choice of the
matching criterion is the l2-norm or sum of squared deviations (ssd), i.e. the
Euclidean distance between the two blocks:∑

x,y∈Ω

(f(x, y, t) − f(x+ u, y + v, t+ 1))2 , (7.17)

where Ω denotes the square block. A criterion more robust to outliers (due to
noise or violations to the constancy assumption) is for example the l1-norm or
sum of absolute differences (sad):∑

x,y∈Ω

|f(x, y, t) − f(x+ u, y + v, t+ 1)| . (7.18)

Other (robust) matching criteria can be found in e.g. [Stiller and Konrad, 1999,
De Smet, 2002]. In most practical applications, the search space is limited and
discretized, i.e., the cost function is evaluated at a discrete number of positions
(u, v), typically for integer values of u and v. Several advanced search strategies
such as three-step search (or logarithmic search) and diamond search have been
proposed to reduce the computational complexity [Stiller and Konrad, 1999].
These very fast block matching schemes are widely used in e.g. video coding
applications such as mpeg and the more advanced h.264 or avc.

One way to achieve subpixel accuracy of u and v is to apply simple interpola-
tion on either the image or the correlation surface, i.e. on the response of the
matching criterion. A paraboloid can be fitted to the correlation surface around
the optimal displacement and the maximum (or minimum in terms of costs)
of the paraboloid yields the new subpixel coordinates [Luong et al., 2004c].
Another solution is to employ gradient-based motion estimation in the same
spirit of Lucas-Kanade optical flow techniques [Lucas and Kanade, 1981].
In [Das Gupta et al., 2007], the authors proposed a supervised learning-based
approach for the estimation of subpixel shifts from each block.

Block matching techniques have several disadvantages: in (nearly) uniform re-
gions it is not possible to find an unambiguous motion vector. Also, the assump-
tion of one motion vector per block is often too simplistic (which also affects
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the accuracy of the motion vectors) and object contours do not coincide with
the block boundaries. The one-motion-per-block assumption and the arbitrary
positions of object edges are the main reasons why standard block matching is
not very popular in classical super-resolution schemes because incorrect motion
vectors along object edges degrades the sr image reconstruction severely. To
approximate object contours, variable block sizes can be employed for instance
in a quadtree decomposition [Rhee et al., 2000]. Nevertheless, block match-
ing techniques are advantageous in an indirect way for fast initialization or
approximation of motion fields [Kim and Sikora, 2005] and some components
play an important role in block-based motionless sr techniques as discussed in
Section 7.1.3.

7.2.2.2 Segment-based methods

In segment-based motion estimation techniques, the region of constant motions
(or segment) is not limited to squares or rectangles, but it can take arbitrary
shapes. The motion in each segment is often described by parametric trans-
formations such as the affine model. In contrast to block-based methods, the
segment-based techniques provide a more accurate prediction along moving
edges. There are mainly three approaches to segment-based motion estima-
tion [Schutten et al., 1998]:

• bottom-up methods: these methods start with an image segmentation
with many small segments. Connected segments with similar motions
are merged into one segment and motion parameters are then recalcu-
lated [LeQuang et al., 1995].

• top-down methods: these methods start with an initial image segmenta-
tion with large segments. If the computed motion model lacks accuracy,
the segment is subdivided into smaller segments and motion parameters
are calculated for each new segment. Note that quadtree decomposition
is a special case of the top-down methods [Rhee et al., 2000].

• layered representation methods: these methods describe the video data as
a set of moving layers, where each layer’s motion is described by different
motion parameters or smooth motion fields [Wang and Adelson, 1993].
The main difference to the previously mentioned techniques is that dis-
connected segments can be described by the same motion model. Multiple
layers can be resolved sequentially (a dominant motion is calculated for
each successive layer) or simultaneously (by clustering a given motion
field) [Schutten et al., 1998].

Bottom-up and top-down approaches can be combined to refine the segmenta-
tion in successive iterations [Jeannin, 1996]. In [Matthews and Namazi, 1995],
the authors performed motion estimation and segmentation simultaneously us-
ing an expectation-maximization algorithm. We refer the interested reader
to [De Smet, 2002] for a more detailed treatment of motion-based segmenta-
tion and tracking.
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7.2.2.3 Mesh-based methods

The mesh-based motion estimation methods estimate the displacement or
motion vectors on a set of control points (or landmarks), which form the mesh.
These control points can initially be chosen on a regular grid or at arbitrary
positions across the whole image. The motion vectors are computed by block
matching or feature point matching techniques (see Section 7.2.3.2 for more
details). In the next step, intermediate motion vectors are then interpolated
or calculated according to a specific parametric motion model.

In [Yaoping and Chengke, 1998], the authors employed Delaunay triangula-
tion to compute the mesh. The intermediate motion vectors are com-
puted by the affine model denoted by the three surrounding control points.
In [Kybic and Unser, 2003], Kybic and Unser employed the b-spline defor-
mation model to estimate the intermediate motion vectors. Nosratinia pro-
posed several interpolation kernels to compute the neighbouring motion vec-
tors [Nosratinia, 2001].

7.2.3 Image-based motion estimation

In image-based motion estimation, the transformation of the whole image
is described by a single motion model. Most algorithms use transformation
models listed in Table 7.1. A comprehensive survey of image registration
methods is published in [Brown, 1992, Zitová and Flusser, 2003]. Henceforth
we assume that the captured images come from the same or similar image
acquisition device. For multimodal image registration problems (e.g. pet to
mri or Ikonos to sar), we refer the reader to registration techniques based
on information theory (e.g. the Kullback-Leibler divergence measure and its
special case, mutual information) [Chung et al., 2002,Vansteenkiste, 2007].

In the following sections, we summarize the most popular approaches to image
registration using Fourier techniques,4 feature point matching and gradient-
based techniques. We also discuss a technique called bundle adjustment that
puts additional consistency constraints on the motion estimation in order to
improve the accuracy.

7.2.3.1 Fourier methods

An excellent overview of registration methods in the frequency domain can be
found in [Vandewalle, 2006]. We discuss the basic concepts of Fourier-based
image registration techniques. Translation parameters can be found via the
shift property of the Fourier theory, which describes the relationship of pixel
shifts f(x, y, t) = f(x+u, y+v, t+1) to linear phase modulations of the Fourier

4Correlation-based methods belongs to the class of Fourier approaches, since they can be
implemented efficiently in the frequency domain.
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coefficients F (η, ν, t) and F (η, ν, t+ 1):

F (η, ν, t) = e2πj(uη+vν)F (η, ν, t+ 1). (7.19)

The phase shift e2πj(uη+vν) is given by the normalized cross power spectrum:

e2πj(uη+vν) =
F (η, ν, t)F ∗(η, ν, t+ 1)

|F (η, ν, t+ 1)F ∗(η, ν, t+ 1)| , (7.20)

where the ∗-operator denotes the complex conjugate. In the ideal case of pure
translation, the inverse Fourier transform of (7.20) is a Dirac pulse in the
correlation plane:

F−1(e2πj(uη+vν)) = δ(x+ u, y + v). (7.21)

In practice the inverse Fourier transform of (7.20) will contain a strong peak
near (u, v) and the translation parameters u and v can be found by locating
this peak. Rotation and scale parameters can be obtained in a similar way
via the Mellin transform: rotation and scale changes become translational
changes after the log-polar coordinate transform [Reddy and Chatterji, 1996].
Another way to estimate rotation is to perform radial projections, which
also reduce the computational complexity and increase the robustness to
noise, and the rotation angle can then be computed as the value for which the
correlation between the 1d projections reaches a maximum. [Vandewalle, 2006].

Because of the discrete nature of the dft, the peak in the correlation peak
occurs at a discrete position, which limits the accuracy of the image regis-
tration. In [Shekarforoush et al., 2002], the authors showed that the signal
power in the phase correlation of subpixel shifts corresponds to the polyphase
transform of a filtered unit impulse and is not concentrated in a single
Dirac peak. They derive a closed-form solution to obtain subpixel motion
estimation. To avoid the influence of frequency aliasing on the accuracy,
Vandewalle performed registration using only the aliasing-free part of the
spectrum [Vandewalle, 2006].

The Fourier methods are limited to global rigid body transformations (see
Table 7.1) of a single object on a uniform background. Other, more general
transformation models are difficult to describe in the frequency domain. On
the other hand, Fourier methods are computationally efficient, are less sensitive
to object motions and noise, and offer a good framework to model frequency
aliasing. Because of the good accuracy, frequency-domain techniques are quite
popular in combination with multi-frame sr restoration techniques.

7.2.3.2 Feature point matching

For an extensive overview of feature point matching algorithms, we refer the
interested reader to [Zitová and Flusser, 2003,Tuytelaars and Van Gool, 2004,
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Mikolajczyk and Schmid, 2004]. As in mesh-based motion estimation methods,
feature point matching techniques make use of control points (often referred to
as feature points or interest points). The feature point matching procedure
works in a similar way as manual registration methods. A set of object at-
tached points in one image is compared to the same set in the other image and
the correspondences are used to determine the motion of the points. The man-
ual methods require users’ interaction through selecting ground control points
(gcp’s). gcp’s are points that represent important features like intersection of
roads or coastlines in satellite images. Unlike the manual methods, the feature
point matching techniques detect these control points automatically. Therefore,
feature point matching methods consist of three important steps:

• feature point detection: the feature point detector extracts structures
called features in the images at time t and t + 1 such as corners, line
intersections and points on curves with a high curvature. Other fea-
tures like lines, ridges or significant regions (e.g. blobs) can be used as
well [Zitová and Flusser, 2003]. There are several criteria that a good
feature point detector should fulfil [Vincent, 2005], for example, accuracy
or consistency (the relative position of the detected points to the feature
should be exactly the same in all images), robustness (the same points
should be detected under varying noise, different illumination conditions
and even after geometric transformations), and discriminative power (the
feature points must be easily distinguishable from each other, otherwise,
these points cause confusion during the matching).

The most popular feature point detectors are corner detectors
(e.g. Harris and susan corners) [Vincent, 2005], scale invariant
point detectors (e.g. Laplacian-of-Gaussian operators in scale space
and sift keypoints) [Lowe, 1999, Mikolajczyk and Schmid, 2004] and
the very powerful affine invariant point detectors (e.g. local in-
tensity extrema) [Schmid et al., 2000, Tuytelaars and Van Gool, 2004,
Mikolajczyk and Schmid, 2004]. Recently, an extensive survey on feature
point detectors was given in [Tuytelaars and Mikolajczyk, 2008].

• feature description and matching: the matching procedure establishes
correspondences between feature points, in other words, we need to know
which points in both images belong to each other. A simple way is to
match the image content in their local neighbourhood with a block match-
ing criterion, but also more advanced feature descriptors can be employed.
Good feature descriptors should fulfil several conditions, such as invari-
ance (the descriptions of the corresponding features have to be the same in
both images under varying conditions), uniqueness (two different features
should also have different descriptions), and stability (the description of
a deformed feature should be close to the description of the original fea-
ture). These conditions can usually not be satisfied simultaneously and it
is necessary to find an appropriate trade-off. Popular invariant feature de-
scriptors are e.g. shape descriptors, circular and affinely invariant neigh-
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bourhoods [Tuytelaars and Van Gool, 2004,Zitová and Flusser, 2003].

• estimation of the registration parameters: the final goal is to estimate the
parameters of the motion model from a list of correspondences between
both images in the presence of possible mismatches, which we denote as
outliers. A variant on this theme is the computation of the dominant
global motion parameters from local motion vectors that are obtained
with block matching techniques.

Suppose that we have to estimate the parameters p of an affine or poly-
nomial motion model. The lists of coordinates of the matched feature
points in the image at time t and t + 1 are denoted by T and U re-
spectively, and these matrices are related to each other by Tp = U.
The unknown parameters p can for example be found by minimizing the
following l2-norm:

p̂ = argmin
p

(Tp − U)2 , (7.22)

which can be solved by the pseudo-inverse solution p̂ = (TTT)−1TTU.
We can assign weights to each correspondence (e.g. according to their
reliability), which results in a weighted least-squares problem, which on
its turn, leads to the concept of robust m-estimators using iterative re-
weighted least-squares (irls) [Stewart, 1999]. The use of robust loss func-
tions reduces the influence of outliers. More direct approaches to re-
move outliers are for example least median of squares, ransac or cross-
validation methods [Golub et al., 1979, Bab-Hadiashar and Suter, 1997,
Stewart, 1999]. Teelen and Veelaert checked the consistency of the un-
certainty transformation for pairs of possible matches to determine a set
of reliable correspondences [Teelen and Veelaert, 2005]. The uncertainty
transformation allows a discrepancy on the position of the feature points
and is not restricted to a one-to-one relationship between the feature
points.

Feature point matching techniques are very computationally efficient and are
very effective for large displacements or deformations. Additionally, we can
design these techniques to be very robust against noise and invariant to varying
illumination conditions and object motions. In [Capel and Zisserman, 2003],
the authors employed Harris corner features in a robust ransac framework to
perform joint mosaicing and super-resolution. However, it is very difficult to
guarantee the overall subpixel precision and therefore, feature point matching
algorithms are not always suitable to multi-frame sr image reconstruction.
The accuracy depends on many factors like the reproducible subpixel location
of feature points in the presence of noise and aliasing, and the correct filtering
of mismatches and outliers. Nevertheless these techniques can be used for a fast
and rough estimation of the image registration parameters. Additionally, the
correspondences between the points in different images can be used as anchor
motion vectors (prior information) to guide Bayesian optical flow techniques.
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7.2.3.3 Gradient-based registration

The gradient-based registration methods go back to the Lucas-Kanade op-
tical flow algorithm proposed in 1981 [Lucas and Kanade, 1981], where it is
assumed that two images, f(x, y, t) and the transformed frame g(G(x;p)) =
f(G(x;p), t+ 1), are related by:

f(x) = g(G(x;p)) + n, (7.23)

where we omitted the time index for the sake of convenience and where n is the
additive zero-mean noise component. The goal of the Lucas-Kanade algorithm
is to minimize the sum of the squared intensity errors between two images and
to find the parameter vector p given in Table 7.1, or particularly, the additive
update parameter vector δp (i.e. p = 1 + δp with 1 being the parameters of
the identity transformation):

δp̂ = arg min
δp

∑
x∈Ω

(g(G(x;1 + δp)) − f(x))2 , (7.24)

where Ω denotes the common region between f(x) and g(G(x; δp)). This is a
non-linear optimization problem in δp, which can be approximated using the
first order Taylor series expansion as an ordinary least squares problem:

δp̂ = argmin
δp

∑
x∈Ω

(
g(x) + (∇g)T ∂G

∂p
δp− f(x)

)2

, (7.25)

In this approximation, we make use of the identity G(x;1) = x and we have
introduced the notation (∇g)T = ∂g/∂x =

[
gx gy

]
for the gradient of g

w.r.t. x. The term ∂G/∂p is called the Jacobian of the warping transformation
and is defined as

∂G
∂p

=

(
∂Gx

∂p1

∂Gx

∂p2
. . . ∂Gx

∂pn
∂Gy

∂p1

∂Gy

∂p2
. . .

∂Gy

∂pn

)
. (7.26)

For example, the affine warping transformation has the following Jacobian:

∂G
∂p

=
(
x 0 y 0 1 0
0 x 0 y 0 1

)
. (7.27)

The solution for the minimization problem is found by setting the partial deriva-
tives of the expression in equation (7.25) with respect to δp to zero:

2
∑
x∈Ω

[
(∇g)T ∂G

∂p

]T [
g(x) + (∇g)T ∂G

∂p
δp − f(x)

]
= 0. (7.28)

Solving this equation gives us the closed form solution for the minimization
problem (7.25):

δp̂ = H−1
∑
x∈Ω

[
(∇g)T ∂G

∂p

]T

[f(x) − g(x)] , (7.29)
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where H is the n× n Gauss-Newton approximation of the Hessian matrix:

H =
∑
x∈Ω

[
(∇g)T ∂G

∂p

]T [
(∇g)T ∂G

∂p

]
. (7.30)

There are several problems with the estimator as proposed in equation (7.29):
the estimated motion parameters are only valid for very small displacements or
deformations (due to the linearization in equation (7.25)) and the estimation
δp̂ is biased due to truncation error of the Taylor series expansion, gradient
approximation and noise [Robinson and Milanfar, 2004,Pham et al., 2005]. To
overcome these problems, we optimize the least-squares problem iteratively in
a steepest descent algorithm (see also Section 4.4.2) with the Gauss-Newton
expression in equation (7.29) being the direction of the gradient. The motion
parameters are updated by the following iterative sequence:

p̂(j+1) = p̂(j) + λδp̂(j), (7.31)

where the scalar parameter λ determines the convergence speed (λ is typically
1 in most applications). In each iteration, we need to transform g or f accord-
ing to the estimated motion parameters p̂(j), which is referred to as forward
or inverse registration respectively. For several computational reasons, it is
preferred to perform the inverse registration [Baker and Matthews, 2004]. For
instance, if we transform g in the forward registration, the image derivatives
in ∇g need to be updated every iteration, while in the inverse registration,
∇g (and also H) remains constant and can be pre-computed once. By
iteratively optimizing the motion parameters and thus reducing the bias,
it is shown in [Pham et al., 2005] that the gradient-based motion estimator
reaches the Cramer-Rao lower bound, i.e. the estimator is said to be optimal.
In [Robinson and Milanfar, 2005], the authors explored the relationship
between the image gradient filters and their effect on the overall estimation
performance.

