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Abstract—In ultra wideband (UWB) orthogonal frequency-
division multiplexing (OFDM) systems, compressive sensing (CS)
is often employed to produce a pilot-assisted estimate of the
sparse channel. The corresponding estimation performance de-
pends to a large extent on the considered pilot allocation (PA)
method, i.e., the way to select which OFDM subcarriers are best
used to transmit the pilot symbols. The development of good
practical PA methods has recently received a lot of attention
in the scientific literature. The main challenge is to provide an
attractive trade-off between the complexity of the PA method and
the achieved channel estimation performance (and by extension
the achieved bit error rate). In this paper, we propose a novel
PA method based on simulated annealing (SA). Simulations are
conducted to confirm the validity of our approach. Compared to
the state-of-the-art method, the proposed PA method is shown to
achieve better performance with a lower complexity.

Index Terms—Sparse channel estimation, mutual coherence,
simulated annealing, pilot allocation, ultra wideband, OFDM,
compressive sensing.

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) is
considered as one of the most promising techniques for ultra
wideband (UWB) transmission [1]. One of the prerequisites for
reliable communication is the availability of accurate channel
state information. Hence, the channel needs to be estimated
accurately. In this context, we first note that in UWB systems,
the sampling period is usually much smaller than the channel
delay spread. Hence, the channel will be spread out over many
channel taps. However, measurements of the indoor channel
show that the channel impulse response (CIR) only contains
a limited number of non-zero contributions, i.e., the channel
can be modelled as sparse. For example, [2], [3] demonstrate
that indoor channel models considered for the IEEE 802.15.4a
standard are sparse. In that case, it is attractive to use channel
estimation methods that are based on compressive sensing
(CS) [4], [5] because this can decrease the overhead in terms
of the required amount of pilot subcarriers [2], [3], [6]–[8].

According to the CS theory, a sparse vector can be recovered
accurately from a small number of linear measurements. The
performance of this procedure is determined by the com-
pressive sensing measurement matrix, i.e., the matrix that

specifies the linear transformation between the measurements
and the vector of interest. In [9], it was shown that a small
measurement matrix mutual coherence (MMMC) is desirable.
This is confirmed by the results presented in [10]–[12], where
it was shown that pilot allocation (PA) methods that succeed in
decreasing the MMMC, indeed result in an improved channel
estimation performance. In [10], the authors propose a random
search method. A test set Ω of Ntest PAs is randomly selected
from the complete set of all Ntotal possible PAs, after which
the PA in Ω yielding the smallest MMMC is selected. In
general, the performance/complexity trade-off of this method
is rather poor. In [11], a low complexity greedy method is
proposed to find a good PA. This method has a very low
complexity, but yields a MMMC that is far from minimum. In
[12], an iterative stochastic sequential search (SSS) algorithm
is employed and shown to outperform the methods from [10]
and [11] when taking into account both performance and
complexity.

In this paper, we investigate the use of simulated annealing
(SA) to find a PA with a low MMMC. SA is a well-known
technique to solve combinatorial optimization problems. In
the past, it has been successfully applied to CS based radar
beamforming [13] and resource allocation [14]. In this paper,
we show that the proposed method outperforms state-of-the-art
SSS method on both performance and complexity.

The rest of the paper is organized as follows. In Section II,
we introduce the concept of CS based pilot-assisted channel
estimation. The proposed PA method is fully described in
Section III. Section IV presents the numerical results. Final,
conclusions are drawn in Section V.

II. MUTUAL COHERENCE OF THE MEASUREMENT MATRIX

Assume that a cyclic prefix OFDM system consists of
N subcarriers. Among these, Np subcarriers are allocated
for frequency-domain pilot-assisted channel estimation. The
indices of the pilot subcariers constitute the PA vector
P = [p1, p2, . . . , pNp ]. The corresponding pilot symbols are
grouped into the vector X = [X(p1), X(p2), . . . , X(pNp )]. The
OFDM signal is transmitted over a channel with the CIR
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h = [h(0), h(1), . . . , h(L−1)]T of length L. The CIR h is sparse,
meaning that only K � L taps h(k) of h have significant
values while all the other taps are (almost) zero. We will
further assume that the length of the cyclic prefix exceeds
the channel duration L and we will restrict our attention to
the observation of the pilot subcarriers. After cyclic prefix
removal and discrete Fourier transform (DFT) operation, we
obtain the observation vector Y = [Y (p1),Y (p2), . . . ,Y (pNp )]T :

Y = diag(X)FNp×Lh + Ne, (1)

where Ne = [Ne(p1), Ne(p2), . . . , Ne(pNp )]T ∼ CN(0, σ2INp )
is additive white Gaussian noise, and FNp×L is the DFT
submatrix, given by

FNp×L =
1√
N

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ωp1 · · · ωp1 ·(L−1)

1 ωp2 · · · ωp2 ·(L−1)
...

