Step detection using LSTM networks

Stef Vandermeeren®, Herwig Bruneel2, Heidi Steendam!
! TELIN/IMEC
2 TELIN
Ghent University, Belgium,
e-mail: {firstname}.{lastname}@ugent.be

Abstract—During the last years, a lot of research has been
carried out on indoor localisation techniques. These techniques
can provide valuable information to a very broad range of
applications, e.g. in situations where a user needs to find his/her
way inside a large building like a shopping centre or an airport.
One popular approach to track the location of a user is to use
an inertial measurement unit (IMU), which is the combination of
an accelerometer, gyroscope and sometimes magnetometer. The
IMU allows us to track a user with a people dead reckoning
(PDR) system by detecting each step the user takes, combined
with the length and heading of that step. To this end, an
algorithm must first be able to recognise the boundaries in the
signal corresponding to a single step. In this paper, we use the
accelerometer to detect the start and end of each step using a
neural network based on the LSTM architecture. This resulted
in a precision of 98.8%(99.5%) and a recall of 99.2%(99.3%) for
detecting the start(end) of a step.

I. MOTIVATION

In the literature, several methods can be found to detect
the steps of a user. A first method [1], employs the periodic
pattern in the measured acceleration. An example is shown
in Figure 1, where a user took four steps with a handheld
smartphone. A drawback of the algorithms in [1] is that they
all have some parameters that need to be tuned to the specific
user, which limits their usefulness. In [2], the authors use an
artificial neural network (ANN) to count the number of steps a
user takes. To this end, the authors divide the acceleration into
shorter fragments. The ANN is then trained to output 1 when
the fragment corresponds to a step and 0 otherwise. A problem
with this approach is that more than one step can be present in
the fragment. In [3], the authors use Bidirectional Long Short-
Term Memory Recurrent Neural Networks (BLSTM-RNNG) to
count steps. BLSTM-RNNSs are a type of neural network that
can handle time series with an unknown size, and can also use
the information of the time series to predict the output at other
time steps. Hence, these networks are capable to show some
kind of memory. As the authors use a bidirectional network,
the neural network is able to use information from previous
and future time steps of the input time series. Common to all
these works is that the authors do not verify that each step is
detected at the right time, which is important if the step length
is determined from the acceleration samples of one step. In our
previous work [4], we developed a method to estimate the step
length using an accelerometer only. In that work, we manually
divided the measured acceleration into smaller fragments that
corresponded to a step. However, to be practically useful we
also need to be able to automatically subdivide the measured
acceleration signal into steps. In this work, we develop a deep
learning-based step detection algorithm, which determines the
start and end of each step, and we also verify how accurately

our algorithm can estimate the start and end. The reason that
we determine the start and end of each step separately, and
not just the boundaries of a step, is to prevent that if there is
a pause between two steps, we would consider this pause as
a step.

N
EN

).

g

N

N
T
)

\

o
©
T
>
-
-

acceleration magnitude (in
o
P N
:

o
3
T
-

o
)
o

2

05 Ttime (in s)1'5

Figure 1. Filtered acceleration magnitude for a user that took 4 steps with a
handheld phone

II. START AND END DETECTION OF A STEP

In this section, we describe how we determine the start and
end of each step from the measured acceleration (sampled at
100Hz) of a handheld phone in texting position. In Figure 1,
we show the filtered magnitude of the measured acceleration
when a user took four steps, and the boundaries for one
step. From this figure, we can easily recognize the four steps;
the boundaries of each step can be found by detecting the
instants where the acceleration magnitude crosses 1g with a
positive slope. Hence, in theory, the step boundaries can be
easily found by determining the instants where the acceleration
magnitude crosses 1g. However, noise and acceleration not
related to taking steps (e.g. shaking the IMU), can result
in multiple positive crossings of 1g within a single step.
In this work we use a Long Short-Term Memory (LSTM)
network [5], which is a recurrent neural network (RNN), to
determine the start and end of each step. An LSTM network
is a type of neural network that is able to detect temporal
patterns in a data sequence. While regular neural networks
start from a fixed-length input and transform this input into a
hidden state and finally into a fixed-length output; recurrent
neural networks, however, make it possible to also use the
hidden state of previous inputs, enabling LSTMs to have some
kind of memory. This makes LSTMs ideally suited to make
predictions based on data from time series (in our case the