A variant on the steepest descent algorithm, where the parameters
are commonly updated in an additive way, is the compositional ap-
proach [Shum and Szeliski, 2000,Baker and Matthews, 2004], where the incre-
mental transform G(x; δp) is optimized instead of the incremental parameter
δp. The motion parameters are thus updated successively according to

G(x; p̂(j+1)) = G(x; p̂(j)) ◦ G(x; δp̂(j)) ≡ G(G(x; p̂(j)); δp̂(j)). (7.32)

From a Bayesian point of view, the l2-norm in equation (7.24) assumes that
image g is corrupted with additive zero-mean white Gaussian noise. The main
disadvantage is that this expression does not tolerate any outliers. We can
improve the cost criterion with the use of the robust loss function ρ:

δp̂ = arg min
δp

∑
x∈Ω

ρ (g(G(x; I + δp)) − f(x)) . (7.33)
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Equation (7.33) is solved via the irls approach, by employing the weight func-
tion w(g(x) − f(x)) (this weight function is chosen such that w(x) = ψ(x)/x
according to the m-estimators given in Table 4.1). In each iteration, the incre-
mental update motion parameters are computed as

δp̂ = H−1
∑
x∈Ω

w(g(x) − f(x))
[
(∇g)T ∂G

∂p

]T

[f(x) − g(x)] , (7.34)

where the Gauss-Newton approximation of the Hessian matrix H is given by

H =
∑
x∈Ω

w(g(x) − f(x))
[
(∇g)T ∂G

∂p

]T [
(∇g)T ∂G

∂p

]
. (7.35)

The difference between the robust affine formulation (see equation (7.34)) and
the non-robust affine formulation (see equation (7.29)) is illustrated in Fig-
ure 7.4. We can clearly see that object motion has a large impact on the
accuracy of the motion parameters.

Like optical flow techniques in [Papenberg et al., 2006], other constancy
assumptions besides constant image brightness in equation (7.24) can be
incorporated such as the constancy of gradients, Hessian or Laplacian, which
makes the registration model more invariant to varying intensity changes.

To cope with large displacements and to decrease the computation time
tremendously, a coarse-to-fine refinement or hierarchical strategy such as the
use of Gaussian pyramids or wavelets is recommended. At the coarse scale,
displacements are relatively small with the result that the convergence is
reached in fewer iterations and potential false local minima in the optimization
problem are avoided.

In [Baker and Matthews, 2004], Baker and Matthews showed that the Gauss-
Newton and Levenberg-Marquardt approximations are the most efficient
approaches compared to other approximations of the Hessian matrix such as
the Newton and diagonal Hessian algorithms. In the Levenberg-Marquardt
algorithm, a regularized form H+αI with I being the identity matrix replaces
the term H in equation (7.29). In [Thévenaz et al., 1998], the authors pro-
posed the use of a modified Levenberg-Marquardt algorithm in a hierarchical
polynomial spline pyramid.

For a more elaborated treatment of gradient-based motion es-
timation techniques, we refer the reader to the work presented
in [Baker and Matthews, 2004,Baker and Matthews, 2002,Baker et al., 2003b,
Baker et al., 2003a, Baker et al., 2004a, Baker et al., 2004b]. Because of the
very good subpixel accuracy performance, these gradient-based methods are
very popular in combination with multi-frame sr restoration techniques,
e.g. [Keren et al., 1988, Irani and Peleg, 1991,Pham, 2006].
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(a) Reference image f (b) Image g

(c) Transformed image using l2-norm (d) Difference image ((c)-(a))

(e) Transformed image using Huber (f) Difference image ((e)-(a))

Figure 7.4: The effect of object motions in image registration using the l2-norm
criterion and the robust Huber criterion, respectively.
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Figure 7.5: Illustration of the deadlock problem in successive registrations: in some
cases, it is impossible to fit the next image into the mosaic or hr image.

7.2.3.4 Consistent registration

Equation (7.29) is not symmetric in f and g. This means that the transfor-
mation from f to g is not necessarily equal to the inverse transformation from
g to f (i.e. pf,g �= −pg,f in case of translation). As a result, the registration
method may produce inconsistent results when applied in one direction versus
the other.
In most video applications, the transformation parameters between images at
time i and j (i < j) are computed successively from pairwise registrations in
an image sequence (see equation (7.32) for the definition of the ◦-operator):

G(x;pi,j) = G(x;pi,j−1) ◦ G(x;pj−1,j) = G(x;pi,i+1) ◦ . . . ◦ G(x;pj−1,j).
(7.36)

Due to inaccuracies in pairwise registrations, the registration errors accumulate
over time such that the registration parameters between images at time i and
j can have a large cumulative error, which is also known as drift. This problem
often arises in mosaicing and super-resolution applications and leads to possible
deadlocks, where it is impossible to find a proper solution (see Figure 7.5).

The asymmetry of the registration solution and the deadlock problem indicate
that there is a need for more consistent registration techniques. In literature,
there are two common ways to achieve consistent registration, which are
known as bundle adjustment and global registration.

Bundle adjustment is a well-known computationally expensive tool in the com-
puter vision community, which produces jointly optimal 3d structures and
viewing parameters [Triggs et al., 1999]. In 2d registration problems, bundle
adjustment finds the registration parameters over k images that minimize the
total misalignment of a predefined set of m grid points xl. An example of such
a minimization problem is given by

p∗ =

⎡
⎢⎣ p̂1,2

...
p̂k−1,k

⎤
⎥⎦ = arg min

p∗

m∑
l=1

k∑
h,i,j

(xl − G(G(G(xl;ph,i);pi,j);pj,h))2 ,

(7.37)
where we assume that consecutive transformations from image h to i, i to j
and j to h should result in the identity transformation. This minimization
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i j

pi,j

pj,i

(a)

h i j

ph,i pi,j

ph,j

(b)

h i j k

ph,i pi,j pj,k

pk,h

(c)

Figure 7.6: Group structures in the Lie algebra: (a) skew anti-symmetry, (b) Jacobi
identity and (c) a combined group structure based on the basic principles of (a) and
(b).

problem can be solved by Gauss-Newton or Levenberg-Marquardt algorithms.
In theory, the three successive warping operations in this expression yields the
identity transformation. However in practice, there is a non-zero shift between
the original grid point and the same grid point after transformations. The set
of combined pairwise transformations is conveniently described by the group
structures of the Lie algebra [Govindu, 2004]. The bundle adjustment strategy
enforces the pairwise transformations (and its parameters) to be in a valid Lie
group structure. Several group structures are illustrated in Figure 7.6.
Bundle adjustment is very popular in mosaicing applica-
tions [Sawhney et al., 1998, Shum and Szeliski, 2000] and recently, it gained
much interest in super-resolution applications [Farsiu et al., 2005,Pham, 2006].
In [Sawhney et al., 1998], the authors determined the topology of the mosaic
before applying bundle adjustment in order to detect overlapping regions for
pairwise registration. In [Farsiu et al., 2005], the authors incorporated the
consistency constraints as prior knowledge in a Bayesian framework of the
gradient-based image registration. Instead of applying bundle adjustment as
a postprocessing step with hard constraints, they penalized inconsistencies
directly in the estimation problem of the registration parameters. Because
the inconsistency penalties require different registration parameter sets, all
pairwise registrations must be performed simultaneously. Based on the
robust formulation in equation (7.33), the map estimation of the registration
parameters becomes

p̂∗ = arg min
p∗

k∑
i,j

∑
x∈Ω

ρ (f(G(x;pi,j), i) − f(x, j)) + αCp∗, (7.38)
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where p∗ contains all k(k−1) registration parameter sets (see equation (7.37))
and C contains the inconsistency penalties. See [Farsiu et al., 2005] for more
details on building the matrix C. The first term in equation (7.38) contains
all pairwise registrations and the second term represents the inconsistencies of
the pairwise transformations towards the Lie group structures.

There are two main drawbacks to the bundle adjustment strategy: firstly,
k(k − 1) pairwise registrations are needed for the full set of compositions
instead of k − 1 registrations in traditional settings, which is bad for the
computational efficiency. Secondly, these models do not explicitly consider the
presence of frequency aliasing in the observed images, which limits the use of
bundle adjustment in sr applications. On the other hand, bundle adjustment
is a very powerful tool to detect and correct larger registration errors.

The second class of consistent registration algorithms jointly solves the
registration and sr reconstruction problem. Related approaches for mo-
saicing algorithms can be found in [Davis, 1998, Pires and Aguiar, 2005].
In [Robinson et al., 2009], the authors solved the joint registration/reconstruc-
tion problem based on the principle of variable projections (i.e. a method to
solve non-linear data fitting problems, which have as their underlying model a
linear combination of non-linear functions). Most of the global registration al-
gorithms use a kind of expectation-maximization (em) algorithm that iteratively
alternates between estimating the hr image (expectation step) and the registra-
tion parameters (maximization step) [Hardie et al., 1997, Woods et al., 2006].
By reconstructing the hr image, the relationship of the aliased observed images
to the sr estimate is exploited efficiently.
Due to the chicken-and-egg problem mentioned earlier, the joint estimation
algorithms are commonly initialized with an interpolated hr image or by setting
initial registration parameters found by other registration techniques. The
hr image f̃ can be updated alternatively using interpolation techniques for
irregularly spaced samples (see Section 7.4) and the registration parameters can
be found using the same gradient-based algorithm discussed in Section 7.2.3.3
with a very small modification: instead of transforming f(x) with the current
registration parameters in each iteration, we simply transform the current hr
estimate f̃(x) towards g(x). In Section 7.5.2, we show that the combination of
gradient-based image registration with steering kernel regression produces the
most accurate registration results.

7.3 Photometric registration

The image-based motion estimation techniques (as discussed in Section 7.2.3)
align two (or more) images in the spatial domain. These methods are also
referred to as geometric registration. In addition, we can also perform image
registration/alignment in the range/intensity domain, which is also known as
photometric registration.
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Most motion estimation algorithms are based on the intensity constancy
assumption (e.g. in equation (7.23)), however in practice, this assumption is
not always correct. In an uncontrolled environment, lighting conditions can
vary over time (e.g. due to the weather) and intensity variations also arise due
to automatic gain control or automatic white balancing inside the camera. On
the other hand, in high dynamic range (hdr) imaging, the aperture times and
hence the apparent illumination are even changed on purpose.

In the next sections, we briefly discuss the current photometric registration
techniques and we propose a new approach that jointly performs geometric
and photometric registration.

7.3.1 Related work

To understand how photometric registration works, we first briefly describe
the basic principles of quantigraphic image processing. The formation of a
pixel greyvalue starts with the integration of photons over a fixed spectral
response profile (i.e. the spectral sensitivity of the sensor resulting in for
example red, green or blue components of the pixel value), over a finite period
of time (which is referred to as the exposure time) and over a finite sensor area.
This integration in the spectral, temporal and spatial dimension results in a
photoquantigraphic quantity, or just simply photoquantity. This photoquantity
(∈ [0,+∞]) is subject to intrinsic sensor noise and goes through a dynamic
range compression, which restricts the pixel greyvalues to a finite interval
(e.g. ∈ [0, 1]). These pixel greyvalues typically undergo several processes such
as quantization (e.g. 8 bits per pixel, resulting in integer greyvalues in the
range [0, 255]), gamma correction, histogram transformations, noise (due to
electronics or image compression), etc. This non-linear relationship between
the photoquantity and the final observed pixel greyvalue is denoted as the
camera response function and plays an important role in choosing the right
model for the photometric registration [Mann, 2000].

Photometric registration consists of determining the parameters of the
comparametric equations (or intensity mapping functions) that describe the
relationship between the intensity values of the corresponding pixels of two
spatially aligned images f and g. Some examples of well-known comparametric
models are the linear transformation (also referred to as gain and bias model)
and the gamma correction (i.e. raising the pixel values to a power to lighten
or darken images). A more detailed overview of comparametric equations and
their related camera response functions is given by Mann in [Mann, 2000].
The estimation process of the parameters involves the computation of a
comparagram (i.e. the joint histogram of the pixel values between the spatially
aligned images) and followed by finding a smooth semi-monotonic function
(i.e. comparametric equation) that passes through most of the highest bins
in the comparagram. In a nutshell, photometric registration comes down to
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comparametric regression or finding the optimal fit to the comparagram data.

Photometric registration requires the computation of a comparagram, which
on its turn requires spatially aligned images. On the other hand, geometric
registration techniques are often based on the intensity constancy assumption.
This results in a chicken-and-egg problem, which can be solved by intensity
invariant geometric registration (e.g. based on gradient constancy assumption
or other invariant features), photometric registration based on spatially invari-
ant features (e.g. histograms or statistical moments) or by jointly estimating
geometric and photometric registration parameters.

In [Capel and Zisserman, 2003], the authors estimated the linear photometric
model using a robust ransac algorithm that minimizes the Huber robust
loss function. Bartoli performed joint geometric and photometric registration
within the inverse compositional gradient-based framework using the ordi-
nary least square metrics [Bartoli, 2006]. In [Grossberg and Nayar, 2003],
Grossberg and Nayar determined the camera response function from the
intensity mapping functions between several images, which are not spa-
tially aligned. They computed the comparametric parameters directly
from cumulative intensity histograms. Candocia approximated the com-
parametric function and the camera response function by a piecewise
linear model [Candocia, 2003, Candocia and Mandarino, 2005]. Gevrekci
and Gunturk employed a geometric feature point matching algorithm and
comparametric regression to perform joint hdr and sr image reconstruc-
tion [Gevrekci and Gunturk, 2007].

The standard parametric geometric and comparametric relationship between
images f and g is given by the following model:

f(x) = P(g(G(x;pG));pP) + nf , (7.39)

where pG and pP are the geometric and photometric parameters respectively
and nf is additive noise. In the motion-free case combined with the linear
comparametric model, the comparametric function is simplified to a straight
line with gain a1 and bias a0 (pP = [ a1 a0 ]T):

f(x) = a1g(x) + a0 + nf . (7.40)

Note that this comparametric function introduces clipping effects, i.e. satura-
tion of pixel values below 0 and above 255, which implies an important loss of
information at very dark and light regions and therefore, these regions should
be excluded from further computations. In the presence of additive zero-mean
white Gaussian noise, the parameters can be found via ordinary least squares
(ols) formulation as employed in e.g. [Bartoli, 2006,Candocia, 2003]:

p̂P = arg min
a1,a0

∑
x∈Ω

d2
a = argmin

a1,a0

∑
x∈Ω

(a1g(x) + a0 − f(x))2
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Figure 7.7: Illustration of a comparagram and the fitted ols solution (dashed line)
and tls solution (solid line), which minimize the algebraic distance da and the geo-
metric distance dg respectively.
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⎞
⎟⎟⎠ , (7.41)

where da is denoted as the algebraic distance.

We will show by means of a simple example that this ols model has some
serious shortcomings in practice. We generate the image f from a 200 × 200
template image g via the comparametric equation f(x) = 1.025g(x)−1.988 (the
backward transformation is given by g(x) = 0.976f(x)+1.94) and next we add
zero-mean white Gaussian noise (σn = 15) to both images. The comparagram
is plotted in Figure 7.7. We estimate the photometric registration parameters
using equation (7.41) for the forward (g to f) and the backward (f to g)
transformation:

f(x) = 0.928g(x) + 9.347 and g(x) = 0.888f(x) + 12.283. (7.42)

The ols solution is not close to the ground truth parameters (e.g. there is a
deviation in intensity levels of 10 for black pixels) and the estimated parameters
are also mutual inconsistent, i.e. the inverse forward transformation does not
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yield the backward transformation and vice versa (both solutions should be
symmetric around the bisector). The problem is the incorrect employed model
in equation (7.39), which indicates that image f may contain noise and image
g should be noise-free, which is not true in practice.
An improved geometric and photometric registration model specifies that image
g can also be subject to perturbations:

f(x) = P(g(G(x;pG)) + ng;pP) + nf , (7.43)

where ng is additive noise, commonly from the same pdf that generates nf .
The solution of this model minimizes the geometric distance dg instead of the al-
gebraic distance da as illustrated in Figure 7.7. In case of linear comparametric
regression (see equation (7.40)), equation (7.43) is transformed into a total least
square (tls) problem. The solution to the tls problem is well documented, see
e.g. [Golub and Van Loan, 1980,Markovsky and Van Huffel, 2007]. To demon-
strate that the proposed model (7.43) is indeed more accurate, we give the tls
solution of this simple example in Figure 7.7:

f(x) = 1.026g(x)− 2.135 and g(x) = 0.975f(x) + 2.082. (7.44)

This solution is very close to the ground truth parameters and is furthermore
always mutual consistent, since minimizing the geometric distance is rotational
invariant. Based on these observations, we propose a new registration technique
in the tls sense in the next section.

7.3.2 Photometric registration in the total least square
sense

The linear solution of the problem stated in equation (7.43) can
explicitly be found via the basic tls algorithm as described in
e.g. [Markovsky and Van Huffel, 2007], where â1 can be computed via the sin-
gular value decomposition (svd) of the following zero-mean shifted augmented
matrix: ⎛

⎜⎝ g(x1) − g f(x1) − f

g(x2) − g f(x2) − f
...