...
. . .

...

1 ωpNp · · · ωpNp ·(L−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where ω = e−j2π/N , and N is the DFT size. Let Φ =

diag(X)FNp×L , then (1) can be rewritten as

Y = Φh + Ne. (3)

The CIR h can be estimated accurately from (3) by means
of a conventional method like the least-square (LS) method
provided that Np ≥ L [15]. However, if the CIR h is
sparse, CS theory can be applied to estimate h from (3)
with Np < L, which is advantageous in terms of power and
bandwidth efficiency. In the latter case, an estimate ĥ is found,
e.g., through solving the following popular convex l1-norm
optimization problem [4]:

ĥ = min‖h‖1 s.t. Y = Φh, (4)

where Φ is called the measurement matrix. From [9]–[12],
it follows that a smaller MMMC results in a more accurate
estimate ĥ of h. The mutual coherence of Φ is defined as:

μ{Φ} = max
1≤m<n≤L

|〈Φm,Φn〉|
‖Φm‖2‖Φn‖2

,

= max
1≤m<n≤L

�����
∑Np

i=1 |X(pi)|2ωpi (n−m)∑Np

j=1 |X(pj)|2

�����,
(5)

where Φm and Φn respectively denote the m-th and the n-th
columns of Φ, 〈·〉 represents the scalar product operation, | | · | |2
is the l2-norm, and |X(pi)|2 stands for the power of the i-th
pilot symbol. In the special case where all pilot symbols have
the same power, i.e.,

|X(p1)|2 = |X(p2)|2 = · · · = |X(pNp )|2 = Ppilot, (6)

(5) reduces to:

μ{Φ} = max
1≤m<n≤L

�����
Np∑
i=1

1
Np
ωpi (n−m)

�����. (7)

The existing PA methods from [10]–[12] are all attempts to
find, in an efficient way, a PA vector P that yields a value of
μ{Φ} that is close to minimum.

III. PILOT ALLOCATION METHOD BASED ON SIMULATED
ANNEALING ALGORITHM

Finding the PA that minimizes the MMMC μ{Φ} can be
described by the following combinatorial optimization prob-
lem:

min
P
μ{Φ} s.t. P ⊂ Ξ , (8)

with Ξ = {1, 2, . . . , N}. A well-known heuristic algorithm to
approximately solve combinatorial optimization problems with
an acceptable accuracy and in a reasonable time is SA [16].
In Algorithm 1, we show how SA can be applied to solve
(8). In this algorithm, we randomly change the position pk
of a pilot symbol, and compute the MMMC μ{Φ}temp for the
new PA. If μ{Φ}temp of the new PA is better than the MMMC
μ{Φ} of the old PA, i.e., μ{Φ}temp− μ{Φ} < 0, we update the
PA. However, if we just change one pilot symbol at the same
time, using only this condition is equivalent to searching for
an optimum in the neighborhood of the initial PA, implying
we risk to get stuck in a local optimum. To solve this issue,
SA allows a new PA to be selected, even if the MMMC is not
better than the old PA. This is done by adding the condition

exp
(−(μ{Φ}temp − μ{Φ})

