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ABSTRACT

In this contribution we mnsider the Cramer-Rao baund (CRB) for the estimation of the synchronizaion parameters of a
noisy linealy modulated signal with random data symbals. We eplore three scenarios, i.e., (i) joint estimation of
carier phase, carier frequency and time delay, irrespedive of the data; (i) joint estimation of carier frequency and
time delay, irrespedive of the data and the carier phase; and (iii) estimation of carier frequency, irrespedive of the
data, the carier phase and the timing. Because of the presence of the random data (and, in scenarios (i) and (iii), also of
random synchronizaion parameters), the exad computation of the mrresponding CRBs is extremely difficult. Instead,
here we derive asimple dosed-form expression for the limit of these CRBs at low signal-to-noise ratio (SNR), which
holds for arbitrary PAM, PSK and QAM constell ations.

INTRODUCTION

The Cramer-Rao baund (CRB) isalower bound on the eror variance of any unbiased estimate, and as uch serves as a
useful benchmark for pradica estimators [1]. In many cases, the statistics of the observation depend not only on the
vedor parameter to be estimated, but also on a nuisance vedor parameter we do not want to estimate. The presence of
this nuisance parameter makes the mmputation of the CRB very hard, if not impossible.

A typicd example where anuisancevedor parameter occursis the observation of a noisy linealy modulated waveform,
that is a function of a time delay, a carier frequency offset, a carier phase and a data symbal sequence. In [2], the
CRBs for estimating the frequency offset and the carier phase from matched filter output samples have been computed
for BPSK and QPSK, considering the data symbals as nuisance parameters and assuming the timing to be known;
different constell ations yield different expresgons for these CRBs.

In order to avoid the computational complexity caused by the nuisance parameters, a modified CRB (MCRB) has been
derived in[3, 4]. The MCRB is much simpler to evaluate than the CRB, but isin general loaser than the CRB. In [5] the
high-SNR limit of the CRB has been evaluated anayticdly, and has been shown to coincide with the MCRB when
estimating the delay, the frequency offset or the carier phase of the linealy modulated waveform.

In the presence of coding, synchronization algorithms must operate & low SNR, so that the high-SNR limit of the CRB
might no longer be arelevant benchmark. In [6], the low-SNR limit of the CRB related to timing recvery has been
presented, assuming a slowly varying carier phase. The low-SNR limit of the CRB for estimating the carier phase and
frequency, from maetched filter output samples taken at the wrred dedsion instants, has been investigated in [7]. In this
contribution we derive asimple expresson for the low-SNR limit of the CRBs for (i) joint phase, frequency and timing
estimation, (ii) joint frequency and timing estimation, and (iii ) frequency estimation. The resulting expressons are valid
for arbitrary PAM, PSK, and QAM constell ations, and for an arbitrary square-root Nyquist transmit pulse. The alopted
signal model and the mnsidered scenarios are different from those investigated in [6, 7]. Finally, from this low-SNR
limit of the CRB and the known high-SNR limit of the CRB, we derive an approximate expression of the true CRB.

PROBLEM FORMULATION

Let us consider the cmmplex baseband representation r(t) of a noisy linealy modulated signal :
K
r(t) =¢ > ah(t-kT -1) exp(j(2rFt+6)) + w(t) Q)
k=-K

wherea = (ay, ... a) isavedor of L = 2K+1 zero-mean statisticaly independent data symbols with E[|a ] = 1; h(t) is
a red-valued even-symmetrica unit-energy square-root Nyquist pulse; T and F are the time delay and the carier
frequency off set, respedively; 0 isthe carier phase & t = 0; T isthe symbd interval; n(t) is complex-valued zero-mean
Gaussian noise with independent red and imaginary parts, eat having a normalized power spedral density of 1/2; € =



(EJNo)Y?, with Es and N, denoting the symbol energy and the noise power spedral density, respedively. The
distribution of the data symbalsis not a function of the synchronization parameters (6, F, 1).