...

⎞
⎟⎠ = UΣVT (7.45)

where g and f are the mean intensity values of the images g and f respectively.
Σ is a 2 × 2 diagonal matrix with the singular values on the main diagonal
and V is a 2 × 2 containing the singular vectors. The gain parameter a1 in

the tls sense is computed by â1 = −V(1, 2)
V(2, 2) on the condition that V(2, 2)

is non-zero (or non-singular in general). The bias parameter a0 can be com-
puted directly by substituting â1 back into the following equation: â0 = f−â1g.

The basic tls algorithm can only applied for the linear photometric regis-
tration model. A more general approach is to minimize the geometric dis-
tance, or also referred to as orthogonal distance regression [Sullivan et al., 1994,
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Ahn et al., 2002]:

p̂P = arg min
pP

∑
x∈Ω

d2
g = argmin

pP

∑
x∈Ω

‖Y(x) − Y′(x;pP)‖2
2

= arg min
pP

min
Y′

∑
x∈Ω

(
(Y(x) − Y′(x;pP))T (Y(x) − Y′(x;pP))

)2

= −(JTJ)−1JT(Y(x) − Y′(x;pP)), (7.46)

The minimum is found using the iterative Gauss-Newton method. The Jaco-
bian J in the solution (7.46) is computed via the chain rule:

J =
∑
x∈Ω

∂‖Y(x) − Y′(x;pP)‖2

∂pP

=
∑
x∈Ω

(Y(x) − Y′(x;pP))T

‖Y(x) − Y′(x;pP)‖2

∂Y′(x;pP)
∂pP

(7.47)

The measurement data Y(x) (we can interpret this as a point in the compara-
gram) is given by

Y(x) =
(
g(x)
f(x)

)
. (7.48)

The orthogonal projection Y′(x) of the measurement data on the regression
curve can be found by minimizing the distance between the curve and the
measurement data. In some cases, e.g. in the linear photometric registration
model, Y′(x) can be found in a closed-form expression.

We now derive a novel algorithm that solves the joint photometric linear and
geometric affine registration problem in the tls sense based on orthogonal
distance regression. Extensions to other models are quite straightforward. The
advantage over the approach of [Bartoli, 2006] is that our method uses the tls
metrics, which results in more consistent and accurate registration parameters.
The parametric model (7.43) is transformed into the following (non-linear)
assumption:

f(x, y) = a1g(a00 + a10x+ a01y, b00 + b10x+ b01y) + a0, (7.49)

Like the gradient-based geometric registration algorithms in Section 7.2.3.3, we
iteratively estimate the registration parameters using the incremental updates
δpG = [ δa00 δa10 δa01 δb00 δb10 δb01 ]T and δpP = [ δa0 δa1 ]T:

p̂(j+1)
G = p̂(j)

G + δp̂(j)
G and p̂(j+1)

P = p̂(j)
P + δp̂(j)

P . (7.50)

To find these incremental updates, we approximate the non-linear model by
the first order Taylor series expansion:

f̃(x) − g̃(x) ≈ a1∇xg(x)δa00 + a1x∇xg(x)δa10 + a1y∇xg(x)δa01
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+ a1∇yg(x)δb00 + a1x∇yg(x)δb10 + a1y∇yg(x)δb01
+ g(x)δa1 + δa0, (7.51)

where we perform the inverse geometric registration and the forward photo-
metric registration in each iteration by transforming f̃(x) = f

(
G−1

(
x; p̂(j)

G

))
and g̃(x) = P

(
g(x); p̂(j)

P

)
respectively.

The estimation of the registration parameters in the linearized model can be
interpreted as a regression problem that fits the parameters to a hyperplane,
given by the following implicit function (where we have simplified some nota-
tions5):

h(Y, δ) = Y0δ0 +Y1δ1 +Y2δ2 +Y3δ3 +Y4δ4 +Y5δ5 +Y6δ6 + δ7−Y7 = 0. (7.52)

Similarly to the orthogonal distance regression formulation in equation (7.46),
the measurement data of this hyperplane is given by

Y(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y0(x)
Y1(x)
Y2(x)
Y3(x)
Y4(x)
Y5(x)
Y6(x)
Y7(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1∇xg(x)
a1x∇xg(x)
a1y∇xg(x)
a1∇yg(x)
a1x∇yg(x)
a1y∇yg(x)

g(x)
f̃(x) − g̃(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.53)

The orthogonal projection Y′ on the hyperplane is denoted by the following
system of symmetric line equations:

{
Y′

0 − Y0

δ0
= Y′

1 − Y1

δ1
= . . . = −Y′

7 + Y7

h(Y′
l, δ) = 0

(7.54)

By solving this system, we obtain the closed-form expression for Y′, which is

5δ0 = δa00, δ1 = δa10, δ2 = δa01, δ3 = δb00, δ4 = δb10, δ5 = δb01, δ6 = δa1 and δ7 = δa0.



204 Multi-frame super-resolution restoration

given by

Y′(x, δ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y0(x) − δ0
ξ(x, δ)
υ(δ)

Y1(x) − δ1
ξ(x, δ)
υ(δ)

Y2(x) − δ2
ξ(x, δ)
υ(δ)

Y3(x) − δ3
ξ(x, δ)
υ(δ)

Y4(x) − δ4
ξ(x, δ)
υ(δ)

Y5(x) − δ5
ξ(x, δ)
υ(δ)

Y6(x) − δ6
ξ(x, δ)
υ(δ)

Y7(x) + ξ(x, δ)
υ(δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.55)

where we employ ξ and υ as the shorthand notations for

ξ(x, δ) = δ7 − Y7(x) + Y6(x)δ6 + Y5(x)δ5 + Y4(x)δ4 + Y3(x)δ3 + Y2(x)δ2
+ Y1(x)δ1 + Y0(x)δ0, (7.56)

and

υ(δ) = δ26 + δ25 + δ24 + δ23 + δ22 + δ21 + δ20 + 1. (7.57)

In order to compute the Jacobian J in equation (7.47), we have to obtain the
partial derivatives of Y′ to δ. This is given for the case of δ0 (the cases from
δ1 to δ6 are similar):

∂Y′(x, δ)
∂δ0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2δ20
υ(δ)

ξ(x, δ)
υ(δ) − δ0Y0(x)

υ(δ) − ξ(x, δ)
υ(δ)

2δ0δ1
υ(δ)

ξ(x, δ)
υ(δ) − δ1Y0(x)

υ(δ)
2δ0δ2
υ(δ)

ξ(x, δ)
υ(δ) − δ2Y0(x)

υ(δ)
2δ0δ3
υ(δ)

ξ(x, δ)
υ(δ) − δ3Y0(x)

υ(δ)
2δ0δ4
υ(δ)

ξ(x, δ)
υ(δ) − δ4Y0(x)

υ(δ)
2δ0δ5
υ(δ)

ξ(x, δ)
υ(δ) − δ5Y0(x)

υ(δ)
2δ0δ6
υ(δ)

ξ(x, δ)
υ(δ) − δ6Y0(x)

υ(δ)
−2δ0
υ(δ)

ξ(x, δ)
υ(δ) + Y0(x)

υ(δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.58)
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and δ7:

∂Y′(x, δ)
∂δ7

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−δ0
υ(δ)
−δ1
υ(δ)
−δ2
υ(δ)
−δ3
υ(δ)
−δ4
υ(δ)
−δ5
υ(δ)
−δ6
υ(δ)

1
υ(δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.59)

The difference vector Y(x) − Y′(x, δ) and its l2-norm are given by

Y(x) − Y′(x, δ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ0
ξ(x, δ)
υ(δ)

δ1
ξ(x, δ)
υ(δ)

δ2
ξ(x, δ)
υ(δ)

δ3
ξ(x, δ)
υ(δ)

δ4
ξ(x, δ)
υ(δ)

δ5
ξ(x, δ)
υ(δ)

δ6
ξ(x, δ)
υ(δ)

−ξ(x, δ)
υ(δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and ‖Y(x) − Y′(x, δ)‖2 =
|ξ(x, δ)|√
υ(δ)

.

(7.60)

The Jacobian matrix J can be simplified by substituting expressions (7.58)-
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(7.60) into equation (7.47):

J(δ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
x∈Ω

sign(ξ(x, δ))
Y0(x)υ(δ) − δ0ξ(x, δ)

υ(δ)3/2∑
x∈Ω

sign(ξ(x, δ))
Y1(x)υ(δ) − δ1ξ(x, δ)

υ(δ)3/2∑
x∈Ω

sign(ξ(x, δ))
Y2(x)υ(δ) − δ2ξ(x, δ)

υ(δ)3/2∑
x∈Ω

sign(ξ(x, δ))
Y3(x)υ(δ) − δ3ξ(x, δ)

υ(δ)3/2∑
x∈Ω

sign(ξ(x, δ))
Y4(x)υ(δ) − δ4ξ(x, δ)

υ(δ)3/2∑
x∈Ω

sign(ξ(x, δ))
Y5(x)υ(δ) − δ5ξ(x, δ)

υ(δ)3/2∑
x∈Ω

sign(ξ(x, δ))
Y6(x)υ(δ) − δ6ξ(x, δ)

υ(δ)3/2∑
x∈Ω

sign(ξ(x, δ))√
υ(δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.61)

The incremental updates δpG and δpP are computed by substituting the ex-
pressions (7.53), (7.55) and (7.61) into the orthogonal distance regression so-
lution given by equation (7.46). These updates iteratively improve the current
registration parameters as given by equation (7.50). The performance of the
proposed tls method is evaluated in Section 7.5.3.

7.4 Fusion of irregularly spaced samples

After (proper) alignment, the lr images provide samples at non-uniform or
irregular positions on the hr grid as illustrated in Figure 7.2. The conversion
of these samples into samples placed on the regular hr grid is performed by
interpolation or approximation techniques. This process is also called fusion,
because it produces one hr image from multiple aligned lr images.

We give an overview of existing spatial fusion techniques for sr image recon-
struction and discuss the powerful kernel regression techniques in more detail.
We extend these kernel regression techniques in the total least square sense to
cope with registration errors.

7.4.1 Survey of fusion techniques

From the interpolation point of view, there are two main strategies to process
non-uniformly distributed samples: we can use the same interpolation kernel
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everywhere and fit these kernels to the measurement data in a way that the re-
constructed signal goes through the samples or we can define tailored basis func-
tions (such as radial basis functions) that are better suited to the underlying
non-uniform structure. Note that in higher dimensions the b-spline formalism is
no longer applicable unless the grid is separable [Unser, 2000]. A more general
approach is to use radial basis functions, which are closely related to splines as
well, such as the membrane and thin-plate splines [Glasbey and Mardia, 1998].
In [Lertrattanapanich and Bose, 2002], the authors applied spatial tessellation
and approximate each triangle patch in the Delaunay triangulation by a
bivariate polynomial in order to reconstruct the hr image. Nguyen and
Milanfar performed the reconstruction of non-uniformly sampled signals using
wavelets in a multiresolution setting [Nguyen and Milanfar, 2000]. The main
drawback of these interpolation techniques is the sensitivity to image noise
and in addition, a conflict could arise if there are multiple noisy samples at
the same position or very close to each other.

Iterative simulate-and-correct approaches to non-uniform interpolation are
intuitively very simple. The most well-known iterative method is the Papoulis-
Gerchberg algorithm [Gerchberg, 1974, Gerchberg, 1989, Papoulis, 1975] in
which alternately, the known set of irregularly placed samples are projected
onto the hr grid and an ideal low-pass filter is applied on the hr image
to enforce bandlimitation. In the more general pocs algorithms, the ideal
low-pass filter is substituted by other convex set operations (e.g. Gaussian
blur). Iterative back-projection methods update the current estimated hr
image by projecting the residual errors between the observed and the simulated
lr images [Peleg et al., 1987,Keren et al., 1988]. The simulated lr images are
simply obtained by resampling the current hr image.

A very fast and memory efficient way to aggregate multiple lr images into one
hr image is the shift-and-add method (see also Section 5.3.2). This method
assigns each pixel of the lr image to the nearest hr grid point after proper
registration and upsampling as illustrated in Figure 4.8. If several samples are
located on the same hr grid point, the hr pixel is estimated as the average
or median value of these samples [Elad and Hel-Or, 2001, Farsiu et al., 2004].
Because the samples are snapped to the nearest grid points, the shift-and-add
algorithm automatically generates additional positional errors on top of the
registration errors. This effect adds another kind of correlated noise and
artefacts to the reconstructed images such as undesirable and false zipper
artefacts around edges. These errors can be reduced by choosing a large
resolution enhancement factor, but as a result, the reconstructed hr image will
have many more missing pixels due to an insufficient number of lr samples.
In Section 5.3.2, we handle the problem of the missing pixels by assigning
appropriate weights (i.e. according to the number of observation or samples)
in the restoration step.
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(a) Drizzling (b) Elliptical weighted area

Figure 7.8: Illustration of the overlapping between the lattice area of the hr pixel
(indicated by white circles) and the footprint of the samples (indicated by grey circles).

Another way to solve the problems of missing hr pixels is to enlarge the
footprint of each sample of the lr images. The variable-pixel linear re-
construction algorithm, or informally known as drizzling, computes each
hr pixel as the weighted average from all contributing surrounding sam-
ples [Fruchter and Hook, 2002]. A sample contributes to a hr pixel if the hr
grid position is lying inside a square window around the sample, while the
weight is determined by the degree of overlap between this square window and
the area of the hr pixel lattice. An alternative to square windows are the
use of adaptive ellipses, which results in elliptical weighted area (ewa) filtering
techniques, where the ellipses are oriented according to the transformed lr
grid [Jiang et al., 2003]. Both concepts interpret samples as tiny waterdrops
(hence the term drizzling) raining on the hr grid (the coverage of these water-
drops are illustrated in Figure 7.8). Note that the shift-and-add method is a
special case of drizzling techniques where the size of the square window is so
small that each sample only covers one hr pixel.
In the drizzling and ewa fusion techniques, all hr pixels within the coverage
of a sample receive the same weight no matter how far the hr pixel is lying
from the sample position. Assigning weights in function of the spatial distance
of between the hr pixel position and the sample position, results in the
Nadaraya-Watson estimator [Nadaraya, 1964].

In [Pham et al., 2006], the authors used structure adaptive normalized convo-
lution, which approximates the local signal by a set of basis functions such as
the first-order polynomial basis. The greyvalues on the hr grid is then com-
puted from the combination of these basis functions. In [Takeda et al., 2007],
the authors proposed the use of kernel regression tools as a unified framework
that combines the concepts of drizzling, ewa, Nadaraya-Watson estimator and
normalized convolution methods. In the next sections, we will discuss these
kernel regression techniques in more detail.

7.4.2 Kernel regression in the ordinary least square sense

We briefly describe the kernel regression method for solving the resam-
pling problem in the ordinary least square sense as proposed Takeda et



7.4 Fusion of irregularly spaced samples 209

al. [Takeda et al., 2007]. Suppose that we have to estimate the pixel value
f(x) at position x on the hr grid. In the surrounding neighbourhood, we have
a set of p noisy measurements gi at irregularly sampled positions xi, the data
measurement model is then given by:

gi = f(xi) + ni, i = 1, . . . , p, (7.62)

where f(.) is the unknown hr image, which also referred to as the regression
function and ni are independently and identically distributed zero-mean noise
values. In a local neighbourhood, we can approximate the regression function
by its local expansion of degree N . For example, we use the second order
Taylor’s series expansion (N = 2) of f(.), which is denoted by:

f(xi) ≈ f(x) + {∇f(x)}T (xi − x) +
1
2
(xi − x)T {Hf(x)}(xi − x)

≈ β0 + βT
1 (xi − x) + (xi − x)Tβ2(xi − x), (7.63)

where ∇ and H are the gradient and Hessian operators, respectively. The
coefficients of this polynomial are estimated by the following weighted least-
squares optimization problem (β̂ =

[
β0 β1 β2

]
):

β̂ = argmin
β

p∑
i=1

[
gi − β0 − βT

1 (xi − x) − (xi − x)Tβ2(xi − x)
]2
kH(xi − x),

(7.64)
which can easily be solved using Gauss-Newton algorithms and where f̂(x) = β̂0

is the estimated pixel value at the position x on the hr grid, which we are
looking for. The kernel function kH(.) (which has typically a Gaussian or
exponential form) penalizes distances further away from the grid position and
its strength is controlled by the smoothing matrix H:

kH(xi − x) = |H|−1k(H−1 [xi − x]). (7.65)

In case of N = 0, the solution corresponds to the Nadaraya-Watson estimator:

f̂(x) = β̂0 =

p∑
i=1

gikH(xi − x)

p∑
i=1

kH(xi − x)

. (7.66)

This estimator only models locally flat signals, but does not model edges,
ridges and blobs very well. On the other hand, the estimator given by
equation (7.64) also takes these edges, ridges and blobs into account.