T

)
> rand(), (9)

i.e., the new PA is selected, even when μ{Φ}temp − μ{Φ} > 0,
if the exponential of (9) is larger than a random value
generated with a continuous uniform distribution from 0 to
1, i.e., rand() ∼ U[0, 1]. The exponential in (9) depends on
the parameter T , which is called the temperature of the SA
algorithm. If T is large, the probability that the condition (9)
is fulfilled is large, implying the algorithm can easily escape
a local optimum. However, for large T, this easiness to escape
an optimum also hinders the convergence if we are close to the
global optimum, as the probability that the algorithm jumps
away from the global optimum is large. Therefore, in the SA
algorithm, we start with a high initial temperature, Tinit , and
gradually reduce the temperature by scaling the temperature
with Trate < 1, and end the algorithm when the temperature
reaches a (low) stop temperature Tstop (outer loop). For each
value of T , the algorithm tries to converge to an optimum by
randomly selecting Titer new pilot symbol positions pk , and
checking one by one if at least one of the conditions in line
9 of the algorithm is satisfied (inner loop). The selection of
the four parameters of the algorithm can be done following
the systematic procedure proposed in [17]. The algorithm
randomly selects the pilots to be exchanged. Hence, we need
to evaluate the risk of repetition, i.e., that the algorithm starts
in a PA, follows some ’path’, returns in the initial PA, and
keeps following the same loop. However, note that if the total
number of subcarriers N and the number of pilot subcarriers
Np are equal to 256 and 32, respectively, the probability of
repeated testing is in order of 1

Np (N−Np ) = 1.4∗10−4, indicating
the probability of repetition is low, unless the number of
subcarriers and the number of pilot subcarriers are very small.

Authorized licensed use limited to: University of Gent. Downloaded on September 22,2021 at 07:56:25 UTC from IEEE Xplore.  Restrictions apply. 



We will evaluate the computational complexity and resulting
MMMC in Section IV-A. This computational complexity and
achieved final μ{Φ} both depend on the choice of the initial PA
vector and on the value of the 4 design parameters: Tinit , Tstop ,
Trate and Titer . The computational complexity is dominated
by the MMMC calculations involved in Algorithm 1 (line 8).
Expressed in terms of the number of complex multiplications
(NCM), the evaluation of a single MMMC has complexity
Np(L − 1). The number of MMMC calculations performed in
Algorithm 1 is Titer logTr ate

(Tstop

T )�. This results in a total
complexity number of

Titer logTr ate
(Tstop

T
)� ∗ Np(L − 1). (10)

By means of comparison, we also consider the complexity of
the state-of-the-art method SSS from [12]. In SSS, Titer,SSS
search iterations are performed. During each iteration, every
element of the PA vector P is sequentially updated. The
procedure involves Titer,SSSNp(N − Np) MMMC calculations.
So the total complexity of SSS is

Np(N − Np)Titer,SSS ∗ Np(L − 1). (11)

Algorithm 1 SA-based PA
1: Initialization: Set N , Np , L, Tinit , Tstop , Trate and Titer .
2: Select an initial PA vector P = Pinit and calculate μ{Φ}.
3: Set T = Tinit .
4: while T > Tstop do % outer loop
5: for l = 1 : Titer do % inner loop
6: Randomly choose an element pk of P, k ∈

{1, 2, . . . , Np};
7: Exchange pk with a subcarrier position randomly

selected from Ξ\P to form the new PA vector Ptemp;
8: Calculate μ{Φ}temp with Ptemp;
9: if μ{Φ}temp − μ{Φ} < 0 or exp(−(μ{Φ}temp −
μ{Φ})/T) > rand() then

10: P ⇐ Ptemp;
11: end if
12: end for
13: T ⇐ T ∗ Trate;
14: end while
15: Output P.

IV. NUMERICAL RESULTS

In this section, numerical results are presented. We analyze
the performance and the computational complexity of the
proposed PA method and we compare the results to those of
the state-of-the-art SSS method. In our experiments, a quadra-
ture phase-shift keying modulation (QPSK) OFDM system is
adopted, so (7) applies. Unless specified otherwise, the number
of subcarriers, the number of pilot subcarriers, the length of
the CIR, the number of non-zero CIR taps, the SA parameter
values and the number of SSS iterations are set to the values
shown in Table I. The CIR h is modelled with L = 64 taps, of

TABLE I
THE SYSTEM SETTING

parameter value
N 256
Np 32
L 64
K 12

Tinit 10−1

Tstop 10−6

Tr ate 0.95
Tit er 50

Tit er,SSS 5

which K = 12 non-zero taps are randomly placed. The values
of the non-zero taps are independently generated according to
a complex Gaussian distribution with mean 0 and variance
1, i.e., CN(0, 1). Compressive sampling matching pursuit
(CoSaMP) [18] is adopted as the reconstruction algorithm to
estimate the CIR h. A zero forcing equalizer is used in the
receiver.

