
Accurate and Efficient BER Evaluation for
High-Speed OFDM Systems Impaired by TI-ADC

Circuit’s Gain Mismatch

Vo-Trung-Dung Huynh, Nele Noels, Heidi Steendam
Department of Telecommunications and Information Processing, Ghent University

{votrungdung.huynh, nele.noels, heidi.steendam}@ugent.be

Abstract—This paper presents an efficient procedure to nu-
merically evaluate the exact bit error rate of a rectangular
quadrature amplitude modulated-orthogonal frequency division
multiplexing (OFDM) system that is impaired by the gain
mismatch of a time-interleaved analog-to-digital converter. As op-
posed to previous contributions, no approximations are involved
in this procedure. The obtained results allow to accurately analyze
the effect of this type of mismatch on the performance of practical
high-speed OFDM systems. The accuracy and efficiency of the
proposed technique are demonstrated by comparing analytical
results with brute-force Monte-Carlo simulations.

Keywords—Bit error rate, OFDM, time-interleaved analog-to-
digital converter, gain mismatch, Monte-Carlo simulation.

I. INTRODUCTION

Thanks to its high spectral efficiency and tolerance against
channel dispersion, orthogonal frequency division multiplexing
(OFDM) has recently been introduced to many multi-Gigabit
broadband wired and wireless communication systems [1].
Such high-speed OFDM systems require a high sampling rate
analog-to-digital converter (ADC) placed prior to the baseband
digital signal processing unit at the receiver. However, the
operating sampling rate of a regular ADC is restricted by the
physical constrains of the employed technology [2]. A time-
interleaved (TI) structure of L identical parallel ADCs allows
to achieve such high sampling rates. The L sub-ADCs each
sample the analog input signal at a rate 1

LTs
with 1

Ts
the overall

sampling rate, where the sampling instants of the different sub-
ADCs are equidistantly spaced in time with interspacing Ts.

A bottleneck of the use of TI-ADCs is the mismatch
between the sub-ADCs, which can cause a significant system
performance degradation [3-6]. In particular, the effect of gain
mismatch on OFDM bit error rate (BER) performance was
studied in [5, 6]. In [5], the authors evaluated the effect of
TI-ADC’s gain mismatch on the OFDM-BER performance in
an AWGN channel by means of a tedious brute-force Monte-
Carlo (BF-MC) simulation. In [6], an approximate closed-form
BER expression was derived, again for an AWGN channel by
adopting a Gaussian approximation (GA) for the inter-carrier
interference (ICI) term caused by gain mismatch. However,
this approach was seen to yield inaccurate results when the
number L of sub-ADCs is low. In order to overcome the
limitations of the approaches from [5, 6], we propose an
efficient semi-analytic (SA) approach to evaluate BER values
for OFDM systems affected by TI-ADC’s gain mismatch.
The approach consists in the analytical computation of the

BER conditioned on the data sequence X and the channel
vector H, i.e., BER|X,H , followed by a numerical averaging
of BER|X,H over the joint distribution of X and H using
MC technique. For AWGN and static channels, standard MC
can be applied. For Rayleigh fading channels, an appropriate
importance sampling (IS) technique is proposed to reduce the
time required to perform the MC simulation.

The paper is organized as follows. Section II describes the
system model. An exact semi-analytic BER evaluation proce-
dure is derived in Section III. Section IV provides numerical
results to validate the accuracy and efficiency of the proposed
procedure. Our conclusion is given in Section V.

II. SYSTEM DESCRIPTION

Fig. 1 illustrates the block diagram of the considered
OFDM system. The discrete baseband OFDM signal trans-
mitted in one OFDM symbol period is given by:

sk =
1√
N

N−1∑
a=0

Xae
j2π ak

N , 0 ≤ k ≤ N − 1, (1)

where N is the number of sub-carriers in an OFDM system,
and X = (X0, X1, ..., XN−1)