In most applications, the 2 × 2 smoothing matrix H is equal to hI with h
being the bandwidth parameter such that the kernel’s footprint is isotropic.
This is referred to as classic kernel regression. Adapting the kernel’s footprint
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locally according to the samples can prevent oversmoothing across edges
in the same way as the geometry-driven tools discussed in Section 4.3.2.
Anisotropic footprints of the kernel function kH(.) are illustrated in Figure 4.5.
Therefore, the use of geometry-driven kernel functions is referred to as steering
kernel regression. Such a modification requires at least two iterations in
the estimation algorithm: in the first step, the construction of such oriented
kernels employs the first-order derivatives of the unknown hr image, which can
be estimated from the non-uniformly distributed samples via equation (7.64)
as β̂1. In the subsequent steps, the desired pixel value β̂0 and the refined
first-order derivatives β̂1 are estimated with the newly modified smooth-
ing matrices. For a more detailed discussion of steering kernel regression,
we refer the interested reader to the paper of Takeda et al. [Takeda et al., 2007].

We implemented the different kernel regression algorithms in 3d. In Figure 7.9,
we give the results for a small synthetic experiment. From a 3d mri volume,
we simulate a fused slice by discarding 75% of the pixels. We reconstruct the
missing pixels with classic kernel regression (N = 0 and N = 2) and steering
kernel regression (N = 2 with 2 iterations) from the 25% remaining pixels in
3d. We can clearly see that the steering kernel regression outperforms the other
methods both visually and in terms of psnr.

7.4.3 Kernel regression in the total least square sense

The main drawback in the non-uniform resampling methods earlier mentioned
is that these techniques do not take positional or registration errors into ac-
count. However, such errors are very common in practical sr applications,
especially in the presence of severe image noise. To cope with these errors, we
propose a novel kernel regression method in the tls sense. The derivation of
this algorithm is very similar to the derivation of the registration algorithm
proposed in Section 7.3.2. Therefore, we omit some intermediate steps and
give the formulas that are needed for the implementation. Our improved data
measurement model of equation (7.62) is given by

gi = f(xi + nxi) + ni, i = 1, . . . , p, (7.67)

where nxi is the relative positional error of xi = (xi, yi) compared to the
position x = (x, y) on the hr grid. nxi and ni are assumed to be zero-mean
distributed because the orthogonal distance regression minimizes the distance
between the hyperplane and the measurement data. In case of the second order
Taylor’s series expansion (7.63), we have to estimate the coefficient vector β
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(a) Original slice (b) Fused slice (12.51 dB) (c) c, N = 0 (25.58 dB)

(d) c, N = 2 (27.79 dB) (e) s, N = 2 (28.90 dB)

Figure 7.9: Illustration of several kernel regression results (c stands for classic and
s stands for steering) on the proposed fusion experiment of a 3d mri volume. The
psnr values are given in parentheses.
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denoted by

β =

⎛
⎜⎜⎜⎜⎜⎜⎝

β0

β1

β2

β3

β4

β5

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f(x)
∇xf(x)
∇yf(x)

1
2Hxxf(x)
Hxyf(x)
1
2Hyyf(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (7.68)

The estimation of these coefficients can be interpreted as a regression prob-
lem that fits the parameters to a hyperplane, given by the following implicit
function:

h(Y,β) = β0 − Y0 + Y1β1 + Y2β2 + Y3β3 + Y4β4 + Y5β5 = 0. (7.69)

Similarly to the orthogonal distance regression formulation in equation (7.46),
the measurements of this hyperplane are given by the p non-uniformly dis-
tributed samples gi:

Yi =

⎛
⎜⎜⎜⎜⎜⎜⎝

Y0,i

Y1,i

Y2,i

Y3,i

Y4,i

Y5,i

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

gi

xi − x
yi − y

(xi − x)2

(xi − x)(yi − y)
(yi − y)2

⎞
⎟⎟⎟⎟⎟⎟⎠ . (7.70)

The orthogonal projection Y′
i on the hyperplane can be written in the following

closed-form expression:

Y′
i(β) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y0,i − β0
ξi(β)
υ(β)

Y1,i − β1
ξi(β)
υ(β)

Y2,i − β2
ξi(β)
υ(β)

Y3,i − β3
ξi(β)
υ(β)

Y4,i − β4
ξi(β)
υ(β)

Y5,i − β5
ξi(β)
υ(β)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7.71)

where the terms ξi and υ are a shorthand notation for

ξi(β) = β0 − Y0,i + Y1,iβ1 + Y2,iβ2 + Y3,iβ3 + Y4,iβ4 + Y5,iβ5, (7.72)

and
υ(δ) = β2

5 + β2
4 + β2

3 + β2
2 + β2

1 + 1. (7.73)

The l2-norm of the difference vector and the Jacobian matrix for each measure-
ment are given by

dg,i = ‖Yi − Y′
i(β)‖2 =

|ξi(β)|√
υ(β)

(7.74)
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and

Ji(β) =

⎛
⎜⎜⎜⎜⎜⎜⎝

J0,i

J1,i

J2,i

J3,i

J4,i

J5,i

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sign(ξi(β))√
υ(β)

sign(ξi(β))Y1,iυ(β) − β1ξi(β)
υ(β)3/2

sign(ξi(β))Y2,iυ(β) − β2ξi(β)
υ(β)3/2

sign(ξi(β))Y3,iυ(β) − β3ξi(β)
υ(β)3/2

sign(ξi(β))Y4,iυ(β) − β4ξi(β)
υ(β)3/2

sign(ξi(β))Y5,iυ(β) − β5ξi(β)
υ(β)3/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.75)

The coefficient vector β is estimated iteratively according to the Gauss-Newton
update rule:

β̂(j+1) = β̂(j) + δβ̂(j), (7.76)

where the incremental update δβ̂(j) is given by the orthogonal distance re-
gression solution, which includes the weights wi = kH(xi − x) of the kernel
function:

δβ̂ = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p∑
i=1

wiJ
2
0,i . . .

p∑
i=1

wiJ0,iJ5,i

...
. . .

...
p∑

i=1

wiJ5,iJ0,i . . .

p∑
i=1

wiJ
2
5,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎜⎜⎝

p∑
i=1

wiJ0,idg,i

...
p∑

i=1

wiJ5,idg,i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

(7.77)
The performance of the proposed kernel regression algorithm is evaluated in
Section 7.5.4.

7.5 Experimental results

7.5.1 Super-resolution in time

In some cases it is possible to perform super-resolution in the temporal domain
if only one video stream is available. If the motion is periodic for instance, we
can align the frames in time that contain the same motion pattern to achieve
a higher temporal resolution. Motion blur is then removed by deconvolution
in the temporal direction with a rectangular blur function as discussed in
Section 7.1.4. This strategy is very similar to the non-local restoration methods
discussed in Chapter 5, but it is now applied using periodic motion patterns in
the temporal direction instead of repetitive structures in the spatial domain.
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t = 1 t = 2 t = 3 t = 4

Figure 7.10: Illustration of a rotating fan.

As a small multi-frame motion deblurring experiment, we capture a rotating
fan moving at two different speeds (one sequence at approximately 3 rotations
per second during 3288 frames and the other at 8 rotations per second during
2047 frames) using the sony dxc-9100p video camera. The first 4 frames of
the first image sequence are given in Figure 7.10. From these images, we can
clearly see the temporal aliasing effect: the individual blades do not move very
much seemingly, however, the white sticker on one of the blades indicates the
true large motion.

Motion deblurring of the fast rotating fan in the spatial domain requires a very
complex algorithm, which in turn needs the segmentation of the individual
blades and the knowledge of space-varying psf’s (because the velocity of the
blades is varying in function of the distance to the axis as indicated by the
arrows in Figure 7.10). Instead of applying motion deblurring in the spatial
domain, we propose to perform sr reconstruction in the temporal direction to
sharpen the rotating fan.

To perform super-resolution in time, we first increase the frame rate (or tempo-
ral resolution) tremendously (50×) because there is not enough temporal cor-
relation between successive frames due to the very large motion of the blades
and because we need enough measurements/frames in the same exposure time
interval (as illustrated in Figure 7.11). Instead of interpolation along the mo-
tion trajectories, we perform temporal sr by aligning other frames of the image
sequence between the first frames. The temporal alignment is simplified in our
case by tracking the centroid of the white sticker. The centroid follows a circu-
lar path, from which its spatial position can be linked to the relative position
of each individual frame in time.
In the second step, we perform the image restoration (i.e. the actual motion
deblurring) in a map framework using Tikhonov regularization (see Chapter 4).
The psf kernel in the degradation model is 3d: in the spatial direction, we use
a small Gaussian blur with standard deviation σb = 1, while in the temporal
direction, we employ a rectangular function that spans over 21 frames (i.e. the
support of the kernel is [−10, 10]) for the slow motion (±3 rotations per second)
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Exposure time of the observed sequence with the aligned frames in time:

Exposure time of the desired image sequence:

Figure 7.11: Exposure time of the observed images and the super-resolved images.

and over 69 frames ([−34, 34]) for the fast motion (±8 rotations per second).
The parameters have been selected based on trial and error to produce the
visually most appealing results. We apply 100 steepest descent iterations with
a small constant regularization parameter α = 0.5. The result of this simple
experiment is shown in Figures 7.12 and 7.13. We can see that edges of the
individual blades are reconstructed very well in both cases, which demonstrates
the effectiveness of the proposed approach with the temporal blur kernel. Note
that the temporal blur kernel does not affect the restoration of the static scene.

To verify if the reconstructed edges are really sharper, we apply Canny edge
detection [Canny, 1986] with modifications as suggested by Fleck [Fleck, 1992],
on the images as illustrated in Figure 7.14. The edge detection algorithm is
followed by a mathematical morphological thinning step (or also called math-
ematical morphological skeletonization) to suppress the local non-maxima. In
Figure 7.14, we can clearly see that we are able to detect more edges and
also the shape of the individual blades becomes perceptible using the proposed
method.

7.5.2 Geometric image registration
In this section, we perform a simple controlled experiment to measure the
subpixel precision of various state-of-the-art geometric registration methods
compared to several modifications of the gradient-based registration algorithm
as discussed in Section 7.2.3.3 and Section 7.2.3.4. In this experiment, we
restrict ourselves to the translational motion representation.

In order to compare the registration performance, we obtain the ground truth
subpixel motion vectors starting from 5 hr images. From each hr image, 11
degraded 200 × 200 lr images (which correspond to 1 reference lr image and
10 pairwise registrations) are generated by successively shifting the hr image
by integer pixels, cropping (to remove undefined border regions), performing
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(a) Original image (±3 rotations per second)

(b) Our motion deblurring result

Figure 7.12: Results of motion deblurring in time. The support of the kernel in the
temporal direction is [−10, 10].
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(a) Original image (±8 rotations per second)

(b) Our motion deblurring result

Figure 7.13: Results of motion deblurring in time. The support of the kernel in the
temporal direction is [−34, 34].
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(a) Original image (b) Our motion deblurring result

(c) Original image (d) Our motion deblurring result

Figure 7.14: Results of Canny edge detection on the images produced by the ex-
periments with (a)-(b) ±3 rotations per second and (c)-(d) ±8 rotations per second.
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Figure 7.15: Reference lr image from the registration experiment (σn = 10).

decimation (where each lr pixel value is the average of a 4×4 block) and adding
zero-mean white Gaussian noise (with standard deviation σn). Due to the
decimation operation, the x- and y-offsets of the generated motion vectors are
multiples of 0.25. An example of a simulated lr image is shown in Figure 7.15.

In this experiment, we compare the accuracy of various state-of-the-art registra-
tion methods such as the standard Lucas-Kanade gradient-based registration
algorithm [Lucas and Kanade, 1981] (as given by equation (7.29)), a modified
Levenberg-Marquardt gradient-based algorithm in a hierarchical polynomial
spline pyramid [Thévenaz et al., 1998], a joint registration/reconstruction al-
gorithm based on the principles of variable projections6 [Robinson et al., 2009],
a frequency-based registration method performed on the aliasing-free part of
the spectrum [Vandewalle, 2006] and the bias correcting gradient-based shift
estimator [Pham et al., 2005].

We compare these registration methods to several modifications of the gradient-
based motion estimation algorithm of [Lucas and Kanade, 1981] (all performed
by 30 iterations within a 3-level Gaussian pyramid): a first simple modification
is the use of the robust Huber loss function instead of the l2-norm in the cost

6The registration performance of this algorithm depends on the available image prior
information for the reconstruction of the hr image. In this experiment, we assume that the
hr image is locally smooth as in the Tikhonov regularization.
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Figure 7.16: Blackman-Harris windowed sinc interpolation of Figure 7.15 as ob-
tained by the g-si method.

function as derived in equation (7.34). This modification is denoted as g-rh.
A second modification is the use of Blackman-Harris windowed sinc resampling
instead of the bilinear resampling scheme to generate the transformed image f
in each iteration, which is denoted as g-si. This modification is approximated
by a lr-to-hr registration scheme, which is similar to the em algorithm de-
scribed in Section 7.2.3.4 and has a benefit that the computational complexity
is much lower (the Blackman-Harris windowed sinc interpolation is only ap-
plied once on a separable grid and the bilinear resampling scheme can still be
employed). The initialized hr image is illustrated in Figure 7.16.
A third modification is postprocessing the registration parameters with the
bundle adjustment tool as given in equation (7.37) (based on the skew-
antisymmetry and the Jacobi identity principles as illustrated in Figure 7.6).
This modification is referred to as g-ba.
In the same spirit as the bundle adjustment tool, we optimize the group struc-
tures in the Lie algebra jointly with the registration parameters in the fourth
modification as given in equation (7.38) and [Farsiu et al., 2005], which is de-
noted as g-jo.
As the last modification, we solve the joint registration and sr reconstruction
problem by an em algorithm that iteratively alternates between estimating
the hr image (produced by the steering kernel algorithm from 11 lr images
as described in Section 7.4.2) and the registration parameters as discussed
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Figure 7.17: Steering kernel regression result as obtained by the proposed g-kr
method.

in Section 7.2.3.4. The produced hr image is illustrated in Figure 7.17. In
contrast to Figures 7.15 and 7.16, we are able to recognize some details such
as the text above the gate. To diminish the computational complexity, the hr
image is only reconstructed every 10 Gauss-Newton iterations of the gradient-
based algorithm. This method is referred to as g-kr.

In Table 7.2, we show the average root mean square error (rmse) registration
accuracy between the 50 ground truth motion vectors and the estimated reg-
istration parameters for several noise variances. We observe that all of the
algorithms provide a relative high degree of subpixel precision, which is suf-
ficient to most practical sr applications with enlargement factors of 4 or 8.
Robust loss functions (g-rh) do not contribute to the subpixel precision, how-
ever they are useful in the presence of scratches or object motions as illustrated
in Figure 7.4. The choice of a better resampling operator (g-si) has a positive
influence on the accuracy and requires few extra computations (i.e. the inter-
polation of the reference image) and extra memory requirements to store the
hr image. In this simple experiment, the incorporation of bundle adjustment
(g-ba) or jointly optimizing the group structures in the Lie algebra (g-jo)
improves the subpixel precision tremendously. The major drawback of both
methods is the enormous computational load (i.e. k(k − 1) or 90 pairwise reg-
istrations are computed instead of 10), but these tools can be useful in the
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Table 7.2: Average rmse registration accuracy (in units of pixels) over 50 regis-
trations in the presence of additive zero-mean white Gaussian noise (with standard
deviation σn). The best rmse result is written in bold letters for each noise level.

Registration method σn = 0 σn = 5 σn = 10 σn = 15

[Thévenaz et al., 1998] 1.1e-2 1.2e-2 1.4e-2 2.1e-2
[Robinson et al., 2009] 1.7e-2 1.6e-2 2.0e-1 1.4e-1
[Vandewalle, 2006] 6.2e-3 1.2e-2 3.4e-2 5.6e-2
[Pham et al., 2005] 4.1e-3 4.9e-3 6.0e-3 8.7e-3
[Lucas and Kanade, 1981] 2.5e-2 2.6e-2 2.5e-2 2.5e-2

g-rh 2.4e-2 2.5e-2 2.5e-2 2.6e-2
g-si 1.4e-2 1.5e-2 1.4e-2 1.5e-2
g-ba 1.1e-2 9.0e-3 9.9e-3 1.1e-2
g-jo 9.3e-3 9.1e-3 1.0e-2 1.1e-2
g-em 2.9e-3 2.8e-3 4.2e-3 5.3e-3

presence of severe registration errors. The joint registration/reconstruction al-
gorithm based on steering kernel regression (g-em) delivers the most accurate
registration parameters among all registration methods in our experiment. By
reconstructing the sr image, the effect of frequency aliasing in the lr images
is exploited efficiently for the motion estimation, which results in the highest
subpixel precision.

7.5.3 Photometric image registration

In a first experiment, we perform a quantitative evaluation of the linear photo-
metric registration in both the ols sense (given by equation (7.41)) and the tls
sense (as described in Section 7.3.2). In Section 7.3.1, we have shown that the
tls solution7 produces consistent registration parameters, which is also illus-
trated in Figure 7.7. To compute the accuracy of the photometric parameters,
we apply random linear greyscale modifications with gain parameters within
[0.8, 1.2] and bias parameters within [−25, 25] to a 200 × 200 image and add
zero-mean white Gaussian noise on both images. The rmse accuracy is com-
puted over 200 simulations for each noise level and is plotted in Figure 7.18. We
can clearly see that the ols solution of the photometric registration produces
very bad results as the noise increases, while the tls solution is very accurate
and also robust to noise.