acceleration signal). In this section, we only describe how the
start of a step can be determined. The process to determine
the end of a step, however, is very similar. In Figure 2, we
show the architecture of our LSTM network. Each time a
new sample of the accelerometer is available, we provide the
z-,y- and z-component of the acceleration together with the
magnitude, i.e. a four-dimensional vector, as an input to the
LSTM network. Next, this input is fed to two LSTM layers
with 10 hidden units each. The optimal value for this parameter
was found by simulation. Finally, we transform the output of
the final LSTM layer into the desired output using a dense
layer. Before we can start training our LSTM, we first need
to define the desired output of the LSTM. Ideally the output
of the LSTM network is equal to one when a step begins and
zero elsewhere. However, this would complicate the training
of the LSTM network as a model that detects the start of a step
only one sample late is considered equally bad as a model that
did not detect the start of that step. To solve this problem, we
make the output equal to 1 in an interval around the start of a
step. A final problem is that the LSTM network cannot decide
about the start of a step based on only the first acceleration
sample of that step, but needs to observe the acceleration for
a short interval of the signal. To solve this problem, we add a
delay to the correct output, i.e. the training output will become
one for the start of a step after this delay. As long as this delay
is shorter than a step, we are still capable to estimate the step
boundaries in real time. Once we have a trained model, we
can input the accelerometer data sample by sample to test the
model on new data. The procedure to determine the end of
a step is very similar to the procedure we discussed in this
section to determine the start of a step. The only difference is
that to determine the end of a step, we do not add a delay to
the output as only previous data suffices to predict if a sample
corresponds to the end of a step.

‘ output ‘ ‘ output ‘ ‘ output‘ ‘output‘

Output shape I
Dense:(1,1)

‘ Dense ‘ ‘ Dense ‘ ‘ Dense ‘ ‘ Dense ‘

Output shape —
LSTM 1/2:(1,10) vee

Input shape : iy iy i3 i300
(1,4) ‘ input ‘ ‘ input ‘ ‘ input ‘ ‘ input ‘
Shape accelerometer [A, A\/\\/‘

data: (300,4)
time

Figure 2. Architecture of our LSTM network for detecting the start(end) of
a step

III. RESULTS

To train and test our step detection algorithm, we gathered
acceleration data for in total 6226 steps from which 3120
were used to train the algorithm, and 3106 for testing. In this
section, we evaluate if our step detector is capable to detect
the start and end of steps, and if these are also detected at
the correct instants. We assume that the start(end) of a step is
detected correctly, if the time between the detected and true
start(end) of a step is less than 0.25s (optimal value found by
simulation). To evaluate our algorithm, we determine the recall

and precision for both the estimated start and end of steps and

both for the training and test set, i.e. precision = tptf " and
recall = t;prfm where ¢p is the number of starts(ends) of a step

that are predicted correctly, i.e. are less than 0.25s from a true
start(end), fp is the number of starts(ends) that are predicted
at a wrong time (difference with a true start(end) larger than
0.25s), and fn is the number of true starts(end) of a step that
are not detected by our detection algorithm. Hence, precision
tells us if our detector detects a start(end) of a step, how likely
it indeed is a start(end), while recall tells us if a start(end) of
a step occurred, how likely our algorithm will detect this. In
Table I, we give the recall and precision for the detection of
the start and end of a step both on the training and test set. For
detecting the start of a step, we achieved a recall and precision
of respectively 99.2% and 98.8% on the test set, while for
detecting the end of a step, we achieved respectively a recall
of 99.3% and a precision of 99.5%. From this table, we can
see that in general, our algorithm has slightly higher recall than
precision. We also notice that our algorithm is slightly better
at detecting the end than the start of a step. A reason for this
can be that to correctly detect the start of a step, we needed to
add a delay to the output of our LSTM network, which makes
the detection of the start of a step more complicated.

Table I
RECALL AND PRECISION FOR DETECTION OF START(END) OF A STEP ON
TRAINING AND TEST SET

start of steps end of steps

training set | test set test set
98.9

98.5

training set
99.3
98.6

recall(%) 99.2

98.8

99.3
99.5

precision(%)

IV. CONCLUSIONS

In this paper, we designed a step detection algorithm that is
able to detect the start and end of each step. To this end, we
used an LSTM network that is able to take into account the
temporal patterns in the acceleration signal. We also verified
that the starts and ends of a step were detected at the correct
instant. Our approach resulted in a precision and recall around
99% for both detecting the start and end of a step. In our future
work, we can use the start and end of step to e.g. estimate the
length and/or orientation of each step.

ACKNOWLEDGEMENT

This work is funded by the EOS grant 30452698 from the Belgian
Research Councils FWO and FNRS.

REFERENCES

[1] A. Brajdic and R. Harle. Walk detection and step counting on uncon-
strained smartphones. In Proceedings of the 2013 ACM international
Jjoint conference on Pervasive and ubiquitous computing, pages 225-234.
ACM, 2013.

[2] J. Kupke, T. Willemsen, F. Keller, and H. Sternberg. Development of
a step counter based on artificial neural networks. Journal of Location
Based Services, 10(3):161-177, 2016.

[3] Marcus Edel and Enrico Koppe. An advanced method for pedestrian dead
reckoning using blstm-rnns. In Indoor Positioning and Indoor Navigation
(IPIN), 2015 International Conference on, pages 1-6. IEEE, 2015.

[4] Stef Vandermeeren, Samuel Van de Velde, Herwig Bruneel, and Heidi
Steendam. A feature ranking and selection algorithm for machine
learning-based step counters. /IEEE Sensors Journal, 18(8):3255-3265.

[5] Felix A Gers, Jirgen Schmidhuber, and Fred Cummins. Learning to
forget: Continual prediction with Istm. 1999.

