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Abstract - In this contribution we consider the Cramer-Rao
bound (CRB) for the estimation of the time delay of a noisy
linearly modulated signal with random data symbols. In spite of
the presence of the nuisance parameters (i.e., the random data
symbols), we obtain a closed-form expression of this CRB for
arbitrary PSK, QAM or PAM constellations and a bandlimited
square-root Nyquist transmit pulse.

I. INTRODUCTION

The Cramer-Rao bound (CRB) is a lower bound on the
error variance of any unbiased estimate, and as such serves as
a useful benchmark for practical estimators [1]. The CRB is
formulated in terms of the likelihood function of the scalar
parameter to be estimated. In many cases, the statistics of the
observed vector depend not only on the parameter to be
estimated, but also on a number of nuisance parameters we
do not want to estimate.

A typical example where nuisance parameters occur is the
observation of a noisy linearly modulated waveform, that is a
function of a time delay, a carrier frequency offset, a carrier
phase and a data symbol sequence. The presence of the
nuisance parameters makes the computation of the likelihood
function and the corresponding CRB very hard. Therefore,
the closed-form expression of the CRB in the presence of
random data has been presented only for very few cases. As
far as we know, only the CRBs for estimating the frequency
offset and the carrier phase, assuming the timing to be
known; are available in the open literature [2].

In order to avoid the computational complexity caused by
the nuisance parameters, a modified CRB (MCRB) has been
derived in [3]. The MCRB is much simpler to evaluate than
the CRB, but is in general looser than the CRB. In [4] the
high-SNR limit of the CRB has been evaluated analytically,
and has been shown to coincide with the MCRB when
estimating the delay, the frequency offset or the carrier phase
of the linearly modulated waveform. In [5, 6] the low-SNR
limits of the CRBs related to carrier and timing recovery have
been presented.

In this contribution, we tackle the problem of computing
the CRB related to estimating the time delay of a linearly
modulated waveform. The transmit pulse is an arbitrary
square-root Nyquist pulse, and results are presented for PAM,
PSK and QAM constellations.

II. PROBLEM FORMULATION

Let us consider the complex baseband representation r(t)
of a noisy linearly modulated signal :
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where a = (a(0), ... a(K-1)) is a vector of zero-mean

statistically independent equiprobable data symbols with
1]|)m(a[|E 2 = , h(t) is a real-valued unit-energy square-root

Nyquist pulse, τ is a deterministic time delay, T is the symbol
interval, and w(t) is complex-valued zero-mean Gaussian
noise with independent real and imaginary parts, each having
a power spectral density of N0/(2Es). The probability density
of the vector a is not a function of τ.

Suppose that one is able to produce from r(t) an unbiased
estimate τ̂  of the delay τ. Then the estimation error variance
is lower bounded by the Cramer-Rao bound (CRB) [1] :
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In (2), r is a vector representation of the signal r(t). The
probability density p(r;τ) of r, corresponding to a given value
of τ, is called the likelihood function of τ. The expectation
Er[.] is with respect to the probability density p(r;τ).

As r(t) from (1) depends not only on the delay τ to be
estimated but also on the nuisance vector parameter a, the
likelihood function of τ is obtained by averaging the joint
likelihood function p(r|a;τ) of (a,τ) over the a priori
distribution of the nuisance vector parameter : =τ);(p r

)];|(p[E τara . From (1) it follows that (within a factor not
depending on (a, τ))
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As the expectations involved in CRB and p(r;τ) are hard
to evaluate for an arbitrary PSK, QAM or PAM symbol
constellation and for bandlimited h(t), a simpler lower bound,
called the modified CRB (MCRB), has been derived in [3] :

MCRBTCRBT])ˆ[(E 222 ≥≥τ−τr . Defining the Nyquist
pulse g(t) as
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the MCRB for timing estimation, corresponding to r(t) from
(1), is given by [3]
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where )t(g��  denotes twice derivation of g(t) with respect to t.
In [4] it has been shown that for high SNR (i.e. Es/N0 → ∞)
the CRB (2) resulting from (1) converges to the MCRB (7).

In [6], a closed form expression for the low-SNR limit
(i.e. Es/N0 → 0) of the CRB that corresponds to (1) has been
derived. This low-SNR asymptotic CRB is denoted ACRB0,
and is given by
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assuming complex-valued symbols with 0)]k(a[E 2 = . It
should be noted that (8) itself is not necessarily a lower
bound on the timing error variance.

In this paper, we derive a closed-form expression for the
true CRB (2) assuming a bandlimited square-root Nyquist
transmit pulse and PAM, PSK and QAM constellations.

III. EVALUATION OF TRUE CRB

In this section we first concentrate on rotationally
symmetric constellations with 0)]k(a[E 2 = , i.e. M-PSK with
M>2 and  M-QAM, but not M-PAM. The case of M-PAM is
dealt with at the and of this section.

Taking (3) into account, the log-likelihood function
ln p(r|τ) is given by
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where {α0, α1, ..., αM-1} is the set of constellation points.
Differentiation of (9) yields
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where ⋅  denotes differentiation with respect to t.

The quantities z(k) and zτ(k) can be decomposed as
)k(N)k(a)k(z += (14)

)k(NT)mTkT(ga

)k(N)k(s)k(z
1K

0m
m τ

−

=

τττ

+−=

+=

�
(15)

where N(k) and Nτ(k) are complex Gaussian variables, with
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Note that )t(g�  has odd symmetry, and g(t) and )t(g��  have
even symmetry.