In a second controlled experiment, we compare the performance of the joint ge-

7Note that both svd-based solution [Markovsky and Van Huffel, 2007] and the orthogonal
distance regression algorithm [Sullivan et al., 1994,Ahn et al., 2002] given in equation (7.46)
produce exactly the same parameters.
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Figure 7.18: Average rmse accuracy of the photometric registration parameters in
function of additive zero-mean white Gaussian noise (with standard deviation σn).

ometric and photometric registration algorithms according to the affine/linear
model (7.49). We simulate 20 degraded 500 × 500 lr images by successively
applying a Tukey windowing function on the hr image (to prevent the influence
of non-overlapping regions due to the spatial deformations), applying random
photometric linear and geometric affine transformations, performing decima-
tion (via averaging of 2×2 blocks) and adding zero-mean white Gaussian noise
(with standard deviation σn). This process is repeated for each noise level.
Examples of the degraded lr images are shown in Figure 7.19.

We compare the tls solution as described in Section 7.3.2 to its ols counterpart
and the joint geometric linear and photometric affine registration algorithm of
Bartoli [Bartoli, 2006], which operates in an inverse compositional gradient-
based framework (see Section 7.2.3.3) using the ordinary least square metrics.
The average rmse accuracy is plotted in Figure 7.20 in function of the noise
standard deviation. Again, the tls solution produces the best results. In this
experiment, the lr images are clipped at [0, 255], which explains the relative
performance difference between the tls and ols solution compared to the
previous experiment (see Figure 7.18).



224 Multi-frame super-resolution restoration

(a) Reference image (b) Input image

(c) Transformed input image (b) (d) Enhanced difference image ((c)-(a))

Figure 7.19: Illustration of joint photometric linear and geometric affine registration
algorithm in the tls sense (σn = 10).
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Figure 7.20: Average rmse accuracy of all registration parameters in function of
additive zero-mean white Gaussian noise standard deviation σn.

7.5.4 Image fusion

As a simple experiment, we have grabbed 30 lr images with the Philips
Inca Smartcam in rather poor lighting conditions and we enlarge these
images 4 times in each dimension. After applying gradient-based regis-
tration (g-rh), we compare various fusion algorithms (see Section 7.4.1
for a more detailed discussion) such as the Delaunay triangulation with
a bicubic polynomial model [Lertrattanapanich and Bose, 2002], the pocs
algorithm (with a Gaussian low-pass filter (σ = 1)), the shift-and-add
method [Elad and Hel-Or, 2001, Farsiu et al., 2004], the structure adaptive
normalized convolution [Pham et al., 2006] and the classic kernel regression
algorithm [Takeda et al., 2007] (see Section 7.4.2 for a more detailed discus-
sion). The image fusion results are shown in Figure 7.21.

We notice some heavy characteristic noise patterns in the Delaunay triangula-
tion, pocs and shift-and-add fusion algorithms. The structure-adaptive nor-
malized convolution results show less noise, but the noise amplitude changes
near the edges of the characters (also referred to as non-stationary noise). The
kernel regression method produces very smooth hr images, which are preferable
to most deconvolution algorithms. These observations are explicitly illustrated
in a more detailed view given in Figure 7.22.
We show the power spectral density from an image that is reconstructed by the
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(a) lr image (b) Delaunay triangulation

(c) pocs algorithm (d) Shift-and-add method

(e) Normalized convolution (f) Classic kernel regression (N = 2)

Figure 7.21: Illustration of several fusion algorithms over 30 images (all fused images
are enhanced with the unsharp masking algorithm to emphasize the differences).
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(a) Shift-and-add method (b) Normalized convolution (c) Kernel regression

Figure 7.22: Detailed view of the fusion results from Figure 7.21.
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(a) Noise (b) Power spectral density

Figure 7.23: Illustration of the correlated noise pattern produced by the shift-and-
add algorithm and its power spectral density.

shift-and-add fusion algorithm in Figure 7.23. This figure clearly demonstrates
that the noise is not white, but correlated. The treatment of correlated noise
in the sr framework is an interesting research topic for future work.

In Section 7.4.3, we proposed a new kernel regression algorithm in the tls sense
to handle positional or registration errors. We now determine which techniques
(the ols solution (referred to as krols) or the tls solution (referred to as
krtls)) are preferable under which conditions. We extract over 9 million 7×7
patches from the Kodak data set (see Figure 3.11). For each patch, we estimate
the central pixel from its 48 neighbouring pixels (this is also referred to as the
leave-one-out principle). These pixels are corrupted by additive zero-mean
white Gaussian noise (with standard deviation σn) and suffer from random
perturbations on the spatial coordinates (from a uniform distribution in the
range of [−σu, σu] for σu ∈ [0, 2]). From these pixel estimates, we compute
the average rmse accuracy for both classic and steering krols/krtls (N = 2
and 2 iterations for the steering version), which are shown in Figures 7.24, 7.25
and 7.26 for σn = 0, σn = 10 and σn = 20 respectively.

From this experiment, we can conclude that the steering versions produce
slightly better rmse results compared to the classic versions. However, there
is a big difference in visual quality in some applications, especially when fewer
samples are available (see for example Figure 7.9). For minor noise levels
(e.g. σn < 10 or σu < 0.8), the ols solution is preferable to the krtls method.
In all other cases, the krtls method produces more accurate results. Note
that the tls solution also increases at a slower rate in function of σu.
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Figure 7.24: Average rmse accuracy of the pixel value in function of the positional
error (uniformly distributed in [−σu, σu]) with no added noise on the pixel values.
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Figure 7.25: Average rmse accuracy of the pixel value in function of the positional
error (uniformly distributed in [−σu, σu]) in the presence of additive zero-mean white
Gaussian noise (σn = 10).
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Figure 7.26: Average rmse accuracy of the pixel value in function of the positional
error (uniformly distributed in [−σu, σu]) in the presence of additive zero-mean white
Gaussian noise (σn = 20).
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In Figure 7.27, we give the visual difference between the ols and tls solution
and we compare these results to the reference image (with additive zero-mean
white Gaussian noise (σn = 10)). Random offsets (∈ [−2, 2]) are added to the
spatial coordinates to simulate registration errors. The tls solution produces
a much smoother image and reconstructs for example the vertical strips of the
fence in a better way compared to the ols result.

7.5.5 Practical super-resolution

In this section, we show some sr image reconstruction results from real-world
examples obtained by successive motion estimation, fusion and image restora-
tion as shown in Figure 7.2. The proposed sr framework combines the gradient-
based motion estimation algorithm with the robust Huber loss function (see
Section 7.2.3.3), the classic kernel regression algorithm (see Section 7.4.2) and
the joint deconvolution and denoising algorithm using the standard Tikhonov
regularization (see Chapter 4). This sr algorithm is illustrated by the flow
chart given in Figure 7.28.

In a first experiment, we process 30 lr text images from the Philips Inca
Smartcam to produce a 4× enlarged hr image (see also Figure 7.21). After
shift-and-add fusion and classic kernel regression (N = 2), we apply joint de-
convolution and denoising using the standard Tikhonov regularization scheme
for zero-mean white Gaussian noise (see Chapter 4 for a more detailed discus-
sion) within 100 iterations and with a Gaussian blur kernel (σb = 3).
We compare the obtained sr results with the non-sr Blackman-
Harris windowed sinc interpolation, iterative back-projection method
(ibp) [Irani and Peleg, 1991], robust sr based on median shift-and-add scheme
and restoration with a bilateral total variation image prior [Farsiu et al., 2004],
fast sr based on median shift-and-add scheme and restoration with the robust
Lorentzian loss function [Luong et al., 2006d].

As an objective evaluation, we apply optical character recognition on the re-
constructed text images using two page-reading systems: Scansoft OmniPage
15.0 and abbyy FineReader 8.0. The recognition is applied on the visible text,
which contains 81 characters. Both visual results and character ocr accuracy
results (see equation (6.15)) are given in Figure 7.29.

Blackman-Harris windowed sinc interpolation does not improve the image
quality very much, while ibp sr method produces a blurred hr image
despite the deconvolution. The sr results produced by [Farsiu et al., 2004]
and [Luong et al., 2006d] are much sharper, however, both methods gener-
ate noticeable intensity staircase artefacts and painting effects. Applying
the standard Tikhonov regularization for white noise does not remove the
correlated noise entirely from the shift-and-add image. From all hr images
shown in Figure 7.29, the combination of kernel regression and Tikhonov
regularization delivers the image with the least number of artefacts and the
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(a) Noisy reference image

(b) ols solution

(c) tls solution

Figure 7.27: Examples of the classic ols and tls solution in the presence of noise
on the pixel values (σn = 10) and noise on the positions (σu = 2).
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1. registration 2. fusion 3. restoration

gradient-based
image registration

(g-rh)

classic kernel
regression (N = 2)
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and denoising with
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gi
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Figure 7.28: Schematic representation of the proposed sr algorithm.

highest readability in terms of objective character ocr accuracy measures.

In a second simple experiment, we apply the same fusion and restoration al-
gorithms (with a Gaussian blur kernel of σb = 2) on the car sequence,8 where
the car is moving from bottom to top during the whole image sequence (see
Figure 7.30). Motion estimation is performed by simple block matching as a
fast initialization (with 8 × 8 blocks given by equation (7.17)) at integer pixel
accuracy followed by the gradient-based subpixel refinement per block.

The region of interest in Figure 7.30 is enlarged with a linear magnification
factor of 8 and the results are shown in Figure 7.31. In most sr results, the
make of car and the license plate become much more readable. The combination
of kernel regression and Tikhonov regularization delivers again the best visual
image quality. In this example, the effect of treating correlated noise as white
noise in the joint deconvolution/denoising regularization (see for example shift-
and-add and robust sr results) can clearly be noticed as annoying blob patterns
across the whole hr image.

In the last experiment, we perform joint sr and deinterlacing (i.e. converting
an interlaced image sequence into a progressive form). The interlaced image
sequence provides us a considerable amount of frequency aliasing in the vertical
direction. To retain the sr architecture as given in Figure 7.28, each interlaced
frame is decomposed into two sub-images with only odd or even lines (which
is referred to as field) as depicted in Figure 7.32. We perform sr image recon-
struction on the decomposed image sequence, with the only difference being
that the enlargement factor in vertical direction is now twice the enlargement
factor in horizontal direction.

We apply the proposed deinterlacing/sr framework on the football sequence
using shift-and-add fusion and kernel regression combined with Tikhonov reg-
ularization for joint deconvolution/denoising (with a Gaussian blur kernel of

8Downloadable from http://www.ee.ucsc.edu/~milanfar/software/sr-datasets.html .

http://www.ee.ucsc.edu/~milanfar/software/sr-datasets.html
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(a) Blackman-Harris interpolation (8.6%) (b) ibp [Irani and Peleg, 1991] (14.8%)

(c) Robust sr [Farsiu et al., 2004] (39.5%) (d) Fast sr [Luong et al., 2006d] (41.4%)

(e) Shift-and-add + Tikhonov (18.5%) (f) Kernel regression + Tikhonov (56.2%)

Figure 7.29: Super-resolution results of the text sequence with 30 images (all sr im-
ages are enhanced with the unsharp masking algorithm to emphasize the differences).
The average character ocr accuracy is given in parentheses.
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Figure 7.30: Frame 32 from the car sequence. The region of interest (roi) is
enlarged in Figure 7.31.
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(a) lr image (b) Blackman-Harris interpolation

(c) ibp [Irani and Peleg, 1991] (d) Robust sr [Farsiu et al., 2004]

(e) Shift-and-add + Tikhonov (f) Kernel regression + Tikhonov

Figure 7.31: Super-resolution results of the car sequence with 64 images (all sr im-
ages are enhanced with the unsharp masking algorithm to emphasize the differences).
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. . .

. . .

. . .

. . .

Figure 7.32: Principle of sr deinterlacing: each frame is decomposed into odd and
even fields resulting in a new image sequence, which is feed into the sr algorithm
given in Figure 7.2.

Figure 7.33: Frame 50 from the football sequence. The region of interest (roi) is
enlarged in Figure 7.34.

σb = 2 in 30 iterations). The original interlaced reference frame is shown
in Figure 7.33 and the 4× enlarged roi results are shown in Figure 7.34.
We compare the sr results with Blackman-Harris windowed sinc interpolation
and a state-of-the-art wavelet deinterlacing technique, which performs joint
spatio-temporal interpolation and denoising in the wavelet domain in a motion-
compensated manner [Zlokolica et al., 2006], which is further enlarged 4 times
with the Blackman-Harris interpolation.

The number on the helmet is clearly readable in the sr reconstructed images
(number 82 corresponds to the number on the player’s shirt), although the
result produced by the shift-and-add method clearly suffers from correlated
noise. The Blackman-Harris windowed sinc interpolation can not resolve the
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(a) lr interlaced frame (b) lr field

(c) Blackman-Harris interpolation (d) Wavelet deinterlacing

(e) Shift-and-add + Tikhonov (f) Kernel regression + Tikhonov

Figure 7.34: Super-resolution results of the football sequence with 50 images.
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image details in such a way that the number becomes readable. Also applying
wavelet deinterlacing does not improve the resolution drastically. This small
example demonstrates that the sr framework is very suitable to deinterlacing
problems and is even superior in reconstructing fine image details compared to
standard deinterlacing/interpolation techniques.

7.6 Conclusion

Multi-frame super-resolution image restoration is quite a complex problem,
which spans over several fields of image processing, such as motion estimation
or image registration, image reconstruction from irregularly spaced samples,
image deconvolution and denoising. In this chapter, we gave a broad overview
of the existing spatial sr techniques, which can commonly be classified as
frequency-domain, spatial-domain and motionless sr methods. Due to its
relatively low computational load and low memory requirements, the standard
three-step paradigm of the non-uniform interpolation sr approach is recom-
mended in most practical applications. These three successive steps are image
alignment (via subpixel motion estimation), image fusion (i.e. the conversion
of the irregularly spaced samples into samples placed on the uniform hr grid)
and hr image restoration (i.e. deconvolution and denoising).

Besides spatial resolution enhancement by sr techniques, it is also possible to
perform sr in the temporal direction of the image sequence. Problems such
as temporal aliasing and motion blur can be solved using sr methods. In
Section 7.5.1, we evaluated a new multi-frame motion deblurring algorithm
that exploits periodic motion patterns and applies deconvolution with a 3d
psf (where the component in temporal direction is related to the exposure
time). The experimental results clearly show the effectiveness of the proposed
approach. sr in the temporal direction has direct applications in frame rate
conversion, e.g. from sd to hd, with the respective frame rates of 25 fps and 50
fps. An interesting future application for the proposed multi-frame motion de-
blurring algorithm is the restoration of video sequences coming from a vibrating
camera because these sequences often contain a lot of periodic motion patterns.

In Section 7.2 and Section 7.3, we discussed various aspects of motion esti-
mation and both geometric and photometric image registration. We proposed
a new lr-to-hr gradient-based registration method that reconstructs the hr
image via steering kernel regression. We evaluated the subpixel accuracy of
several state-of-the-art shift estimators and concluded that the proposed algo-
rithm produces the most accurate motion estimation.
For the photometric and joint geometric/photometric registration problem, we
have introduced the use of the total least square framework in the proposed
registration algorithms. In both cases, our methods produce more accurate
and consistent registration parameters compared to the methods that use the
ordinary least square approach, which are commonly employed in the literature.
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In Section 7.4.3, we have proposed and derived a new kernel regression
algorithm in the tls sense to handle positional or registration errors. In
case of moderate or heavy noise (on the pixel intensity values and/or on the
spatial coordinates), the proposed method is more accurate in terms of rmse
compared to the standard kernel regression algorithms defined in the ols sense.

Finally, we have demonstrated some sr results on real-world examples, where
we noticed that correlated noise, from the image fusion and especially from
the shift-and-add algorithm, provides a source of potential artefacts. We
also showed that the sr framework is suitable to deinterlacing problems and
is even superior in reconstructing the lost image information compared to
deinterlacing/interpolation techniques.

Future work includes for instance the estimation of the noise covariance matrix
to eliminate correlated noise properly in sr frameworks. A second challenging
research topic is to develop real-time sr algorithms in which the focus is lying
on visual pleasing images (i.e. with almost no artefacts) instead of exploring
the limits of recovering spatial resolution. This will be important in many
multimedia applications, where for example low-resolution video content in
very bad quality (e.g. from the Internet or mobile phones) is displayed on high-
resolution screens (e.g. hdtv). In addition, other sources of degradation such
as compression and dynamic range should be taken into account, which makes
the sr algorithm even more complex.
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Yes we can!
—Barack Obama

The possibility of applying super-resolution techniques to magnetic resonance
imaging (mri) and extending this way spatial resolution to a microscopic level
is a challenging, but also a controversial problem with highly divided opinions
among the leading researchers. In this work, we point out some limitations
in the recent developments in super-resolution mri reconstruction and we
also argue that classical super-resolution cannot be applied in the Fourier
encoded plane because of the complete absence of frequency aliasing during
mri acquisition. For this reason, true mri resolution enhancement can only be
obtained from information outside the k-space span.