T is a vector consisting of data
symbols taken from a unit-energy rectangular MI × MQ-
QAM constellation, in which (log2MI +log2MQ) transmitted

bits, i.e., b
(XI

n)
u with u = 1, 2, ..., log2MI and b

(XQ
n )

u with
u = 1, 2, ..., log2MQ, are mapped on the constellation symbol
Xn. To eliminate inter-symbol interference (ISI), a cyclic
prefix (CP), whose length is larger than the maximum delay
spread of the channel, is applied. Before transmission, the
OFDM signal passes through a digital-to-analog converter
(DAC) and a transmit filter. At the receiver, assuming timing
synchronization and matched filtering, the received waveform
after CP removal is sampled by a TI-ADC with L parallel
sub-ADCs. The TI-ADC is assumed to have a sufficiently
high resolution so that the quantization noise can be neglected
[7]. Furthermore, since in practice, the gain values of the sub-
ADCs in a TI-ADC are only slowly time varying [8], we model
them as constants over the duration of an OFDM symbol. The
output of the TI-ADC with gain mismatch can be expressed
as [6]:

rk =
L−1∑
l=0

+∞∑
q=−∞

(1 + dgl)
(√

Es · sk ⊗ hk + wk

)
·δk−qL−l,

0 ≤ k ≤ N − 1,
(2)



Channel

Transmit 

filter 

TI-ADC

CP Removal 

+ Channel Est. and Comp. 

+ OFDM Demodulation

Data 

Detector

bits

bits Receive 

Filter

DACMapping

OFDM 

Modulation

+ CP insertion

+
AWGN noise

X
a

s
k

r
k

R
n

Fig. 1. Block diagram of an OFDM system with a TI-ADC at the receiver.

where rk denotes the k-th received sample, hk is the sampled
impulse response of the channel, ⊗ denotes the discrete
convolution operation, sk is defined by (1), dgl is the gain
mismatch value of the l-th sub-ADC expressed relative to the
transmitted symbol energy Es, δ denotes the discrete dirac
function, and wk are independently and identically distributed
(i.i.d.) AWGN noise samples with zero mean and variance N0

2
per dimension. Further, in (2), we assume a slowly varying
channel, so that the channel impulse response remains roughly
constant over a symbol period [9]. Before data detection, the
receiver employs a zero-forcing equalizer to compensate the
effect of the channel. The output of the equalizer is given by:

Rn = 1
Hn

√
N

N−1∑
k=0

rke
−j2π kn

N

=
√
Es (1 +DG0)Xn +

√
Es

An

Hn
+ Φn

Hn
,

0 ≤ n ≤ N − 1,

(3)

where Hn is the frequency channel response and DGi is given
by:

DGi =
1

L

L−1∑
l=0

dgle
−j2π il

L . (4)

Further, in (3), the interference contribution An is defined as:

An =
L−1∑
i=1

DGiXtHt, (5)

with t = mod(n− iN/L,N) denoting the remainder after
division of n− iN/L by N , and the noise contribution Φn is
written as:

Φn =
L−1∑
i=0

DGiWt +Wn, (6)

with Wn the i.i.d. AWGN noise samples in frequency domain,
In (3), it is assumed that the number L of sub-ADCs is a power
of 2, and the ratio N

L between the DFT size and the number of
sub-ADCs is an integer value. Extension to non-integer values
of N

L is straightforward1. The quantities Rn (3) are used to
detect the bits corresponding to Xn by mapping Rn to the
nearest constellation point and applying the inverse mapping

1In that case, Rn (3) becomes Rn =
√
EsXn +√

EsÂn

/
Hn + Φ̂n

/
Hn, where the interference contribution is

Ân =
√
Es

∑L−1
i=0 DGi

∑N−1
a=0 XaHasinc (a− t) and the noise

contribution Φ̂n =
∑L−1

i=0 DGi
∑N−1

a=0 Wasinc (a− t) + Wn, with
sinc (x) =

sin(πx)
πx

.

rule; the resulting estimated bits are donated b
(RI

n)
u with u =

1, 2, ..., log2MI and b
(RQ

n )
u with u = 1, 2, ..., log2MQ.