Suppose that one is able to produce from an observation vedor r an unbiased estimate U of a deterministic vector
parameter u. Then the estimation error variance is lower bounded by the Cramer-Rao bownd (CRB) [1] :
E,[(O, —u,)?*] = CRB, (u) , where CRB;(u) is the i-th diagonal element of the inverse of the Fisher information
matrix J(u). The (i,j)-th element of J(u) is given by
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du;0u,
Note that J(u) isasymmetricad matrix. The probability density p(r;u) of r, correspondingto agiven value of u, iscdled
the likelihood function of u, while In(p(r;u)) is the log-likelihood function of u. The epedation E;J[.] in (2) is with
resped to p(r;u).
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Let usdenoteby U atrial value of the deterministic parameter u, and consider E,[In(p(r; U )] asafunction of U . It has
been shown in [1] that approximating E;[In(p(r; U )] by atrucated Taylor seriesabout U = u yields

E, [In(p(r;u)] OE, [In(p(r;u)] — 3(U-u)" I(u)(@-u) ®
This indicates that E,[In(p(r; U )], the average of the log-likelihood function, takes its maximum value & U = u, and
that J(u) determines the behavior of E;[In(p(r; U )] in the dose vicinity of its maximum.

The maximum-likelihood (ML) estimate U v Of the parameter u maximizes the log-likeli hood function In(p(r;u)) over

u for given r. The resulting mean-square estimation error is known to converge to the CRB when the number of
observationsincreases [1]. We will make use of this property in sedion 5, when interpreting our results.

When the observation r depends not only on the parameter u to be estimated but also on a nuisance vedor parameter v,
the likelihood function of u is obtained by averaging the joint likelihood function p(r |v;u) of the vedor (u,v) over the a

priori distribution of the nuisance parameter : p(r;u) = E,[p(r | v; u)].

In the foll owing we will consider the foll owing threescenarios :

(i) The joint estimation of (B,F,1) from r(t). Thisimplies that the useful parameter and the nuisance parameter are given
by u = (6,F1) and v = a, respedively.

(ii) Thejoint estimation of (F, T) from r(t). Thisimplies that the useful parameter and the nuisance parameter are given
by u = (F,t) and v = (a, 0), respedively. In this enario, 0 is considered as uniformly distributed in (-1t, ).

(iii) The estimation of F from r(t). Thisimpliesthat the useful parameter and the nuisance parameter are givenby u = F
andv = (a, 6, 1), respedively. In this enario, 6 and T are wnsidered as uniformly distributed in (-1t, ) and (-T/2, T/2),
respedively.

For all threescenarios, the joint likelihood function p(r Jv;u) is, within afador not depending on (u,v), given by
K

p(r | v;u) = rLexp(sakZL +ea,z, —€°|a, |2) ()
k=—
with Z, =z, (F, 1)exp(j0), and
z,(F1) :J'r(t) exp(j2rit)h(t —kT - 1)dt (5)

Asindicaed in Fig. 1, the quantity z(F,T) is obtained by first applying to r(t) a constant-speed rotation of -21t rad/s,
feeding the result to a filter matched to the transmit pulse h(t), and sampling the matched filter output at instant kT+T.
The quantity Z, isobtained by applyingto z(F,T) arotation of -8 rad. The resulting log-likelihoodfunction In(p(r;u))
isgiven by
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Fig. 1: Computation of Z,

Inp(r;u) = In%V E'jexp(sasz( +€a,7, —€°|a, |Z)§E (6)

Computation of the CRBs requires the substitution of (6) into (2) and the evaluation of the various expedations
included in (6) and (2)

As the evaluation of the expedations involved in J(u) and p(r;u) is quite tedious, no general closed-form expressions
for the CRBs are available. To avoid these mmplications, a smpler lower bound, cdled the modified CRB (MCRB),

has been derived in [3, 4], i.e., E, [(0. —u,)?] = CRB (u) = MCRB, (u). The MCRBs for phase, frequency and
timing estimation, corresponding to r(t) from (1), are given by [3, 4]