In this chapter, we also introduce an elegant way to enhance the image reso-
lution by multiple mri images which are acquired over a rectangular k-space
span. Thanks to image rotations, we are able to enlarge the k-space span
and thus improve the image resolution. We propose a novel reconstruction
algorithm that consists of a proper resampling scheme in the image domain fol-
lowed by optimal fusion of multiple aligned k-space data. Simulations demon-
strate the superiority of the proposed method, both quantitatively and quali-
tatively. We also demonstrate the effectiveness of the proposed scheme to real
mri data: improvements in image quality and spatial resolution can clearly be
noticed in the reconstructed images. Fourier analysis also indicates the true
spatial resolution improvement. This work led to a submitted journal publica-
tion [Luong et al., 2009] and a conference publication [Luong et al., 2008].
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8.1 Introduction to resolution enhancement in
MRI applications

For decades, various researchers have been developing numerous and di-
verse methods to shorten the acquisition time of magnetic resonance
imaging (mri) data while attempting to preserve image quality. A
shorter acquisition time reduces possible motion artefacts caused by vol-
untary/involuntary subject movements. To mention a few techniques:
fast low-angle shot imaging (flash) [Frahm et al., 1986, Peng et al., 2006],
echo-planar imaging (epi) [Landini et al., 2005,Mansfield, 1977], parallel imag-
ing [Blaimer et al., 2004, Katscher et al., 2003, Larkman and Nunes, 2007],
altering sampling trajectories and reconstructing undersampled k-
spaces [Bernstein et al., 2004, Dologlou et al., 1996, Jackson et al., 1991,
Pruessmann et al., 2001, Rokitta et al., 1999, Weiger et al., 2002], etc. Com-
plementary to these techniques, the class of resolution enhancement techniques
also plays an important role: it is obvious that low-resolution (lr) images
require fewer measurements or sampling points than high-resolution (hr)
images for a given field of view (fov) which eventually results in much faster
acquisitions. Sometimes motion artefacts are so severe that it prohibits
imaging altogether. In these cases a resolution enhancement technique could
be the enabling factor for previously infeasible imaging modalities.

Many resolution enhancement techniques for single mri images have been
proposed in the literature. A comprehensive survey of existing linear image
interpolation methods can be found in [Lehmann et al., 1999]. General
non-linear image interpolation techniques try to avoid artefacts such as
staircasing (i.e. jagged edges), blurring and/or ringing (see Chapter 3) or
try to estimate the lost frequencies by training (see Section 5.1). An-
other class of techniques tries to recover the missing part of the k-space
by extrapolating low frequency information to the high frequencies (e.g.,
using the Papoulis-Gerchberg algorithm or projections onto convex sets
(pocs)) [Peng et al., 2006, Gerchberg, 1974, Gerchberg, 1989, Papoulis, 1975].
In the end, all these techniques incorporate prior knowledge (e.g., piecewise
smoothness or the existence of sharp edges) to reconstruct the hr image in a
spatially adaptive way. We note in this respect that these techniques treat
high frequencies as missing information and estimate them from the available
lower frequencies. Therefore, it is not certain that the features from the
estimated frequencies correspond to true image features that would have been
visible if the hr image was acquired at a higher resolution. For this reason,
we say that these methods do not involve true resolution enhancement. This
can be critical in some (clinical) applications, e.g., for the detection of small
anomalies or tiny structures.

After several successful attempts of multi-frame super-resolution in
camera-based applications [Irani and Peleg, 1991, Irani and Peleg, 1993,
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Park et al., 2003], the ideas of incorporating multiple acquisitions to attain
sub-pixel resolution in mri appeared in the late 1990-ties (see the references
in [Fiat, 2001]). The main idea is that multiple slightly different acquisitions
(e.g., with the subject slightly translated) contain information that can help
to reconstruct the high frequency components distorted by aliasing and
blur. Therefore, techniques using multiple acquisitions should be superior to
traditional reconstruction approaches that employ only a single image. This is
true for camera-based super-resolution (sr) image reconstruction where the
extra information is encoded as frequency aliasing. In [Roullot et al., 2000],
the authors successfully combined several mri acquisitions of anisotropically
degraded resolutions (i.e. non-squared voxel sizes) to one hr volume. Unfor-
tunately, the maximum achievable resolution is limited to the smallest voxel
dimension over all acquisitions.
In [Peled and Yeshurun, 2001], a camera-based super-resolution method (the
iterative back-projection method of Irani and Peleg [Irani and Peleg, 1993])
was applied to mri data and demonstrated to yield an improved resolu-
tion of in-vivo diffusion weighted and diffusion tensor images. Shortly af-
ter this initial success, doubts were raised on the applicability of super-
resolution to mri in general due to the bandlimited nature of Fourier en-
coded (in the in-plane direction) data in mri, which seemingly eliminates
the possibilities of new information and super-resolution for classical Fourier
encoding [Scheffler, 2002, Peled and Yeshurun, 2002]. Indeed, pixel shifts of
bandlimited images result in a linear phase modulation of the Fourier co-
efficients, which eventually do not yield new information. For this reason,
in several works, including [Greenspan et al., 2002, Kornprobst et al., 2002,
Kornprobst et al., 2003,Peeters et al., 2004] the authors found that only inter-
slice super-resolution is possible in mri (because spatial frequencies in the inter-
slice z-direction exhibit a less sharp cut-off which causes frequency aliasing to
exist after sampling) while it is not possible to increase the resolution by means
of pixel shifts within the slice. As a consequence, sr image reconstruction in the
Fourier encoded plane did not appear to be an effective resolution enhancement
technique.

Some of the most recent works [Carmi et al., 2006] contradicted these lim-
itations and demonstrate in-plane resolution improvement for simulated
data, however, the authors did not succeed to improve the resolution on real
phantom data. Also in [Mayer and Vrscay, 2006,Mayer and Vrscay, 2007], the
authors claim that new information in the frequency-encoded (fe) direction
can be present in each acquisition if the subject is shifted in the fe direction
prior to imaging. In this way, subject shifts cannot longer be represented as
simple linear phase modulations.

To the best of our knowledge, all sr mri papers only address translational
shifts between the low-resolution images. In this chapter, we show that
incorporating multiple image rotations can indeed improve the image resolu-
tion in the Fourier-encoded plane assuming that mri data is acquired over a
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Figure 8.1: The schematic representation of the mri image acquisition. The rf
signal F (k) is the continuous Fourier transform (cft) of the hypothetical spatial
signal f(x). For more details concerning the physics of rf signals, we refer the
reader to [Landini et al., 2005]. The adc turns the rf signal into measurements F̃k

via proper sampling and the final mri image f̃x is obtained by the inverse discrete
Fourier transformation.

rectangular k-space span. Our proof is both theoretical and practical.

In what follows in this chapter, we will discuss the recent developments in
super-resolution mri in Section 8.2. In Section 8.3, we introduce a new way
of acquiring multiple images and describe a novel algorithm to reconstruct the
hr image from these multiple lr images. Section 8.4 presents experimental
results with both simulated and mri data and quantitatively compares the
proposed technique with other reconstruction methods. Section 8.5 discusses
some potential applications and finally, Section 8.6 concludes this chapter.

8.2 On super-resolution magnetic resonance
imaging

8.2.1 Basic concepts of k-space
In mri acquisition, image information such as voxel intensity is not obtained
directly in the spatial domain, but are acquired in the frequency space, which is
often referred to as k-space. In the Fourier encoded imaging plane, the analog-
to-digital converter (adc) at the receiver side extracts values of the continuous
radio-frequency (rf) signal F (k) containing image frequency information at
integer multiples of the frequency sampling period Δk. During the scan, the
discrete k-space is filled with raw data line by line from the readout direction (or
frequency-encoded direction). The position of each line in the vertical direction
of k-space is determined by the phase-encoded magnetic gradient. The final
mri image f̃x is related to the discrete k-space data F̃k by the 2d inverse
discrete Fourier transformation (idft). A schematic representation of the mri
acquisition is given in Figure 8.1.

By the Shannon sampling theorem [Shannon, 1949, Unser, 2000], the spatial
resolution Δx of the final image is determined by the highest measured fre-



8.2 On super-resolution magnetic resonance imaging 245

kmax

kmax

−kmax

−kmax

(a) k-Space span

Δx

Δx

(b) Spatial resolution

Figure 8.2: The span of k-space [−kmax, kmax] (a) is inversely proportional to the
spatial image resolution Δx (b).

quency kmax
1 and is given by the following expression:

Δx =
1

2kmax
, (8.1)

where we assume that the k-space span is symmetrical with respect to the
origin, i.e., k ∈ [−kmax, kmax]. Following the duality principle of the Fourier
transform, the spatial field of view (fov) [−xmax, xmax] is determined by the
sampling rate 1/Δk in the frequency space. These relationships are illustrated
for the 2d isotropic case in Figures 8.2 and 8.3.

In order to minimize the acquisition time, the sampling period Δk (in the
phase encoding direction) is preferably chosen as large as possible for a fixed
k-space span or fixed spatial resolution. This means that the fov is to be
chosen as small as possible. However, if the fov does not contain the whole
object, the discrete sampling in k-space results in aliasing (or wrap-around
artefacts) as a consequence of violation of the Nyquist criteria. We will denote
this form of aliasing as spatial aliasing (i.e. spatial information overlaps). This
manifests in an image artefact where parts of the object outside the fov wrap
into the image. This spatial phenomenon is illustrated in Figure 8.4(b). Its dual
counterpart (e.g. in camera-based applications with acquisitions in the spatial

1From an analytic point of view, any support-limited object can be reconstructed perfectly
from any interval of (continuous) k-space data using analytic continuation. This is possible
because the Fourier transform of the object can be expressed as an analytic function over
the whole k-space. In that sense, it should be possible to improve the resolution beyond
the limitations of the k-space span. However, in practice, this would likely be very poorly
conditioned.
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Figure 8.3: The sampling period Δk in k-space (a) is inversely proportional to the
field of view [−xmax, xmax] (b).

(a) Aliasing in the frequency domain (b) Aliasing in the spatial domain

Figure 8.4: Aliasing in horizontal direction: (a) frequency aliasing (possible in
camera-based applications) and (b) spatial aliasing (possible during mri acquisition).

domain) is illustrated in Figure 8.4(a): the image suffers from frequency aliasing
(i.e. replicated spectra overlap). To suppress aliasing in general, the sampling
rate must be high enough to fulfil the Nyquist rate or a sufficient anti-aliasing
low-pass filter Φa must be applied on the continuous k-space data F (k) prior
to sampling. The latter is equivalent to a multiplication with a windowing
function in the spatial domain.
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8.2.2 Super-resolution in MRI?

In several applications including satellite imaging, video applications and med-
ical imaging, super-resolution (sr) image reconstruction has been proven useful
where multiple images of the same scene or object can be obtained. Camera-
based multi-frame super-resolution is a signal processing technique that com-
bines a sequence of low-resolution (lr) noisy blurred images to produce a higher
resolution image or sequence. In conventional imaging systems (as in camera-
based applications), there is a natural loss of spatial resolution caused by optical
distortions (camera lens blur, out of focus, diffraction limit, atmospheric blur,
etc.), motion blur due to limited shutter speed, noise that occurs within the
sensor or during transmission and insufficient sensor density [Park et al., 2003].
Thus, the acquired image usually suffers from blur, noise and (frequency) alias-
ing effects.
sr image reconstruction is possible if two conditions are fulfilled: the lr
images must be subpixel shifted and the images must contain frequency
aliasing (due to sampling) [Park et al., 2003]. Indeed, if there are no subpixel
shifts (i.e. all pixel shifts are integer), each image contains exactly the same
information in the absence of noise, except for a few extra rows and columns
of pixel data near the image boundaries and therefore, no new information is
available to reconstruct the missing high frequencies. If there is no frequency
aliasing, then the observed object only contains bandlimited information and
recovering high frequencies is not possible.

Unfortunately, in the process of recording an mri image, there is no frequency
aliasing possible because no frequency information is retrieved outside the
span of k-space [−kmax, kmax]. However, in [Carmi et al., 2006], Carmi et
al. achieved a resolution improvement for artificially generated images of
different fovs using a camera-based super-resolution scheme. They employed
a general imaging model to solve the sr problem: each shifted lr image is
degraded by a blur operator which is referred to as the point spread function
(psf), additive white noise and decimation (at different resolutions). These
linear degradation operators are illustrated in Figure 4.2. In their paper, they
assumed a box-type blur or Gaussian blur as psf. For that reason, their model
introduces frequency aliasing in the lr images, which is not possible during
mri acquisition because sampling occurs in k-space. That is why their results
are successful on simulated data, but fail on real phantom data.

To demonstrate the influence of the psfs on frequency aliasing, we compare the
Fourier transforms of the box-type kernel and the Gaussian kernel with the one
of the ideal low-pass filter in Figure 8.5. The ideal transfer function is constant
and equal to 1 in the passband (denoted here by the interval −π < ω < π
and the cutoff point or Nyquist frequency ω = π) and zero in the stopband
(|ω| > π). The occurrence and the amplitudes of ripples and sidelobes in the
stopband cause frequency aliasing effects: attenuated copies of the side lobes
appear in the stopband. In Figure 8.5, we can clearly see that these high cutoff-
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Figure 8.5: The logarithmic plot of the magnitude of the Fourier transforms of the
box-type psf (dotted), the Gaussian kernel psf (dashed) and the ideal low-pass filter
(solid) (in dB).

points (> π) provide us the source of frequency aliasing.

In their sr image reconstruction, Carmi et al. used images which are ac-
quired at different spatial resolutions (or different fovs given a fixed image
size) [Carmi et al., 2006]. However, in case of the ideal transfer function, this
will not yield new information for the estimation of the high frequencies beyond
the maximal kmax: all images acquired with a lower resolution compared to the
image with the highest resolution cover a smaller span in k-space (k∗max < kmax).
It is clear that mri images with lower resolutions can not contribute to the true
resolution recovering process. On the other hand, employing multiple acqui-
sitions can help to increase the overall image quality (i.e. peak-signal-to-noise
ratio (psnr)).

8.2.3 Does a k-space span limitation affect MRI resolu-
tion?

In [Stoch and Balcom, 2006], Stoch et al. investigated whether the span lim-
itation [−kmax, kmax] of the (discrete) k-space has an influence on the spatial
mri resolution and their conclusion is quite surprisingly:

“Does a k-space span limitation influence the experimental image or
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Figure 8.6: The radial profile of the 2d power spectrum of mprage data (averaged
over 176 different slices which are acquired at 1.0 mm resolution using a head coil
within a 256 × 256 matrix).

not? The answer based on a continuous data approach is yes. The
answer for discrete data is no.” [Stoch and Balcom, 2006]

Additionally, Stoch et al. ascribed the observed image distortion mainly to
spatial aliasing (this is achieved by changing the fov as described earlier in
Section 8.2.1). To simplify the explanation we will omit such details in the
rest of this chapter and we assume that the fov contains the whole object and
that the images do not suffer from spatial aliasing.

However, in their paper, Stoch et al. only based their conclusion on bandlimited
functions in discrete k-space for which the frequency components beyond kmax

are zero (or almost zero). As long as the discrete Fourier coefficients beyond
kmax are zero, changing the k-space span does not affect the mri resolution.
But in mri acquisition, the missing high frequencies in k-space are generally
non-zero (otherwise perfect reconstruction is possible apart from noise). This
claim is illustrated with a radial profile of real k-space data in Figure 8.6: from
the decay (≈ 1/k1.7) of the logarithmic magnitude, we can assume that non-
zero coefficients must exist outside the k-space span. The same diminution can
also be observed in natural images, in general, the power spectrum follows an
1/kα-decay (α ∈ [1.5, 3.0]) [Field, 1987].
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From a theoretical point of view, it is also impossible that images are bandlim-
ited in the spatial domain (via fov) as in the frequency domain simultaneously,
see e.g. [Daubechies, 1992]. In other words, if the image is bandlimited in fre-
quency space, its spatial support will be infinitely long and vice versa. If
non-zero coefficients beyond a certain kmax are discarded right before the idft,
this will lead inherently to image blur. So, a k-space span limitation actually
does affect mri resolution in general and thus the answer on the question is
definitely yes.

8.2.4 Subject shifts before acquisition

In [Carmi et al., 2006], Carmi et al. claimed that applying subpixel shift prior
to filtering/sampling is different than a postprocessing mathematical manip-
ulation. Therefore, high-resolution information can be introduced that makes
sr image reconstruction feasible. This claim is later further investigated and
validated by Mayer et al. [Mayer and Vrscay, 2006, Mayer and Vrscay, 2007].
The amount of hr information achieved at each shift is relatively small
which may limit its practical use [Mayer and Vrscay, 2007]. Because of the
bandlimited nature of Fourier encoded data, we believe this new information
does not contain any knowledge about the missing high frequencies.

Let us take a closer look at the mathematical acquisition model (illustrated
in Figure 8.7) for fe signals used by Mayer et al. [Mayer and Vrscay, 2006,
Mayer and Vrscay, 2007]: prior to imaging, the object is shifted on a subpixel
scale. Since k-space data is measured over a finite frequency range, which can
be considered as a boxcar -type bandlimited filter, the image is distorted by a
convolution with a sinc kernel according to the Fourier convolution theorem.
Before discretization by the adc, the k-space signal is convoluted with an anti-
alias filter, which attenuates intensities outside the fov in the spatial domain.
Finally, the new information is simply the difference between the two filtered
spatial signals after proper registration.