III. BER ANALYSIS

In this section, first an exact BER expression is derived
for a given data sequence X and a given frequency chan-
nel response vector H. Assuming Nd data-modulated sub-
carriers2, the BER for given X and H, i.e., BER|X,H , can
be decomposed as:

BER|X,H =
1

Nd

∑
n∈Id

BER|X,H ,n, (7)

where BER|X,H ,n denotes the conditional BER|X,H for the
n-th data-modulated sub-carrier and Id is the set of indices
of the modulated sub-carriers, i.e., Id ⊂ {0, 1, ..., N − 1}.
Further, as each sub-carrier carries a rectangular QAM symbol
Xn, formed by a sequence of (log2MI+log2MQ) independent
and equiprobable bits using the binary reflected Gray code
(BRGC) bit mapping rule [12], BER|X,H ,n in (7) can be
further decomposed as:

BER|X,H ,n =
1

mI +mQ

∑
β,u

BERβ
|X,H ,n,u, (8)

where β ∈ {I,Q} refers to the in-phase (I) and quadrature (Q)
dimension of the signal, mβ = log2Mβ , u ∈ {1, 2, ...,mβ},

and BERβ
|X,H ,n,u is the BER corresponding to the bit b(

Xβ
n)

u .
Taking into account (3), BERβ

|X,H ,n,u can be written as:

BERβ
|X,H ,n,u =

Pr

[(
(1 +DG0)Xn + An

Hn
+ Φn√

EsHn

)β
/∈ Ωu,Xn |X,H

]
,

(9)
where (z)

β is defined as:

(z)
β
=

{
ℜ{z} , if β = I
ℑ{z} , if β = Q

, (10)

with ℜ{z} and ℑ{z} denoting the real and imaginary
part of z, respectively. Further, Ωu,Xn in (9) is the inter-
val of 1√

Es
(Rn)

β , with Rn from (3), for which the re-

ceived bit b
(Rβ

n)
u equals the transmitted bit b

(Xβ
n)

u . For the
2In practice, in many OFDM systems, not all N sub-carriers are used for

data transmission. For instance, a few sub-carriers near the edges (i.e., the
guard band) are not modulated to achieve a sufficient transition band at the
bandwidth boundaries [10].
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Fig. 2. An illustration of the decision regions and boundaries required to derive the BERβ
|X,H ,n,u

expression for Mβ = 8, u = 3, v = 3.

BRGC mapping, the boundaries of the interval Ωu,Xn can
be expressed as [13] (see an example in Fig. 2): ∆u,y =(
(2y − 1) · 2mβ−u+1 −Mβ

)
dβ , where dβ denotes the half

minimum Euclidean distance in the β-dimension [11] and
y ∈

{
1, 2, ..., 2u−1

}
. Note that for a given data sequence

and a given channel, An (5) can be considered as con-
stant. Further, the noise term Φn is an i.i.d. complex Gaus-
sian random variable with zero mean and variance σ2 =
N0

2

(
1 + 2DG0 +

∑L−1
i=0 |DGi|2

)
per dimension, where |z|

denotes the absolute value of z. Hence, it follows that
BERβ

|X,H ,n,u from (9) is of the following form:

BERβ
|X,H ,n,u

= 1
2

Fu,v∑
y=1

λu,v,yerfc (Γu,v,y (Xn,Hn))

+1
2

2u−1∑
y=Fu,v+1

ρu,v,yerfc (−Γu,v,y (Xn,Hn)).

(11)

In (11), the BER consists of two sums, corresponding to the
decision boundaries (for given u) at the left and right side of
(Xn)

β , respectively. The number of terms in the sums depend
on Fu,v , which indicates the number of the boundaries left of
the considered constellation symbol. For the BRGC mapping
rule, we have: Fu,v =

⌊
(2v + 1) 2−(mβ−u+2) + 2−1

⌋
, where

⌊z⌋ denotes the largest integer smaller than z and v =
1
2

(
(Xn)

β
/
dβ +Mβ − 1

)
. Further, erfc (.) is the comple-

mentary error function (erfc-function) defined by: erfc (x) =
2√
π

∫∞
x

e−z2

dz, and the argument Γu,v,y (Xn,Hn) of the erfc-
function in (11) is given by:

Γu,v,y (Xn,Hn) =(
(1 +DG0) (Xn)

β
+
(

An

|Hn|ejθn

)β
−∆u,y

)
|Hn|

√
Es

2σ2 ,

(12)
with θn = arctan

(
(Hn)

Q
/
(Hn)

I
)

. Finally, the pre-factors

λu,v,y = (−1)⌊2
u−2−mβ (((Xn)

β−∆u,y)/dβ−1)⌋ and ρu,v,y =

(−1)⌊2
u−2−mβ (−((Xn)

β−∆u,y)/dβ−1)⌋ take the values +1 or

−1. Substituting (8) and (11) into (7), we obtain

BER|X,H = 1
2Nd(mI+mQ) ·∑

n,β,u

(
Fu,v∑
y=1

λu,v,yerfc (Γu,v,y (Xn,Hn))

+
2u−1∑

y=Fu,v+1

ρu,v,yerfc (−Γu,v,y (Xn,Hn))

)
.