N N N
MCRB, =—2 E-l1 MCRB; = ° 3 > 32 E-Iiz MCRB, = 0 E-l1 B 1 (7a,7b,7c)
2E, L 2E, TL(L2-1) T 2E. L (-6(0))
where L = 2K+1, and {j(t) denotes twice differentiation with resped to t of the Nyquist pulse g(t), which is defined as
g(t) = [h(w)h(t +w)dw ®

The MCRBs (7) are valid for the joint estimation of an arbitrary subset of the synchronization parameters (ranging from
only one parameter to all three parameters), with the random data and the remaining synchronization parameters
considered as nuisance parameters. In [5] it has been shown that for high SNR (i.e., E/Ny — ) the CRBs for phase,
frequency and timing estimation converge to the arresponding MCRBs (7). In the foll owing, we derive a t¢osed form
expresson for the low-SNR limit (i.e. E/Ny — 0) of the CRBs for the scenarios (i)-(iii) mentioned above. These low-
SNR asymptotic CRBs (ACRBS) will be denoted as ACRBg, ACRBr and ACRB,.

LOW-SNR LIMIT OF THE LIKELIHOOD FUNCTIONS

For small E/N, (or equivalently, small €), we obtain an approximation of In(p(r;u)) by expanding the exponential
functionsin (6) into a Taylor series, averaging the resulting terms with resped to the nuisance parameter v, and keeguing
only the relevant terms that correspond to the smallest powers of €. For scenario (i), the averaging is with resped to the
data sequencea. For scenario (ii) an additional averaging over the carier phase 6 must be performed, whil e for scenario
(iii’) afurther averaging over the timing parameter T is required.

Scenario (i) : Joint Estimation of 6, F and t

Takingin (6) v = ayields the foll owing intermediate result :
© P
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When the symbal constellation is rotationally symmetrica over 2r/N (N=2 for M-PAM, N=4 for M-QAM, N=M for

(10)



M-PSK), we obtain E[(af( )p raﬂ”] =0 for 2r+g-p {0,£N,x2N,...}. Hence the relevant terms in the triple

summation of (7) correspond to

«  (p,gr) = (2,0,1). Thisyields a term propartional to €2 depending on F and T, but not on 6. Therefore, additional
terms depending on 6 must be included for scenario (i).

«  (p,a,r) =(N,0,0) and (p,q,r) = (N,0,N). This yields terms propartional to ", dependingon 6, F and .

All other nonzero terms in the triple summation of (9) are ether independent of the synchronizaion parameters (for

small € these terms can be negleded as compared to the term 1 in (9)), or depending on (F,t) or (6,F,t) but containing a

power of € larger than 2 or N, respedively. Hence keepingin (9) only the dominant termsyields
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where A, = E[akN] , and we have made use of E[|a?] = 1.

Scenario (ii) : Joint Estimation of F and t

Now we takein (6) v = (a, 8). Negleding in (6) third-order and higher-order termsin €, we obtain

K K
Inp(r;F,r)DIn%+ 2 Y|z |ZED82 |z, |? (12)

In order to olktain (12), it is aufficient to assume that the data symbos are pairwise uncorrelated, i.e,

E[af(am] = 6k_m . Note that pairwise uncorrelated data symbals occur not only for statisticaly independent {a}, but
also for the large mgjority of pradica codes[8].

Scenario (iii) : Estimation of F

Takingin (6) v = (a, 6, 1) and negleding third-order and higher-order termsin € givesriseto
T/2 K

1 1
Inp(r;F) Dln% +e2= |z(KT +1,F) | thD—sz | z(t,F)|* dt (13
T-J’/zk=Zk T J;

In (13), z(t,F) denotes the mntinuous-time signal at the output of the matched filter, asindicated in Fig. 1. Here too, the
assumption of pairwise uncorrelated (instead of statisticdly independent) data symbalsis sufficient to arrive & (13).

