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Abstract—In practice, the orientation of a VLP receiver is
often estimated with an external orientation estimation device.
However, these devices generally suffer from drift and misalign-
ment, causing an uncertainty in the measured orientation. In this
paper, we evaluate the effect of the orientation uncertainty. We
consider the first-order Taylor series expansion of the received
signal strength (RSS) to cope with the non-linear relationship
between the RSS and the orientation uncertainty, which results
in a closed-form expression for the PDF of the RSS.

Index Terms—Visible light positioning, Orientation uncer-
tainty, Approximation.

I. INTRODUCTION

During the last decade, visible light positioning (VLP)
received an increasing amount of attention. Due to the direc-
tionality of the transmitter and the confine field-of-view (FOV)
of the receiver, VLP systems are able to accurately estimate
the receiver’s position. However, the RSS not only depends
on the position of the receiver, but also on its orientation.
Many works, e.g. [1]–[3], consider the performance of the
VLP system when the orientation of the receiver is known.
They assume that the orientation is provided by an external
orientation estimation device. However, the accuracy of the
orientation is limited as 1) the external device typically experi-
ences severe biases and drift problems, and 2) the movement of
the receiver degrades the orientation estimation performance.
As a conclusion, the orientation is not perfectly known but
is subject to noise. As this orientation uncertainty will affect
the positioning performance of state-of-the-art algorithms, the
uncertainty should be investigated.

In this paper, we evaluate the effect of the orientation
uncertainty. As the relationship between the RSS and the
orientation of the receiver is highly non-linear, finding the
PDF of the RSS, required in designing efficient estimators,
is hard. To find a closed-form approximation for this PDF, we
model the orientation uncertainty using the concepts from the
Lie algebra [4] and approximate the non-linear relationship
between the RSS and orientation uncertainty using the Taylor
series expansion of the RSS.

II. SYSTEM MODEL

Assuming the LED can be modeled as a Lambertian radia-
tor, the channel gain for the system can be written as [5]
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Fig. 1: System model
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2πv2
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) , (1)

where v is the distance between the LED and the receiver, φ is
the radiation angle at the LED, θ is the incidence angle at the
PD, AR is the area of the PD, θFOV is the FOV of the PD, γ
is the Lambertian order of the LED, and Π (x) ∆= { 1, ∣x∣≤1,

0, ∣x∣>1. is
the rectangular function. The received signal strength yields

P = RpPth +w, (2)

where Rp is the responsivity of the PD, Pt the power trans-
mitted by the LED, and w is the shot noise, which is assumed
to be zero-mean Gaussian distributed.

It is assumed that the LED has coordinates r ∈ R3×1 and
normal n ∈ R3×1, and the PD has coordinates rR ∈ R3×1 and
normal nR ∈ R3×1. The orientation of the PD is expressed
in terms of a rotation matrix R ∈ SO(3) with respect to a
reference orientation nR,0, i.e. nR = RnR,0. As the refer-
ence orientation, we select the case of the receiver pointing
straight upwards, i.e. nR,0 = [0 0 1]T. The rotation matrix
R is decomposed into a deterministic rotation R̃ ∈ SO(3),
corresponding to the estimate of the orientation, and a random
rotation Rε ∈ SO(3), containing the orientation uncertainty,
with R = Rε ⋅ R̃. Using the concept of Lie groups, the
random rotation can be expressed as Rε = exp (ε×) where ε =
[εx εy εz]T is a random rotation vector and the operator (⋅)

×

converts the vector ε into an element of the Lie algebra so(3)
of the 3D rotation group SO(3). We further define the receiver
normal without orientation uncertainty as ñR = R̃nR,0. The
distribution of the rotation matrix Rε is determined by the



distribution of the rotation vector ε. This rotation vector is
assumed to be zero-mean Gaussian distributed.