(13)

The BER expression for an Ms-ary square QAM constellation
is obtained by setting in (13) MI = MQ =

√
Ms and

dI = dQ. Similarly, the BER expression for an Mp-ary PAM
constellation is derived by setting MI = Mp, MQ = 1 and
the sum over the β = Q dimension disappears.

We will now use (13) to evaluate the BER, by averaging
BER|X,H over the statistics of X and H. However, due to
the complex dependency of (13) on X and H, a closed-form
expression of the average BER cannot be obtained. Hence, we
resort to MC simulation to obtain an unbiased estimate of the
BER. A standard MC estimator computes the BER as [14]:

BERMC =
1

NMC

NMC∑
j=1

BER|Xj ,Hj
, (14)

where NMC is the number of simulation runs in the MC
experiment. Each run requires the re-evaluation of (13). The
accuracy of (14) increases with the value of NMC . In the
case of AWGN or static channels (i.e., fibre-optic or wired RF
links), the BER is efficiently evaluated by using (14). However,
for Rayleigh channels, a very large NMC is typically required
to obtain an accurate estimate for lower BER values. This is
mainly due to the low occurrence probability of bad channels.
To reduce the computation time, as an alternative, the unbiased
self-normalized importance sampling (IS) estimator [14] can
be employed. In that case, the average BER for Rayleigh
channels is computed as:

BERIS =
1

NIS

NIS∑
j=1

BER|Xj ,Hi,wj
, (15)

using NIS simulation runs in the IS experiment. In contrast
to (14), where each channel evaluation is assigned the same
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Fig. 3. An illustration for the choice of the proposed sampling distribution
q(y).

weight, the BER|Xj ,Hj ,wj
in (15) takes into account the

probability of a channel occurrence by inserting the importance
weights wn = p (yn)/q (yn) (yn = |Hn| ≥ 0):

BER|Xi,Hi,wi
= 1

2Nd(mI+mQ)
∑

n∈Id

wn
·

∑
n,β,u

wn ·

(
Fu,v∑
y=1

λu,v,yerfc (Γu,v,y (Xn,Hn))

+
2u−1∑

y=Fu,v+1

ρu,v,yerfc (−Γu,v,y (Xn,Hn))

)
,

(16)

where p (yn) is the probability density function of |Hn|, which
is a Rayleigh distributed random variable with zero mean and
variance σ2

H per dimension: p (yn) = yn
/
σ2
H · e−y2

n/2σ
2
H , and

q (yn) is the sampling distribution. For this sampling distribu-
tion, we use a Gaussian distribution whose tail decays slower
than the tail of p (yn): q (yn) = 1

/√
4πσ2

H · e−y2
n/4σ

2
H (yn ≥

0). This choice of q (yn) significantly reduces the number of
runs required to evaluate the low BER values [15]. This can
be explained as follows. Due to the shape of the Gaussian
distribution, we generate with a high probability |Hn| values
with low amplitude, whereas the probability of obtaining this
amplitude is low for the p (yn) distribution (see Fig. 3)3. As a
result, the error events, which will influence the accuracy most
for low BERs values, are more likely to occur. This results in
a smaller number of required simulation runs.

IV. NUMERICAL RESULTS

In order to evaluate the accuracy of the proposed semi-
analytic BER evaluation procedures from (14) (SA-MC) and
(15) (SA-IS), we compare the obtained numerical BER results
with the empirical BER that is obtained by means of a BF-
MC simulation of the detector response to (3). This is done
for various constellations, different L and mismatch levels.
Both AWGN and Rayleigh fading channels are considered. In
the case of an AWGN channel, Hn = 1 for all n. In the
case of a Rayleigh fading channel, without loss of generality,

3Note that the negative values of |Hn| yield wn = 0 and can therefore
simply be omitted.

