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Abstract—In this paper, we present the results and the lessons
learned during development of an intelligent automotive percep-
tion system based on fusion of camera and radar. Our cooperative
sensor fusion approach closely couples the detector and tracker,
which allows to exploit the benefits of low-level fusion of the rich
sensor data without the need for high data bandwidth to the
fusion center. To demonstrate the accuracy of our perception
system, we captured a dataset consisting of various complex
traffic scenarios in a European city center. For multiple targets
up to 10 m in front of the ego-vehicle, we measure accuracy
improvements of 20% over the camera-only system, with only a
fractional load to the network compared to low-level fusion.

I. MOTIVATION AND SIGNIFICANCE OF THE TOPIC

Accurate detection and tracking of road users is essential
for driver-less cars and many other smart mobility applica-
tions. As no single sensor can provide the required accuracy
and robustness, the output from several sensors needs to be
combined. If we exclude practical limitations such as cost and
ease of integration, each sensor technology (e.g., radar, video,
LiDAR, ultrasound) still has its own intrinsic limitations. For
instance, cameras don’t work well at night-time, or in dazzling
sunlight. Radar can be confused by reflective metal objects,
like rubbish bins or soda cans. LiDAR technology is affected
by atmospheric conditions that increase the light scattering of
the air such as precipitation, mist, fog or fine dust. Fusing
the output of these different sensors is thus very important.
While both vision based [1], [2] and ranging based [3] tracking
of road users are mature research fields well described in
literature, fusion techniques between the two specifically for
the automotive context are much less covered in literature.

Currently, sensor fusion happens at a relatively late stage,
after each sensor has performed object detection based on
its own limited collection of sensor data. Such late fusion
has obvious benefits on the system level, both in terms of
ease of integration and robustness. However, a lot of sensor
fusion potential is lost, especially in circumstances where one
sensor underperforms compared to another. Employing so-
called early or low-level fusion on the rich data gathered
from all sensors could improve the performance, but at the
same time significantly increases the required data bandwidth
and processing power. For instance, the GoPro camera and TI
AWR1443 automotive radar used in our experimental setup
have a raw data rate of about 30 Mbps (at 30 fps, using video

compression) and 160 Mbps (at 20 fps, uncompressed), respec-
tively. A single contemporary automotive 3D LiDAR produces
up to 9.6M points per second with data rates of up to 500
Mbps.1 Despite these large numbers, the amount of sensors
added to smart vehicles is expected to dramatically increase in
order to reach higher levels of autonomy. In addition, vehicle-
to-everything (V2X) communication, which allows, e.g., to
share traffic information or sensor data among vehicles, high-
precision navigation systems, and advanced infotainment will
also contribute to the anticipated explosion of data bandwidth
in future cars. For this reason, car manufacturers are currently
adopting high-speed Ethernet-based networks in addition to
conventional data buses like CAN and LIN. Whereas 100
Mbps (100BASE-T1) Ethernet over single-pair UTP cables has
been applied in cars today, 1 Gbps (1000BASE-T1) Ethernet
will be introduced in next-generation car platforms, and new
standards for 2.5-10 Gbps automotive Ethernet are being
developed [4]. Nevertheless, the massive amount of sensor
data requires to offload computation as much as possible from
the Fusion Center (FC) towards the edge nodes to save both
bandwidth and computation power. In this regard, we have
developed a cooperative sensor fusion approach which closely
couples the detector and tracker without the need for high
data bandwidth. The cooperative approach embodies fusion
on two levels. Firstly the processing pipelines of different sen-
sors directly exchange mid-level information such as regions
of interest, which allows the sensors to resolve ambiguities
during the detection process. These detections then contin-
uously update or spawn stable tracks, providing consistent
and accurate object localization. In cases where detection
or data association fails, the tracker evaluates the likelihood
of multiple hypotheses by communicating the positions of
particles to the radar and camera processing modules. This
way, the tracker-detector feedback loop bypasses the original
detection thresholds and thereby unlocks the potential of low-
level data fusion without losing the aforementioned benefits
of independent sensor pipelines on the system level.

II. CONCLUSIONS

It is well established that detection of road users using
radar produces targets with excellent range, but poor angular

1https://velodynelidar.com/vls-128.html
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Figure 1. Sample from the data captured in the city of Ghent showcasing data interaction at the sensor level. Left: camera frame with objects detected by
Faster R-CNN; Center: uncertainty regions on the ground plane generated by back-projecting CV objects; Right: uncertainty regions on the ground plane
fused with radar (averaged over all Doppler velocities).

resolution. On the other hand, by using Computer Vision (CV)
and projective geometry, objects detected by a camera sensor
have poor range, but excellent angular resolution. Naïvely, one
can expect that combining such complementary information
will lead to dramatic performance increase over any singular
sensor. However, during our study we found out that tracking
performance is greatly hindered by ambiguities that exist even
in the fused data. For example, in figure 1 we see a typical
situation where multiple pedestrians and cyclists are detected
in the camera frame. These regions of interest (Bounding
Boxes) are communicated to the radar processing module and
projected on the ground plane (e.g. using expected person
height) taking into account the uncertainty on these projected
locations. While augmenting this ground plane map with the
radar signal greatly reduces the range uncertainty in spatially
separated objects such as the cyclists in the background, it is
clear that ambiguities still exist.

Candidate targets are obtained at the edge nodes by employ-
ing Constant False Alarm Rate (CFAR) detection on the fused
data, thereby avoiding transmission of raw data to the FC. The
algorithm extracts detections with high signal-to-noise ratios
which are then fed into our multiple object tracker. A particle
filter maximizes the belief in the state of each road user in
an iterative prediction/update cycle. We have shown that in
the context of autonomous driving, particle filters [5] are well
suited for tracking unpredictable pedestrian motion by keeping
multiple hypotheses. State updates are done using a joint-
likelihood observation model. On the other hand, when tracks
fail to associate with detections, or there are no detections
above a required threshold, most trackers in the literature
rely only on the motion model to predict the next state. This
tracking scenario occurs often in ambiguous situations, e.g. a
person is unobserved for multiple frames and can appear at
multiple locations, thus the probability density map of their
location is multi-modal. Our tracker is different because it
can intelligently update unassociated tracks by evaluating each
hypothesis (particle) over the low-level camera-radar data. We
call these sub-threshold or soft-associations where the weight
of each particle is inversely-proportional to the uncertainty in

the camera-radar data, figure 1 right.
For each uncertain association, the particle filter com-

municates 1000 predicted particles to the sensor processing
modules, with each particle consisting of 4 parameters (2D
position and velocity). For a single track, we observe a peak
bit rate of 2.4 Mbps streaming from the FC to the sensors
and 0.6 Mbps worth of likelihoods streamed in the other
direction. This is rare occurrence though, as most of the
targets can be continuously updated with observations and
very rarely does the tracker need to evaluate likelihoods
of the full particle cloud. Experimental results on tracking
vulnerable road users (pedestrians and cyclists) show that the
benefits of fusing camera with radar increase with the decrease
of scene complexity. We observed that the most significant
improvement in accuracy occurs when there is a single person
in front of the ego-vehicle with localization errors improving
by 50% over the camera-only system. On the other hand, when
the scene becomes very complex, smaller performance gains
are observed. Nonetheless, we measured improvements of 20%
for multiple targets up to 10 m in front of the ego-vehicle.
These results are remarkable since they show that although the
radar cross section of a pedestrian is relatively small compared
to clutter such as fences, light poles etc. our smart system can
extract more information from the two sensors exerting only
a fractional load to the network compared to low-level fusion.
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