A. Impact of SA parameters values

As already indicated in Section III, the choice of the SA
parameter values affects the complexity and the final μ{Φ}.
Here, we evaluate the NCM and the MMMC μ{Φ} of the
proposed method for different settings of Tinit , Tstop , Trate
and Titer with Pinit = [1, 9, 17, · · · , 249]. A test set of 11
different parameter settings, denoted 1 to 11, is considered.
The parameter settings and resulting values of the NCM and
μ{Φ} are presented in Table II. Setting 1 adopts the values of
Tinit , Tstop , Trate and Titer that will be used throughout the
remainder of our analysis. Compared to setting 1, setting 2 (3)
has a 10 times lower (higher) value of Tinit , setting 4 (5) has a
10 times higher (lower) value of Tstop , setting 6 (7) has lower
(higher) value of Trate and setting 8 (9) has a lower (higher)
value of Titer . Table II shows that if Tinit , Trate or Titer is
decreased (increased), the NCM also decreases (increases),
while the MMMC increases (decreases). On the contrary, if
Tstop is increased (decreased), the NCM decreases (increases)
while the MMMC increases (decreases). Setting 10 combines
the SA parameter values that decrease the NCM and setting
11 combines the SA parameter values that decrease μ{Φ}.

Fig. 1 shows the (NMC,MMMC) value pairs for Settings
1 to 11. As can be observed from the figure, the value of
μ{Φ} can be decreased at the price of a complexity increase.
However, we see that the decrease of MMMC slows down
significantly for values of NCM larger than that of Setting 1.
We conclude that Setting 1 provides a good trade-off between
complexity and performance: a property that is key with a
view to the practical implementation of the technique.

B. Performance of SA as compared to SSS

We now compare the performance of the proposed PA
method, further simply denoted as SA, with SSS. For a fair
and relevant comparison, the SA parameters are selected as
in Setting 1 (see above) and the SSS parameter Titer,SSS is
set to 5. The latter is selected such because our experiments
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TABLE II
IMPACT OF SA PARAMETER VALUES

Setting Tinit Tstop Tr ate Tit er NCM μ{Φ}
1 10−1 10−6 0.95 50 22680000 0.1868

Tinit
2 10−2 10−6 0.95 50 18144000 0.1988
3 1 10−6 0.95 50 27216000 0.1859

Tstop
4 10−1 10−5 0.95 50 18144000 0.2025
5 10−1 10−7 0.95 50 27216000 0.1866

Tr ate
6 10−1 10−6 0.90 50 11088000 0.2091
7 10−1 10−6 0.97 50 45763200 0.1845

Tit er
8 10−1 10−6 0.95 20 9072000 0.2175
9 10−1 10−6 0.95 70 38102400 0.1853

lowest NCM combination 10 10−2 10−5 0.90 20 2661120 0.2489
lowest MMMC combination 11 1 10−7 0.97 70 74793600 0.1834
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Fig. 1. NCM and MMMC.

(not shown here) indicate that the MMMC value achieved with
SSS converges after about 5 iterations.

We first compare SA and SSS in terms of computational
complexity. Fig. 2 shows the numerical NCM values of the two
methods as a function of the number of pilot subcarriers. As
can be observed in the figure, SA results in a lower complexity
than SSS as soon as Np is larger than 10. Moreover, the
complexity advantage of SA as compared to SSS increases
significantly as Np increases beyond Np = 10. The main reason
for this is that the complexity of SSS increases proportional to
Np∗N , while the complexity of SA increases only proportional
to Np ∗L. Comparing the curves in Fig. 2 for Np = 64, we find
that the ratio between the NCM of SSS and SA equals 5.4613,
which is slightly larger than the predicted N/L = 4, valid for
large Np and L, but this difference can easily be explained
by evaluating the prefactors of (10) and (11). However, it is
clear that the predicted and real ratio are of the same order of
magnitude.

To compare SA and SSS in terms of the achieved MMMC,
we consider four cases for Np: Np = 26, 28, 30 and 32.
Table III demonstrates that SA achieves a lower MMMC
than SSS in all four cases. In the following we show that
this directly translates into a lower normalized mean squared
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Fig. 2. Complexity comparisons of SA and SSS.