TABLE I. SIMULATION PARAMETERS

Parameters Reference values
Es 1
N 2048
L 2, 4 or 8

dg
(100%)
l [0.61,−0.75,−0.31, 0.26, 0.82,−0.55,−0.16,−0.95]

we assume the Wide Sense Stationary Uncorrelated Scattering
model and 2σ2

H = 1. Further, we generate L independent gain
mismatch values dg

(100%)
l according to a uniform distribution

over the interval [−1, 1] [8] and keep these values fixed.
They can be interpreted as 100% level gain mismatch values
corresponding to a particular TI-ADC implementation. The
simulation parameters are summarized in Table I. The level of
mismatch will be varied by scaling the dg

(100%)
l gain mismatch

values, i.e., for an x% mismatch level, we use as the gain
mismatch values: dg(x%)

l = x
100dg

(100%)
l .

First, we investigate the BER performance in an AWGN
channel (Hn = 1). In Fig. 4, BER curves obtained with the BF-
MC and SA-MC methods are provided for different mismatch
levels, different modulation types and orders, and different
number L of sub-ADCs. For comparison, the BER for the
same systems without mismatch (analytical results from [6])
and the approximate BER obtained by applying a Gaussian
approximation (GA) [6] are also provided. Here, the number
of simulation runs equals 100 for SA-MC and 1000 for BF-
MC. These numbers of simulation runs are selected in order to
have the estimated BER results converge. Further, the values
dgl of the gain mismatch used in the simulations correspond
to the first two (L = 2), four (L = 4) and eight (L = 8) dgl
values given in Table I, respectively. We make the following
observations:

1) Mismatch versus no mismatch: It is obviously seen
from Fig. 4 that the gain mismatch causes a system
performance degradation, which is worse when ei-
ther L, the mismatch level, or the modulation order
increases.

2) SA-MC versus BF-MC and GA: Fig. 4 illustrates that
the proposed semi-analytic BER evaluation procedure
SA-MC yields the same results as BF-MC, but with
much less simulation runs, whereas the approximate
BER from [6] significantly overestimates the actual
BER for a low value L.

We investigated numerous other parameter settings (results not
shown in this paper), and found the similar results.

Next, we demonstrate the efficiency of employing IS in
evaluating low BER values in a Rayleigh fading channel4. Fig.
5 illustrates the BER resulting from BF-MC, SA-MC (obtained
by using (14)) and SA-IS (obtained by using (15)) for 4-QAM,
0.5% mismatch and L = 4. In order to have a convergence of
the estimated BER results, the required number of simulation
runs for the BF-MC, SA-MC and SA-IS approaches is 5000,
1000 and 100, respectively. By means of comparison, the BER
obtained with SA-MC after only 100 simulation runs is also

4The channel impulse response used in the simulations is modelled
as a conventional exponential decaying multi-path fading channel: hk =
C

∑99
m=0 e

−m/200Amδk−m, where C is the normalization constant and
Am are i.i.d complex-valued Gaussian random variables with zero mean and
unit variance. The CP length equals 128.
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Fig. 4. BER curves in an AWGN channel for different mismatch levels,
different modulation types and orders, and different L: (a) square QAM, 20%
mismatch, L = 8; (b) 32 PAM, 3% mismatch, L = 2, 4; (c) 4 × 2 QAM,
10%, 20% and 30% mismatch, L = 2.

shown. It can be observed from Fig. 5 that the SA-MC BER
with 100 runs significantly deviates from the BF-MC BER,
while the SA-MC BER with 1000 runs and the SA-IS BER
almost coincide with the BF-MC BER. Hence, SA-IS requires
much less simulations to accurately estimate low BER, i.e.,
a factor 50 and 10 less as compared to BF-MC and SA-MC,
respectively.
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Fig. 5. BER curves in a Rayleigh fading channel for 4 QAM, 0.5% mismatch,
L = 4, and different estimators.

V. CONCLUSIONS

In this paper, we have proposed a novel semi-analytical
procedure to efficiently evaluate the exact BER of OFDM
systems with the effect of TI-ADC’s gain mismatch for AWGN
channels and Rayleigh fading channels. Simulation results con-
firmed the accuracy and efficiency of the proposed approach.
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