LOW-SNR LIMITS OF THE CRAMER-RAO BOUNDS

The (dominant part of the) Fisher information matrix J is obtained by straightforward appli cation of (2) to (11)-(13), for
scenarios (i)-(iii). The diagonal elements of J* yield the ACRBs. Here we summarize the results of these mmputations.

Scenario (i) : Joint Estimation of 6, F and t
When computing the Fischer information matrix J, we must distinguish between N>2 and N=2.

¢ N>2. When computing Jer, Je and Ji, the terms from (11) in eV can be negleded as compared to the term in &2,
assuming small €. For the computation of Jgg, Jrg and Jg, ONly the termsin e\ should be mnsidered, asthetermin
€2isnot a function of 6.

¢ N=2. The mmputation of Jgg, Jre and Jyg involves the same terms from (11) as for N>2; hence these dements of J
are simply obtained by repladng N by 2 in the mrresponding expressions for N>2. For the computation of Jer, Jx
and Jg, al terms from (11) should be mnsidered. The log-likelihood function (11) for N=2 (assuming M-PAM)
beammes
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where Z,, = Re[z,]. This indicates that for N=2 only the in-phase @mponent of Z, is needed to estimate
(8,F1).

It turns out that J is block-diagonal : J;g = Jir = 0. This means that the vedor parameter (6,F) and the scadar parameter 1
are decoupled : the ACRB for the joint estimation of both parameters is the same a the ACRB for the estimation of one
parameter whil e the other parameter is known. In addition, for small € (when N>2) or large L (when N=2), the @upling
between 6 and F can be ignored. The resulting ACRBs are given by

EinN
DEEOQE%DTF 21h2 . N>2
N ! O 8 (t%h? (t)dt
ACRBQDE—OQE&B% ACRB, O~ ° I ®) (158, 15b)
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where (J(t) denotes differentiation with resped to t of the pulse g(t) from (8).

N=2
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Scenario (ii) : Joint Estimation of F and t

The results for scenario (ii) can be eaily derived from those obtained in scenario (i), by observing that, as far as
differentiation of the log-likelihood function with resped to F or T is concerned, (11) with N>2 and (12) yield the same
dominating terms. Hence, the parameters F and T are demupled, and the resulting ACRBs are given by

N 1 N +oo -1
ACRB DE_O 3o ACRBTDE_Qgtﬁiié;.O_ 0 E .

Note that (16) holds for bath N>2 and N=2.

Scenario (iii) : Estimation of F
The ACRB resulting from (13) is given by

N 1
ACRB DE—Q ele 1
F Esg L 4 )

AiFfItzgza)dt

DISCUSSION OF RESULTS

When SNR approches zero, maximum-likelihood (ML) synchronizaion corresponds to maximizing (11), (12) or (13),
depending on the spedfic scenario. Hence, these maximizations yield essentially optimum estimates for small SNR
when L islarge, i.e., for small SNR the mean-square estimation error approaches the mrresponding ACRB. Interpreting
the ACRB as the low-SNR limit of the ML synchronizer performance explains the behavior of ACRB as a function of
EJ/No. For estimating F or T, the function to be maximized is quadratic in r(t); hence for low SNR the estimation error
is dominated by noisexnoise terms, yielding a mean-square aror inversely propational to (E/Ng)® The function to be
maximized when estimating 6 is of order N in r(t), yielding a mean-square aror inversely propational to (E4/Ng)".



Let us now discuss eparately the ACRBs pertaining to the estimation of timing, carier frequency and carier phase,
respedively.

Timing Estimation

The ACRBs (15c, 16b) for timing estimation are proportional to (EJ/Ng)?. This is in contrast with the MCRB (7c),
which is propartional to (EJ/No)™. Further, note that both the ACRBs (15¢, 16b) and the MCRB (7¢) are inversely
proportional to the sequencelength L.