We agree that applying subpixel shifts prior to imaging is different than
applying a linear phase modulation as a postprocessing tool. However,
it does not add any new information for the recovery of high frequen-
cies [Mayer and Vrscay, 2007], as no information outside the k-space span is
acquired in the observation model. After bandlimited filtering, the spatial
signals are exactly the same except for a shift. At this point, the k-space data
of the shifted signal can still be derived from the k-space of the original signal,
the only difference being a known phase shift. After reconstruction, the same
image appear in both cases, but one of the images is shifted and because of
the anti-aliasing in k-space, the images differ near the fov boundaries (see
Figure 8.7). The new information can be useful to avoid ringing near the
image edges, but not for resolution enhancement. Note that the bandlimited
filter in Figure 8.7 does not really exist in a standard implementation of
an mri scanner. It is only during the sampling process that the frequencies
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Figure 8.7: Mayer et al. [Mayer and Vrscay, 2007]: schematic observation model of
the mri acquisition process in the spatial domain.

outside the k-space span are discarded (see Figure 8.1). Unfortunately, this
will also not solve the resolution problem.

In the previous paragraphs we have pointed out some shortcomings in recent
sr mri developments and we have argued why sr image reconstruction cannot
successfully make use of in-plane object translations. To reconstruct the true
high image resolution, information beyond kmax or prior knowledge is needed
anyway. Despite all these negative indications, there is no need for pessimism.
In the next section, we show that multiple acquisitions with different k-space
and/or object rotations can contribute to the resolution enhancement of the
mri data.

8.3 Multi-frame MRI reconstruction in the
Fourier encoded plane

8.3.1 Acquisition of low-resolution images
In order to describe how combining multiple mri scans can improve the
in-plane image resolution, we relate object motions to the acquired k-space
data using Cartesian sampling schemes. We assume that the k-space signal
prior to filtering/sampling is a multi-dimensional continuous signal F (k). The
scanner samples this signal on discrete positions within a multi-dimensional
k-space span determined by kmax.

We denote the n-dimensional k-space coordinates as k ∈ R
n and the spatial

coordinates as x ∈ R
n. The n-dimensional continuous Fourier transform F (k)

of the signal f(x) is given by:

F (k) =
∫
x∈Rn

f(x)e−2πj(k·x)dx, (8.2)
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where k·x is defined as the inner product between the two vectors. Analogously,
the multi-dimensional inverse continuous Fourier transform is then denoted as:

f(x) =
∫
k∈Rn

F (k)e2πj(k·x)dk. (8.3)

We suppose that the object undergoes an affine transformation. The new spa-
tial coordinates y are then related to the reference coordinates x by the follow-
ing linear transformation:

y = Ax + b, (8.4)

where A is an invertible n× n matrix and the image f(x) is transformed into
g(x) = f(y). We are interested in the influence of such a transformation on
the k-space signal. Via the change of variables (with the introduction of the
Jacobian), we can easily derive the Fourier transform G(k) of the transformed
image:

G(k) =
∫
x∈Rn

g(x)e−2πj(k·x)dx

=
∫
y∈Rn

f(y)e−2πj(k·A−1(y−b))|A|−1dy

= |A|−1e2πj(k·A−1b)

∫
y∈Rn

f(y)e−2πj(k·A−1y)dy

= |A|−1e2πj(k·A−1b)F ((A−1)Tk), (8.5)

as a function of the Fourier data F (k) of the same object at the reference
position.

For simplicity, we will only discuss the case of isotropic voxels and orthogo-
nal transformations, extension to the anisotropic and non-orthogonal cases is
trivial. Because we are mainly interested in the movement of rigid objects, we
briefly discuss the basic properties based on these three types of rigid body
transformations (i.e. translation, rotation and scaling):

• translational shifts cause a linear phase modulation of the k-space data,
i.e. multiplying Fourier coefficients by e2πi(k·b). The k-space span is in-
variant to translation, so, no new information for resolution enhancement
is achieved by additional scans.

• a rotation by an angle θ causes a rotation in k-space by the same θ.
The new k-space coordinates are related by (A−1)Tk to the reference
coordinates. In 2d we have:

A =
(

cos θ sin θ
− sin θ cos θ

)
= (A−1)T . (8.6)

Note that the determinant of the Jacobian is 1. However, the k-space
spans of the transformed images now cover different parts of the k-space
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Figure 8.8: Visualization of the maximum k-space coverage by the reference low-
resolution image and the high-resolution images obtained by 2d slice rotations and
3d volume rotations. The radii of the new k-space spans are given by

√
nkmax.

in case the signal is sampled on a rectangular grid. The maximum cov-
erages for slice and volume rotations are illustrated in Figure 8.8. The
theoretical maximum resolution improvement in both horizontal and ver-
tical direction is

√
n− 1 or about 41% (2d slice rotations) and 73% (3d

volume rotations) with rotations in the full range of [−45◦, 45◦].

• in case of scaling (this corresponds with a change in fov), the new k-
space coordinates change inversely proportional to the scale factor s and
the transformed Fourier signal is given by:

G(k) = s−nF (s−1k). (8.7)

Additionally, the Fourier coefficients are scaled with s−n. Note that the
k-space span also proportionally changes with the scale factor in each
dimension, but as discussed earlier in Section 8.2.1 and Section 8.2.2,
the object must fit entirely into the fov to avoid spatial aliasing and
it is impossible that images with lower resolutions can contain extra
high-resolution information.

Based on these observations, we can opt to acquire multiple slices or volumes of
the same object with different rotations. Unfortunately, the proposed strategy
can not be useful on all types of sequences: non-Cartesian circular sampling
(e.g., spiral or radial trajectories) does not change the k-space spans by means
of rotation.

8.3.2 The proposed reconstruction algorithm
There is an important difference between multi-frame sr image reconstruction
schemes and the proposed multi-frame mri reconstruction technique, namely
the source of new information: in the proposed framework, high frequency
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Figure 8.9: Outline of the proposed hybrid reconstruction algorithm.

information originates from different k-space coverages and not from frequency
aliasing as in camera-based sr applications. Based on the k-space coverages, we
propose a new reconstruction algorithm that is focused on the reconstruction
of true k-space data (i.e. we do not create artificial frequencies).
The complete block scheme of our reconstruction algorithm is given in Fig-
ure 8.9. In case the transformation parameters (such as rotation θi, transla-
tional shifts bi, etc.) are unknown, they have to be estimated by a subpixel
registration algorithm, as discussed in Section 7.2.3. The proposed algorithm
consists mainly of two steps, namely proper resampling of k-space data and
weighted fusion of the Fourier coefficients. We will discuss these components
in more detail.

8.3.2.1 Resampling of k-space data

In order to combine the information from several rotated (and shifted) lr im-
ages, the images must be aligned to a reference image with subpixel accuracy.
In Section 8.3.1, we have shown that a rotation of the object corresponds
to the same rotation in k-space. A common approach to resample a regular
Cartesian grid is to convolute the discrete data samples with the continuous
impulse response of a reconstruction filter [Lehmann et al., 1999,Seppä, 2007].
Because of practical issues, finite-support interpolation kernels are employed
in resampling tasks in contrast with the unlimited support of the ideal
interpolation kernel (i.e. sinc function) (see Chapter 2). As a consequence, an
inherent property of all traditional resampling schemes is that they smooth
the data more or less. Because blurring attenuates the high frequencies and
since most energy of the image is encoded in the lower frequencies, it is more
effective to perform resampling in the spatial domain rather than employing
regridding techniques in Fourier space [Jackson et al., 1991,O’Sullivan, 1985].
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Additionally, resampling in the image domain handles object shifts automati-
cally and can cope with higher order object transformations. After the discrete
Fourier transformation, we have a set of aligned k-space data on the hr grid.

In the algorithmic implementation of (rotational) resampling from the lr grid
to the hr grid, the estimated values are often computed in one step by the
convolution with the reconstruction filter. However, frequency aliasing can
be introduced because non-ideal interpolation kernels are employed. This can
be avoided using a two-stage alias-free resampling scheme [Seppä, 2007]: in a
first step, ideal sinc interpolation (i.e. zero-padding of Fourier coefficients) is
applied to attenuate the influence of the replicated spectral patterns and in a
second step, standard resampling is applied. In this way, we also avoid border
problems (i.e. the loss of high frequency components) in k-space, which occur
when image rotations are carried out on the same lr grid (see Section 2.2.4 for
a more detailed discussion).

8.3.2.2 Weighted fusion of aligned k-space data

Suppose that we have a set of m scans with different rotation angles θi (i =
1, . . . ,m). For simplicity, we will only discuss the 2d slice rotations. Extension
to 3d rotations is fairly straightforward. So, for each position k on the k-space
grid, we have to estimate the Fourier coefficient F (k) fromm aligned coefficients
Gi(k). We formulate this as a standard weighted least-squares problem:

F̂ (k) = arg min
F (k)

m∑
i=1

wi(k) (Gi(k) − F (k))2 . (8.8)

The solution of this problem becomes simply a weighted average over the m
samples:

F̂ (k) =

m∑
i=1

wi(k)Gi(k)

M∑
i=1

wi(k)

. (8.9)

We choose the adaptive weights so to minimize the variance of the estimator
in equation (8.9) and thus maximize the snr in the presence of independently
and identically distributed Gaussian noise. This yields [Van Trees, 1968]:

wi(k) =
{

1 if k is in the support of Gi,
0 else. (8.10)

The final image is then obtained by the inverse discrete Fourier transform.

We have developed two versions of the proposed reconstruction algorithm:
one with standard (one-stage) resampling (1sr) (i.e. jointly performing
interpolation and rotation) and one with two-stage alias-free resampling (2sr).
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The rotations in both reconstruction techniques are carried out by the 8-point
Blackman-Harris windowed sinc kernel [Lehmann et al., 1999].

We note that there are some similarities with parallel imaging (pe)
in mri [Larkman and Nunes, 2007] and camera-based image mosaic-
ing [Traka and Tziritas, 2003]: in pe, k-space data originating from different
receiver channels have to be combined and each are weighted according to
their spatial sensitivity. In image mosaicing, the fov of the mosaic is extended
by stitching several images with overlapping fov’s, a similar concept is now
applied in k-space.

8.4 Results and evaluation

8.4.1 Simulated experiment

As a noise-free experiment, we start from a 512 × 512 high-resolution image
phantom (see Figure 8.10). The k-space of the hr image has a circular footprint
as indicated in Figure 8.8, so it is also the theoretical bound for our reconstruc-
tion framework. We generate 128×128 images by rotating the hr image succes-
sively with an offset Δθ = 1◦ in the range [0◦, 90◦[. The rotation is performed
by the 8-point Blackman-Harris windowed sinc kernel [Lehmann et al., 1999].
To avoid frequency aliasing which is necessary to model an mri scanner, down-
sampling is carried out as bandwidth truncation in the Fourier domain, i.e. only
discrete samples in the k-space span are taken into account. As a result, we
obtain 90 rotated noise-free lr images.

In our benchmark, we will include for instance zero-padding interpolation
(or ideal sinc interpolation) of only the reference lr image and simple
averaging over all aligned lr images. The averaging here is implemented as
the combination of two-stage resampling (i.e. ideal sinc interpolation followed
by resampling) and equiweighted fusion in the image domain. We will also
demonstrate its effectiveness over the naive approach (denoted as naive averag-
ing), i.e. rotation and fusion on the lr grid followed by ideal sinc interpolation
as discussed in Section 8.3.2.1. We will also compare our reconstruction
techniques with the classic kernel regression (N = 2) [Takeda et al., 2007]
(see also Section 7.4.2). Kernel regression is a general resampling tool in the
spatial domain that is often used in camera-based multi-frame super-resolution
schemes.

Crop outs of the reconstruction results are shown in Figure 8.11. We can clearly
see that our methods are visually superior to other reconstruction methods:
they are very similar to the hr image, certainly when looking at the finest
horizontal transitions at the left. The proposed fusion using two-stage resam-
pling (2sr) also produces sharper results compared to the 1sr version. From
both ideal sinc interpolation and naive averaging, we can not distinguish the
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Figure 8.10: Original computer image phantom.

finest vertical lines, while other techniques do improve the true image reso-
lution. This is once again explicitly demonstrated in Figure 8.12, where the
images produced by averaging and kernel regression are enhanced using linear
restoration filters for better visualization.
In Figure 8.13, we can clearly see the differences between several reconstruction
methods: the plots of the proposed methods and especially of the 2sr version
come very close to the one of the original hr image. Furthermore, averaging
and kernel regression techniques produce profiles of very poor contrast. From
the sinc interpolation we can not distinguish the individual peaks which
underlines again the loss of spatial resolution.

If we take a closer look at the results produced by kernel regression in Fig-
ure 8.11, we can notice some zigzag artefacts: the vertical lines are not totally
straight but contain some jaggies. This artefact arises from the fact that the
kernel regression adapts itself to the pattern of the irregularly placed positions
of the pixels or voxels. The zigzag artefact is then much more pronounced
when the sampled data is not uniformly distributed, which is the case for plain
rotations. The locations of the samples are plotted in Figure 8.14, which results
in rosette-like structures.
We also compare the image quality of the reconstruction methods with the
original hr image. The quantitative measures expressed in psnr (dB) are given
in Table 8.1. The psnr values follow our subjective experiences and we can
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(a) Original hr image (b) lr reference image

(c) Sinc interpolation (d) Naive averaging

(e) Averaging (f) Kernel regression

(g) Proposed method (1sr) (h) Proposed method (2sr)

Figure 8.11: Detailed view of the reconstruction results on the region of interest
(roi) as indicated in Figure 8.10. The horizontal white lines represent the selected
1d profiles as illustrated in Figure 8.13.

(a) Averaging (b) Kernel regression

Figure 8.12: Enhanced visualization of the reconstructed results from Figure 8.11.
The images are obtained after applying linear image enhancement techniques (a com-
bination of vertical blurring and standard (isotropic) unsharp masking).



8.4 Results and evaluation 259

x position

in
te

ns
it
y

0

70

hr sinc avg 1sr 2sr kr

Figure 8.13: Comparison of several 1d profiles (as indicated in Figure 8.11): original
hr image (hr), sinc interpolation (sinc), averaging (avg), kernel regression (kr),
proposed methods (1sr) and (2sr).

Figure 8.14: Sample positions plotted for several rotated regular grids.
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Table 8.1: Image quality expressed in psnr of several reconstruction methods. The
best psnr result is written in bold letters.

Method psnr (dB)

Sinc interpolation 25.90
Naive averaging 25.18
Averaging 29.98
Kernel regression 29.52
Proposed method (1sr) 31.79
Proposed method (2sr) 40.26

see that our method (2sr) outperforms all other techniques in image quality.
We can also notice the loss in image quality of the naive averaging compared
to the ideal sinc interpolation as the result of the loss of high frequencies.

8.4.2 MRI of a hardware resolution phantom
We perform a similar experiment with actual mri data from a resolution
phantom. All mri data are acquired using a 3t siemens Magnetom Tim
Trio mri scanner. Note that the elliptical filter2 must be turned off during
acquisition, otherwise substantial k-space data for resolution enhancement is
discarded.

The resolution phantom (built from perspex) contains 11 rows of each 5 tubes
with increasing sizes filled in a fluid with a concentration of 1.25g NiSO4 · 6 H2O
per 1000g distilled H2O (illustrated in Figure 8.15). The slices are obtained
using a birdcage head coil and a flash sequence within a 384× 384 mm fov.
Slice thickness was set at 5 mm, the repetition time (tr) and the echo time
(te) were set at 100 ms and 4.8 ms respectively. The hr scan has a 1.0 mm
resolution (384× 384 matrix), while the 181 lr rotated images are acquired at
a resolution of 1.5 mm (resulting in 256×256 matrices) with an offset Δθ = 1◦

in a range of [−90◦, 90◦].

The reconstructed images are given in Figure 8.16. As a comparison with
ground truth data, the hr image is enlarged with sinc interpolation for better
visualization. In the hr mri data, we can clearly distinguish 4 (and almost 5)
smallest tubes on the top row. In the zero-padded lr mri data on the other
hand, we can not identify any individual tube on the top row, also, the dis-
torted shapes reveal the loss in spatial resolution and image quality. In both
kernel regression and naive averaging, none of the smallest tubes are distin-
guishable, but less artefacts are noticeable due to an increase of the psnr.

2The elliptical filter is a postprocessing tool built into the (siemens) mri scanner that
attenuates k-space data outside an elliptical or circular support.
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(a) Picture of the phantom (b) hr image

Figure 8.15: View of the resolution phantom and the 1 × 1 mm high-resolution
acquisition.

With simple averaging, some structures in the top row can be noticed, but it
is still very hard to recognize the individual tubes. Finally, in both versions of
the proposed algorithm, we can actually distinguish 4 separated tubes which
indicates resolution improvement on a real image. The 2sr version is visually
much sharper and contains more ringing effects compared to the 1sr version,
but still contains less ringing artefacts when compared to the zero-padded ref-
erence hr acquisition or sinc interpolation.