TABLE III
MMMC WITH SA AND SSS, FOR DIFFERENT VALUES OF Np

Np SA SSS
26 0.2240 0.2548
28 0.2167 0.2354
30 0.2000 0.2190
32 0.1868 0.1974

channel estimation (NMSE) and a lower bit error rate (BER)
for SA than for SSS. To obtain the NMSE and BER, we
will have to run the proposed algorithm for different channel
realizations and average over these channel realizations. To
evaluate how many channel realizations are required to obtain
satisfactory results, we show in Fig. 3 the average NMSE for
200, 500, 1000 and 2000 channel realizations, for SA and
Np = 32. As can be observed, when the number of channel
realizations is at least 500, the curves are indistinguishable,
while for 200 realizations, the curve slightly deviates. As the
simulation time linearly increases with the number of channel
realizations, we therefore set in the remainder of the paper the
number of channel realizations equal to 500.

The NMSE of four cases is evaluated by means of a Monte
Carlo computer simulation. As a benchmark, we also consider
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Fig. 3. Monte Carlo experiments for SA with Np = 32.

the NMSE that is obtained with the equidistant PA vector
Pequi = [1, 9, 17, · · · , 249] with Np = 32 and where pi+1 − pi
is fixed and equal to N/Np = 8. The MMMC corresponding
to Pequi is 1 (see (7)), which is the maximum possible value
for μ{Φ} [19]. Fig. 4 shows that, although the number of
pilot subcarriers of the equidistant PA is larger than (or equal
to) that of the PAs designed by SA or SSS, the channel
estimation performance with the equidistant PA is really poor.
We observe that the NMSE of SSS and SA improves if the
number of pilot subcarriers increases. Moreover, for a given
value of Np , SA results in a lower NMSE than SSS. This is
in correspondence with the tendency of the MMMC results
presented in Table III. To demonstrate that the proposed PA
technique not only outperforms the state-of-the-art technique
SSS when combined with CoSaMP, we also combined the two
PA techniques with other CS techniques, i.e., subspace pursuit
(SP) [20] and orthogonal matching pursuit (OMP) [21]. The
NMSE for the different combinations is shown in Fig. 5. From
the figure, it follows that the NMSE is essentially independent
of the used CS technique, and that the proposed PA technique,
SA, clearly outperforms SSS. Note that SP and OMP have a
higher computational complexity than CoSaMP.

To evaluate the BER performance, we simulate 500 frames
of 5000 OFDM symbols each, whereby we assume that the
channel remains fixed over the duration of a frame but varies
from frame to frame. The results are presented in Fig. 6 as a
function of the SNR Ppilot/N0. Due to the inaccurate channel
estimate results, the BER in the case of the equidistant PA
is really large. The BER performance can be significantly
improved by applying PAs designed by SSS or SA. In par-
ticular, thanks to the lower MMMC, SA achieves a better
BER performance than SSS. Furthermore, the results in the
figure also show that the use of SA can effectively improve the
transmission efficiency: for a given SNR, a smaller amount of
pilot subcarriers is required with SA to achieve a given value
of the BER than with SSS.
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Fig. 4. NMSE Performance comparisons of different Np : (a) SA (b) SSS
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Fig. 5. NMSE performance comparisons of SP, OMP and CoSaMP for SA
and SSS with Np = 32.
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Fig. 6. BER Performance comparisons of different Np : (a) SA (b) SSS

V. CONCLUSION

UWB communication channels can often be modelled as
sparse so that CS techniques can be applied for channel
estimation. The performance of CS based sparse channel
estimation can be improved by decreasing a quantity referred
to as the MMMC. In this paper, we propose a novel PA method
that minimizes the MMMC via SA. Compared to the state-of-
the-art PA method, the proposed method is shown to obtain
a lower MMMC with a lower complexity, and by extension
a more accurate channel estimation and thus a better BER
performance. The numerical results indicate that an equidistant
PA is not recommended in CS based pilot-assisted channel
estimation. In further work, we will theoretically analyze the
MMMC achieved with more general equidistant PAs to reveal
the reason why this type of PA is unsuitable. Moreover, we will
explore other low complexity PA methods to further reduce the
difficulty of practical application.
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