The channel gain depends on the orientation uncertainty
through the incidence angle θ only. Let us define the incidence
vector v as the vector between the LED and the PD, i.e. v =
rR − r. Hence, the channel gain (1) can be rewritten as

h =K(n,v) cos (θ) , (3)

where K(n,v) = (γ+1)AR

2πv2
cosγ (φ)Π (θ/θFOV ) is a function

of n and v, but independent of the orientation uncertainty ε.
Further, using this definition, the incidence angle θ between
v and the normal nR of the receiver can be expressed as

cos (θ) = −nT
Rv

∥v∥ = −(exp (ε×) ñR)
T

v̄, (4)

where v̄ = v
∥v∥

. Similarly, the incidence angle θ̃ between v

and ñR, i.e. without orientation uncertainty, equals cos (θ̃) =
−ñT

Rv̄.

III. APPROXIMATION OF THE RSS

To be able to evaluate the effect of orientation uncertainty
and compensate its effect, we need the PDF of the RSS in
the presence of orientation uncertainty. Due to the non-linear
behavior, obtaining a closed-form expression of the PDF is
hard. Therefore, we consider an approximation to the PDF
based on the Taylor series expansion: exp (ε×) = I3×3 + ε× +
1
2!
ε2
×
+ 1

3!
ε3
×
+⋯. Discarding the second and higher order terms,

the cosine of the incidence angle (4) can be approximated by

cos (θ) ≈ − ((I + ε×) ñR)T
v̄

= −ñT
Rv̄ − (ñR × v̄)T

ε, (5)

where a×b is the cross product of the vectors a and b. As a
result, the channel gain (3) can be approximated by

h(1) = −K(n,v) (ñT
Rv̄ + (ñR × v̄)T

ε) . (6)

Using this first-order approximation, the observation yields

P (1) = µ + sTε +w, (7)

where µ = −K̆ñT
Rv̄, s = −K̆ (ñR × v̄), and K̆ =

RpPtK(n,v). Taking into account that both ε and w are zero-
mean Gaussian distributed, P (1) is Gaussian and p(P ; rR) is
approximated by

p (P ; rR) =
1√

2πσ2
P

exp(− 1

2σ2
P

∥P − µ∥2) , (8)

where σ2
P = σ2

s + σ2
w with σ2

s = sTΣεs.

IV. EVALUATION OF THE APPROXIMATION

In this section, we evaluate the accuracy of the approxi-
mation discussed above through simulations. To this end, we
consider the case where the position and the normal of the
LED are given by r = [0,0,3]T and n = [0,0,−1]T, i.e. the
LED points straight downwards. Further, the LED transmits
a power Pt = 1 W and has Lambertian order γ = 1. For the
receiver, we consider a photo diode with area AR = 1 cm2

Fig. 2: Bhattacharyya distance between received power and
approximated ones.

and FOV θFOV = 85○. The receiver is placed below the
LED, i.e. rR = [0,0,1.5]T. The covariance matrix Σε of the
orientation uncertainty is assumed to be Σε = σ2

ε I3×3, where
σ2
ε = 2.0 × 10−2 rad2.
In order to numerically measure similarity of probability

distributions, the Bhattacharyya distance is used, which is

DB(p, q) = − ln (BC(p, q)) , (9)

where BC(p, q) = ∑ni=1
√
piqi is the Bhattacharyya coef-

ficient. We consider DB(P,P (1)) – the distance between
the PDF of the RSSs P and P (1) – and DB(h,h(1)) –
the distance between the PDF of the channel gains h and
h(1) – as functions of the incidence angle θ̃ of the VLP
receiver. As shown in Fig. 2, both distances DB(P,P (1))
and DB(h,h(1)) decrease as θ̃ increases, implying that the
first-order approximation achieves a better accuracy for a
larger θ̃. In addition, contrary to DB(h,h(1)), even if θ̃ is
small, DB(P,P (1)) is closer to zero, which means that the
distribution of P (1) approximates the true distribution of P
with a higher accuracy, although h(1) only approximates h
accurately when θ̃ is large.
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