For scenario (i), i.e., the estimation of u = (8,F,1), T is demupled from (6,F). Hence, the arresponding ACRB; is the
same asif T were estimated while 8 and/or F are known. We observe from (15¢) that for given E/Ny, ACRB, for N=2 is
half as large & for N>2. This can be verfied by comparing timing recvery for BPSK (N=2, Es = E) and QPSK (N=4,
Es = 2E;), assuming 6 = F = 0. The timing synchronizer for BPSK operates only on the in-phase component of the
recaved signal, whereas for QPSK bath the (uncorrelated) in-phase and quadrature cmponents are used for timing
estimation. Let us assume afixed value of Ey/N,, for bath BPSK and QPSK. Under this assumption, the in-phase and
guadrature components for QPSK have the same statistics as the in-phase component for BPSK, so that the timing error
variance for QPSK is half as large a for BPSK. Substituting in (15¢) Es = 2E, (QPSK) and Es = E, (BPSK),
respedively, shows that the resulting ACRB; for QPSK isindeed half aslarge & for BPSK, when Ey/Ng is the same for
bath modulations. Note that this reasoning also appliesto the MCRB : substitutingin (7¢) Es = 2E, (QPSK) and Es = E,
(BPSK) yields a MCRB; for QPSK that is half as large as for BPSK, when Ey/N, is fixed. Assuming F and 6 known,
Fig. 3 shows the ratios CRB,/MCRB; (explanation about the computation of the true CRB for timing is beyond the
scope of this paper) and ACRB./MCRB; (from (15c)). Note the excdlent agreement between those ratios at low SNR.

For scenario (ii), i.e., the etimation of u = (F,1), T isdeupled from F. Hence, the mrresponding ACRB; is the same &
if T were estimated while F is known. We observe from (15c) and (16b) that ACRB; for (scenario (ii), any N) is the
same & ACRB; for (scenario (i), N>2); this is becaise the dominating terms of the crresponding log-likelihood
functions are the same. Hence, for N>2, the ACRB for the timing is not influenced by whether the carier phase is
known, is jointly estimated with the timing, or is considered as a nuisance parameter. Comparing (15c) and (16b)
reveds that for N=2, treaing the carier phase & a nuisance parameter increases the ACRB by a fador of 2 as
compared to the cae where the carier phase is known (or is jointly estimated with the timing). This is becaise the
timing synchronizer that maximizes the relevant log-likelihood function (i.e, (14) for scenario (i) and (12) for scenario
(ii)) is affeded by both the in-phase and quadrature noisexnoise terms in scenario (ii), but only by the in-phase
noisexnoise terms in scenario (i). This behavior isin contrast with MCRB; from (7c), which for given E/Ny assumes
the same value for any N, irrespedive of whether the carier phase is known, is estimated jointly with the timing, or is
considered as a nuisance parameter.

Frequency Estimation

The ACRBs for frequency estimation (see (15b), (16a) and (17)) are proportional to (E/Ng)™. This isin contrast with
MCRB: from (7b), which is propational to (E4/Ng)™.

For scenario (i), i.e., the estimation of u = (6,F,1), F is decupled from 1, and the coupling with 8 is very weak. Hence,
ACRBE is esentialy the same @ if F were estimated while 8 and/or T are known. For N=2, ACRBk is inversely
proportional to L(L2-1). However, for N>2, ACRBe isinversely propartional to L only. Thisis because the maximum of

the low-SNR limit of E[In(p(r |6, F, T))] (with F denoting a trial value) is much sharper for N=2 than for N>2 ,as

the low-SNR limit (11) of the log-likelihood function for N>2 ignores the phase information contained in Z, . Hence,

acordingto (3), the cae N=2 yields a much larger value of Jer. Finally, in contrast with ACRBg, MCRBE from (7b) is
inversely propational to L(L?-1), irrespedive of N.