Taking (10) into account, the computation of the CRB (2)
involves the evaluation of
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for k1, k2 = 0, 1, ..., K-1, where E[.] denotes averaging over
the data symbols and the noise. We separately consider the
cases k1=k2 and k1≠k2.
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which follows from the statistical independence of z(k) and
zτ(k). The first expectation in (18) is easily obtained
analytically :
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The second expectation in (18) should be evaluated
numerically; note that this expectation does not depend on the
shape of the Nyquist pulse g(t).

The case k1≠k2 is considerably more difficult, because the
ISI caused by the bandlimited nature of g(t) gives rise to a
mutual dependence of z(k1), z(k2), zτ(k1) and zτ(k2). Noting
that (z(k1), z(k2)) depends only on (a(k1), a(k2), N(k1) N(k2)),
we first consider some statistics of (zτ(k1), zτ(k2)),
conditioned on (a(k1), a(k2), N(k1) N(k2)), that we will need
later on.

The conditional expectations of zτ(k1) and zτ(k2) are given
by
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Now we consider the conditional covariances of zτ(k1) and
zτ(k2) and of zτ

∗ (k1) and zτ(k2):
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It turns out that )]k(z),k(z[Cov 21 ττ  does not depend on

(a(k1), a(k2), N(k1) N(k2)), and that )]k(z),k(z[Cov 21
*
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The rotational symmetry of the constellation (α0, ..., αM-1)
and of the probability density function of z(k) gives rise to :
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Taking (25-26) into account, we obtain
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Collecting the intermediate results (18, 27) yields
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Note that A(Es/N0) and B(Es/N0) depend on Es/N0 and on the
type and size of the constellation, but not on the shape of the
transmit pulse. The quantities A(Es/N0) and B(Es/N0) can
easily be evaluated by means of numerical integration over a
two-dimensional Gaussian probability density. The shape of
the transmit pulse h(t) affects only the quantities involving

)0(g��  and )TkTk(g 21 −� . For large K the following approx-
imation is very accurate :
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Substituting (30) in (28) yields a CRB that is inversely
proportional to the sequence length K.

Till now we have excluded from consideration the M-
PAM constellation. The case of M-PAM can be handled in a
similar way as above. The CRB for M-PAM is related to the
CRB for M2-QAM in the following way :

�
�
�
�

�
=��

�
�
�
�

�

�
�
�

�
�
�

�
=��

�
�
�
�

�

−−

−−

0

s
PAMM

0

s
QAMM

0

s
QAMM

0

s
PAMM

N2
E

CRB
2
1

N
E

CRB

N
E2

CRB2
N
E

CRB

2

2

(31)

IV. NUMERICAL RESULTS AND DISCUSSION

Assuming a square-root cosine rolloff transmit pulse (with
20% and 100% rolloff), we have computed the ratios
CRB/MCRB and ACRB0/MCRB. Fig.1 and Fig.2 show the
results for M-PSK and M-QAM, respectively.
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Fig. 1 : CRB for timing estimation of M-PSK
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Fig. 2 : CRB for timing estimation of M-QAM

For both M-PSK and M-QAM, we observe that
CRB/MCRB increases with M, which indicates that for the
larger constellations timing recovery is inherently harder to
accomplish. This effect is caused by ISI, and therefore is
more pronounced for a smaller rolloff factor.

For small Es/N0, the effect of the size and type of the
constellation on CRB/MCRB is small; the CRB converges to
ACRB0 (8).

For sufficiently large Es/N0, the CRB converges to the
MCRB (7). However, the value of Es/N0, at which CRB is
close to MCRB, considerably increases with increasing
constellation size.

In the case of transmit pulses h(t) that are time-limited to
one symbol interval T, we have )mT(g�  = 0 for all m, so that
only the first term of (28) contributes. This yields
CRB/MCRB = 1/A(Es/N0). We have verified that the curves
corresponding to a rolloff of 100% yield essentially the same
result. Hence, the curves for a 100% rolloff are representative
also for time-limited transmit pulses.

As CRB is hard to evaluate, one might be tempted to use
either MCRB or ACRB as a first approximation of CRB.
Denoting by (Es/N0)c the value of Es/N0 for which
CRB/MCRB = 1, this approximation would yield
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For a rolloff of 100% (and also for time-limited transmit
pulses), (Es/N0)c ≈ 0 dB, so that for Es/N0 values of practical
interest the true CRB is closer to MCRB than to ACRB0. For
a rolloff of 20 %, (Es/N0)c ≈ 5 dB, so that only for systems
with sufficient coding gain (i.e., operating reliably at Es/N0 <
5 dB) the true CRB is closer to ACRB0 than to MCRB.
Using (31), results for M-PAM are easily derived from Fig.2.

V. CONCLUSIONS AND REMARKS

In this contribution, we have considered the CRB related
to the estimation of the time delay of a noisy linearly
modulated signal with arbitrary square-root Nyquist transmit
pulse and containing random PSK, QAM or PAM symbols.
In spite of the presence of the random data symbols, we have
been able to present a relatively simple expression of the
CRB. The evaluation of this expression requires only two
numerical integrations per considered value of Es/N0. The
effect of the pulse shape is analytically accounted for.

The numerical results indicate that for small Es/N0 and
very large Es/N0, the effect of the type and size of the
constellation on the CRB is small. For moderate Es/N0, the
CRB increases with increasing constellation size; this effect
is more pronounced when the excess bandwidth is small. The
CRB is a decreasing function of the excess bandwidth.
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