By means of the power spectra, we describe some properties of the different
reconstruction methods in Fourier space. The plots of the squared magnitude
of the Fourier transforms are shown in Figure 8.17 at a logarithmic scale due
to the large dynamic range of power spectrum values. We can clearly see why
naive averaging should be avoided: there is a notable suppression of frequen-
cies compared to the reference lr image data, and no high frequencies are
added unlike the correct averaging method. We also notice that the frequency
magnitudes are fading out for higher k values in the averaging method. Kernel
regression algorithms produce images with a lot of artificial high frequency com-
ponents which do not necessarily correspond to the true high frequency data.
The proposed methods reconstruct the k-space data very well in both cases,
but in the 1sr version we can observe some frequency aliasing effects at the
boundaries due to improper resampling as discussed before in Section 8.3.2.1.
So, our methods outperform the other reconstruction techniques in both spatial
and Fourier domains.
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(a) hr image (b) Sinc interpolation

(c) Averaging (d) Kernel regression

(e) Proposed method (1sr) (f) Proposed method (2sr)

Figure 8.16: Detailed view of the reconstruction results on the region of interest
(roi) as indicated in Figure 8.15.
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(b) Sinc interpolation

kx

k
y

−256 −128 0 128 256

−256

−128

0

128

256

(c) Naive averaging

kx

k
y

−256 −128 0 128 256

−256

−128

0

128

256

(d) Averaging
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(e) Kernel regression
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(f) Proposed method (1sr)
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(g) Proposed method (2sr)

Figure 8.17: The power spectra produced by several methods (i.e. logarithmic plot
of the squared magnitude of the Fourier transforms).
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(a) hr image (b) lr reference image

Figure 8.18: The hr and lr mri scan of an onion with 0.44×0.44 mm and 0.66×0.66
mm resolution respectively.

8.4.3 MRI of an onion

An onion provides an interesting and challenging test case because of the exis-
tence of fine structures at various scales. The images are acquired using a knee
coil, which has 8 receiver channels on board for parallel imaging. During the
acquisitions, we turn the normalization filter on in order to compensate for the
spatial sensitivities of the different receiver channels. A turbo spin-echo (tse)
T2-weighted sequence is employed within a 84×84 mm fov. Slice thickness was
set at 3 mm, tr was set at 800 ms and te was set at 115 ms. The 91 lr rotated
images are acquired at a resolution of 0.66 mm (resulting in 128×128 matrices)
with 2 averages per scan and an in-between offset of 1 degree (Δθ = 1◦) in a
range of [0◦, 90◦]. The reference hr image is obtained with a resolution of 0.44
mm (192× 192 matrix). Unfortunately, the adjusted sequence still produces a
lot of noise as illustrated in Figure 8.18.

In Figure 8.19, we compare the results of several reconstruction methods on
the roi as indicated in Figure 8.18. When we take multiple low-resolution
observations into account, we can clearly observe that the noise level is heav-
ily reduced. In the first place, the improvement in image resolution is also
somehow associated to the observed noise or signal-to-noise ratio: the ability
to distinguish tiny structures or lines increases when noise decreases. Addi-
tionally, we can observe tinier structures in the results of our reconstruction
methods compared to other resolution enhancement techniques, so extra res-
olution information is gained by extending the k-space span. Again, we can
clearly notice some zigzag artefacts close to the rotation center in the kernel
regression result. Fourier analysis of the reconstructed data reveals the same
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(a) hr image

(b) lr reference image

(c) Sinc interpolation

(d) Averaging

(e) Kernel regression (N = 2)

(f) Proposed method (1sr)

(g) Proposed method (2sr)

Figure 8.19: Detailed view of the reconstruction results on the region of interest
(roi) as indicated in Figure 8.18.

conclusion as for the reconstruction of the resolution phantom data illustrated
in Figure 8.17.
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8.5 Potential future applications
As we have shown in the previous sections, we can conclude that true image
resolution enhancement can be achieved by combining multiple mri data sets of
rotated fov’s. From this fact, several potential applications can be pointed out.

A first application is the reduction of patient motion artefacts: we can com-
bine several smaller lr scans instead of acquiring an hr scan with a longer
acquisition time. Because low frequencies at the k-space center are measured
each time once again, this results in a large total acquisition time. One way
to speed up is to employ non-squared voxel sizes: the k-space is covered by
rectangles instead of squares resulting in a better coverage with less overlap-
ping measurements. In the limit, radial trajectories are a special case of our
framework. The anisotropic voxels relate our work to periodically rotated over-
lapping parallel lines with enhanced reconstruction (propeller) mri,3 which
is intentionally designed for reducing motion artefacts [Pipe, 1999]. Note that
the proposed hybrid reconstruction algorithm performs resampling efficiently
in the spatial domain instead of using regridding techniques in k-space, as for
example in [Pipe, 1999].
The proposed hybrid reconstruction algorithm can be implemented very
efficiently with only linear filtering operations. This offers a lot of advantage
over the more exotic sampling strategies that avoid repeated sampling of
the same k-values, such as compressive sampling, which undersamples the
k-space at pseudo-random positions [Lustig et al., 2008]. Note that measuring
the k-space at totally random positions is however not very beneficial to the
efficiency of adjusting the magnetic gradients in the mri scanner.

A second potential application of interest is for example diffusion tensor mri
and fiber tractography. For this technique, one t2-weighted image and diffu-
sion weighted images of one slice are acquired in multiple directions, typically
30 or more. The diffusion weighted images only differ in contrast and contain
similar information in the high frequencies. When rotating the fov for the
different diffusion weighted images, an hr image can be obtained when com-
bining the images. The reconstruction algorithm should then be extended to
handle images with different contrasts and, especially in case of epi, varying
distortions according to the rotation of the fov. Other mri techniques that
require multiple acquisitions in any case, such as perfusion mri and functional
mri, are also suitable for the proposed enhancement technique.

8.6 Conclusion
During the last decade, numerous papers deal with the spatial
resolution enhancement of mri and in particularly, multi-frame
super-resolution techniques have gained much interest in the mri

3In siemens mri scanners, this is called blade mri.
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community. Despite the recent developments in super-resolution
mri [Carmi et al., 2006,Mayer and Vrscay, 2006, Stoch and Balcom, 2006], we
have pointed out some shortcomings of these approaches. Camera-based super-
resolution can not be successful in Fourier encoded plane because frequency
aliasing is absent in mri acquisition. True image resolution enhancement is
only possible if information outside the k-space span is obtained.

We have introduced an elegant way to enhance the image resolution by multiple
mri acquisitions: several rotated images are combined into one high-resolution
image with an enlarged k-space span. We have proposed a novel reconstruction
algorithm that consists of two parts: a proper resampling scheme in the image
domain followed by optimal fusion of multiple aligned k-space data. We
compare the proposed scheme with kernel regression, a general resampling
tool [Takeda et al., 2007] and multi-frame averaging. Numerical simulations
demonstrate the superiority of the proposed method, both quantitatively and
qualitatively. The results also demonstrate the effectiveness of our scheme
on real mri data of a resolution phantom and an onion. In both cases,
image quality has been improved and we can distinguish very small structures
which is not possible using reconstruction techniques that only require a
single image. Analyzing the Fourier data reveals that k-space data is indeed
extended beyond kmax and indicates that we have gained true spatial resolution.

One major drawback in our multi-frame mri reconstruction framework is
that the total acquisition time is still far too large to be applied in practical
and clinical settings. In the proposed methodology, the same low-frequencies
at the k-space center are measured each time once again. As mentioned in
Section 8.5, a solution is to acquire non-squared voxel sizes as in (propeller)
mri schemes, which is an alternative regridding technique. Future work
consists of determining the optimal parameters (e.g. number of scans, rotation
angles, the voxel dimensions, etc.) for a given acquisition time such that the
maximum coverage of the k-space is obtained.

Another interesting research topic is to combine our resolution enhancement
strategy in the Fourier encoded plane with classical sr mri techniques in slice-
direction. At last, it is also worthwhile to investigate our proposed scheme in
other image representations such as steerable pyramids, which holds jointly spa-
tial, frequency as well as directional image information [Simoncelli et al., 1992].
The reason is twofold: firstly, it avoids multiple transformations as it happens
now and secondly, it can incorporate robustness against spatial outliers in an
easy way (e.g. caused by local object motion).
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9
Conclusion

Now this is not the end. It is not even the beginning of the end. But it is, perhaps,
the end of the beginning.

—Winston Churchill

The main part of this dissertation addresses the improvement on the spatial
resolution of images and video sequences. Experiments on both simulated and
real data show the effectiveness of the different proposed techniques and its
potential use in real applications. An overview of the proposed techniques is
actually summarized in the decision chart shown in Figure 1.2.

In this chapter, we review our main contributions to image and video resolu-
tion enhancement techniques including the general class of image interpolation,
restoration and super-resolution. This thesis is finally concluded with some di-
rections for future research.

9.1 Review of our contributions

Linear interpolation methods are commonly proposed as a practical solution
for the image resolution enhancement problem. Unfortunately, artefacts such
as staircase, blur and ringing effects are inherit to these techniques. Therefore,
we developed a new non-linear interpolation technique that eliminates these
unwanted artefacts. The proposed interpolation algorithm sharpens edges
by mapping the image level curves using constrained adaptive contrast
enhancement techniques. To avoid the annoying amplification of jagged
edges, the level curves are preprocessed by constrained isophote smoothing.
Interpolation experiments show improvements of our method in both numer-
ical psnr results as well as in visual quality: the edges are much sharper,
while staircase and ringing artefacts are heavily reduced. The proposed tech-
nique is a very good alternative for existing interpolation software or hardware.

In practice, a digital image suffers from several degradations such as blur,
noise, compression artefacts, etc. Therefore, image restoration techniques are
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proposed to take these degradation models into account. Among these numer-
ous restoration methods, regularization techniques and especially the Bayesian
methods are very powerful because they are able to include prior knowledge
about the degradation and the hypothetical ideal image.
We introduced two new image colour priors, namely the adaptive bimodal
colour prior and the multimodal colour prior. The adaptive bimodal colour
prior assumes that the value of an edge pixel is a combination of the colours
of two connected regions, each having a dominant colour distribution. The
multimodal colour prior is proposed for images that normally just have a
few dominant colours. Restoration results show the effectiveness and the
visual superiority of the proposed Bayesian maximum a posteriori scheme
to other interpolation/restoration schemes for images with a strong colour
modality: noise and compression artefacts are removed very well and our
method produces less annoying artefacts such as blur and jagged edges. The
proposed restoration methods are found very suitable for the restoration of
cartoons and cartoon movies, logos, maps, etc.

Common image restoration techniques only exploit the spatial redundancy in a
local neighbourhood. We have demonstrated that the estimation of the restored
pixel intensity can be based on information retrieved from the whole image,
thereby exploiting the presence of similar patterns and features in the image,
which we call repetitive structures. Therefore, the new approach is referred to
as the non-local strategy, which is also related to the exemplar- and fractal-
based approaches.
We presented a novel resolution enhancement scheme that exploits the repeti-
tivity. The new strategy brings more pixel information at our disposal, which
leads to much better estimates of the unknown pixel values. Visual results
show that the proposed non-local upscaling technique is superior and has less
artefacts at very large magnifications to other resolution enhancement methods.

In document image processing applications, we can exploit the multiple occur-
rence of characters in the text. In order to take advantage of this repetitive
behaviour in an efficient way, we divide the image into character segments.
The character segmentation reduces the computation time drastically in
two ways: the algorithm only has to focus on these regions of interest and
the search space for possible matching candidates is enormously reduced.
Matching between the character segments filters relevant information before
the reconstruction. The proposed method combines the information from
similar characters and reconstructs the high-resolution characters in the
Bayesian framework with a text specific image prior. Experiments show that
characters and symbols are reconstructed very well and additionally, ocr
accuracy results show a significant improvement in comparison with other
restoration methods. The proposed method is not restricted to font type or
alphabet, therefore, it is also suitable to generic symbols such as musical notes,
hieroglyphics or mathematical symbols. The same strategy can also be applied
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in an exemplar-based search engine and in an efficient document compression
scheme.

Multi-frame sr image restoration is quite a complex problem, which spans
over several fields of image processing, such as motion estimation or image
registration, image reconstruction from irregularly spaced samples, image de-
convolution and denoising. In contrast to common restoration methods, it is
possible to restore true high-frequency content via sr techniques by exploit-
ing frequency aliasing. Due to its relatively low computational load and low
memory requirements, the standard three-step paradigm of the non-uniform in-
terpolation sr approach is recommended in most practical applications. These
three successive steps are subpixel image alignment, image fusion and hr image
restoration.

Problems such as temporal aliasing and motion blur can be solved by perform-
ing sr in the temporal direction. In some synthetic experiments, we evaluate
the subpixel accuracy of several state-of-the-art shift estimators and conclude
that the proposed lr-to-hr gradient-based registration method with steering
kernel regression produces the most accurate subpixel information. For the
photometric and joint geometric/photometric registration problem, we pro-
posed the use of the total least square framework. The tls solution produces
in both cases more accurate and consistent registration parameters in compar-
ison with the ordinary least square approach, which is commonly employed in
the literature.

For the image fusion problem, we have proposed and derived the kernel
regression algorithm in the tls sense to handle positional or registration
errors. The proposed method is more accurate and robust compared to the
standard kernel regression algorithms in case of moderate or heavy noise
and/or registration errors. We also have demonstrated the efficiency of the
proposed sr scheme in real-world examples and deinterlacing problems.

In an extensive study, we have pointed out some limitations in the recent
developments in super-resolution mri reconstruction and we also have argued
that classical super-resolution cannot be applied in the Fourier encoded plane
because of the complete absence of frequency aliasing during mri acquisition.

We introduced an elegant way to enhance the image resolution by multiple
rotated mri acquisitions. We have proposed a novel hybrid reconstruction al-
gorithm that performs resampling in the image domain followed by fusion of
multiple aligned k-space data. Numerical simulations demonstrate the supe-
riority of the proposed method, both quantitatively and qualitatively. The
results also demonstrate improvements on real mri data of a resolution phan-
tom and an onion. Analyzing the Fourier data reveals that we really have
gained true spatial resolution. However, in practical and clinical settings, the
mri images should be acquired using non-squared voxel sizes as in propeller
mri schemes.
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9.2 Hints for future research

It is not our intention to repeat the many ideas for future work that already
have been given at the end of each chapter. As an alternative, we choose to
focus on three interesting and challenging topics.

A first interesting topic is how to perform joint super-resolution from images
that are obtained in different modalities and/or under different conditions. We
refer different modalities to the images that are captured by different devices,
which is typical in for example remote sensing applications (e.g. multispectral
images versus panchromatic images), medical applications (e.g. mri versus ct
or pet images) or depth cameras (e.g. hr regular images versus lr depth im-
ages). By different conditions, we understand for example varying illumination
changes in uncontrolled experiments or different camera settings (e.g. with or
without flash, automatic white balancing or different exposure times, which
result in different dynamic ranges). Unfortunately, sr reconstruction can
no longer be obtained by simply combining the pixel values of the different
images. Instead of pixel values, we have to switch to higher level features such
as edge information or to more complex (photometric) registration models
that can deal with untrustworthy regions (e.g. due to clipping effects or
saturation). Determining the set of useful features and their mutual relation
in the different images is quite a challenging task.

A second topic of interest is how to define an accurate observation model for
each application or acquisition device. The acquisition models used in this
dissertation are quite generic in the sense that they are appropriate for an
extremely broad class of images (i.e. dealing with blur, decimation and noise).
In practice, these models should also take for instance compression and its
architecture into account because most of the image and video material are
stored in a compressed form. Artefacts produced by e.g. jpeg or jpeg2000
are in essence totally different and therefore, these compression schemes should
also be tackled differently.
A related problem is how to find the right parameters automatically. Tools
such as blur and noise identification become inevitable. The identification of
the correlated noise produced by sr algorithms is for example an interesting
research topic. A direct application can be found in a regular television set
where various types of incoming video material should be processed to display
on a single high-end screen. The quality of the incoming video can be high
(e.g. hd streams or Blu-Ray disks), moderate (e.g. sd streams or dvd) or
inferior (e.g. due to heavy compression in YouTube video’s from the Internet).
It is needless to say that the estimation of a correct and accurate observation
model is a very complex and challenging task.

A third interesting topic is how to choose and incorporate prior knowledge for
a specific application. Careful choice of the image prior models can result in
impressive improvements in restoration quality and further developments in
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this area should be encouraged. In this dissertation, we have already proposed
some highly specific colour prior constraints for cartoons and text images, which
lead to very good restoration results. Other applications where we can define
specific prior knowledge (whether or not accomplished by training) include for
example the restoration of faces, astronomical objects, etc.
Unfortunately, it is impossible to grasp the complexity and wealth of general
image content in some simple analytic expressions. Therefore, the development
of learning-based and non-local restoration techniques will be an important
research topic. Another problem is the design and the choice of image priors,
which does not only have to produce good restoration results (e.g. in terms of
recognition), but also needs to result in visually pleasant images, i.e. without
noticeable artefacts. A good example is the restoration of the texture of grass
during soccer games on television, where the texture is lost at most places due
to compression. It is not important that each stalk of grass can be recognized
correctly, but it is important that the viewer has a natural impression of the
soccer field. We believe that psycho-visual experiments can play an important
role in the design of such natural image priors.
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