For scenario (i), i.e., the estimation of u = (F,1) irrespedive of 6, F is decupled from t. Hence, the corresponding
ACRB isthe same & if F were etimated while T is known. We observe from (15h) and (16a) that ACRBE for (scenario
(i), any N) isthe same as ACRB for (scenario (i), N>2); thisis because the dominating terms of the arresponding log-
likelihood functions are the same. Hence, for N>2, the ACRB for frequency estimation is not influenced by whether the
carier phase is known, is jointly estimated with the frequency, or is considered as a nuisance parameter. Thisis unlike
the cae N=2, where the joint estimation of F and 8 and the estimation of F considering 6 as a nuisance parameter yield



a ACRB that is inversely propartional to L(L?1) and L, respedively. This behavior is in contrast with MCRB from
(7b), which for given EJ/Ng assumes the same value for any N, irrespedive of whether the carier phase is known, is
estimated jointly with the frequency, or is considered as a nuisance parameter.

It can be verified that ACRBg (17) resulting from scenario (iii) is larger than ACRBE (16a) resulting from scenario (ii).
This indicates that considering T as a nuisance parameter gives rise to a penalty as compared to scenario (ii). For a
sguare-roat cosine rolloff transmit pulse, it turns out that ACRBg from (17) is a fador of 2 larger than ACRBg from
(163). Thisisin contrast with MCRB from (7b), which is not depending on whether the timing is known, is estimated
jointly with the frequency or is considered as a nuisance parameter.

Phase Estimation

When estimating u = (6,F,1), the phase is demupled from 1 and is only weakly coupled with F. Hence, ACRBg resulting
from thisjoint estimation is esentially the same aif 8 were estimated whil e T and/or F are known.

ACRBy from (15a) is proportional to (E/Ng)™. This is in contrast with MCRBg from (7a), which is propational to
(EJNo)™. Further, note that bath ACRBg and the MCRBg are inversely propartional to the sequencelength L.

Assuming F and T to be known, Fig. 3 shows the ratios CRBs/M CRBg (from [2]) and ACRBg/MCRBg (from (153)). As
it should, excdlent agreement between those ratios is found at low SNR.

CONCLUSIONS AND REMARKS

In this contribution we have derived a simple dosed-form analyticd expression for the low-SNR asymptote of the
CRBs pertaining to the estimation of the carier phase 6, the carier frequency F and the time delay t from a linealy
modulated waveform. We have cnsidered three different scenarios, i.e, (i) the etimation of (6,F,1) with the data
symbaol sequence a considered as nuisance vedor parameter, (ii) the estimation of (F,T) with (a, 6) considered as
nuisance vedor parameter, and (iii) the estimation of F with (a, 6, T) considered as nuisance vedor parameter.
Considering a symbal constellation with rotational symmetry of 217N, we have to distinguish between N>2 and N=2.
For N>2, scenarios (i) and (ii) yield the same value of ACRBr and of ACRB;, which indicates that without loss of
performance d& small SNR, the carier phase can be mnsidered as a nuisance parameter when estimating the carier
frequency and the timing. However, for N=2 it turns out that the values of ACRBr and ACRB; are smaller in the first
scenario than in the second, which indicates that estimating 6 jointly with F and T yields the better performance @ small
SNR. ACRBk islarger in the third scenario than in the second scenario, which indicates that considering the timing as a
nuisance parameter gives rise to a performance penalty. The ACRBs for estimating F and T are inversely propartiona to
the square of E4/N,, whereas ACRBg isinversely propartional to the N-th power of E/No.

Based upon the maximization of (11) or (12), various nondata-aided (NDA) feedbad and feadforward synchronization
algorithms for recovering the carier frequency, carier phase and symbo timing have been derived and their
performance analyzed. The interested reader is referred to [9 (sed. 5, 6.3)], [10 (sed. 3, 5, 8)] and the references
therein.
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Fig. 2 : CRB for timing estimation
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Fig. 3: CRB for carier phase estimation



