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Abstract— This contribution considers the Cramer-Rao bound 
(CRB) related to the joint estimation of the carrier phase and 
frequency of a noisy linearly modulated signal with random data 
symbols, using the correct continuous-time model of the received 
signal. We compare our results with the existing results obtained 
from a (commonly used) simplified discrete-time model of the 
matched filter output samples [1,2,3], that ignores useful signal 
reduction and ISI caused by nonzero frequency offset. We show 
that both models yield the same CRB for phase estimation. As far 
as frequency estimation is concerned, we point out that (i) the 
correct observation model yields the smaller CRB, and (ii) the 
difference between the CRBs resulting from the two models is 
apparent only at very small SNR. This indicates that at practical 
SNR values, the frequency offset affects the likelihood function 
mainly through the signal rotation (rather than signal 
magnitude) at the matched filter output. 

Carrier Synchronization, Cramer-Rao Lower Bound, Phase 
Estimation, Frequency Estimation 

I.  INTRODUCTION 
The Cramer-Rao bound (CRB) is a lower bound on the 

error variance of any unbiased estimate, and as such serves as a 
useful benchmark for practical estimators [4]. In many cases, 
the statistics of the observation depend not only on the vector 
parameter to be estimated, but also on a nuisance vector 
parameter we do not want to estimate. The presence of this 
nuisance parameter makes the analytical computation of the 
CRB very hard, if not impossible.  

In order to avoid the computational complexity caused by 
the nuisance parameters, a modified CRB (MCRB) has been 
derived in [5,6]. The MCRB is much simpler to evaluate than 
the CRB, but is in general looser than the CRB. In [7], the 
high-SNR limit of the CRB related to estimating a scalar 
synchronization parameter has been evaluated analytically; and 
has been shown to coincide with the MCRB when estimating 
the frequency offset or the carrier phase of a linearly modulated 
waveform.  

The 'true' (as opposed to 'the modified') Cramer-Rao bound 
related to carrier phase or frequency estimation has been 

derived for M-PSK, M-PAM and M-QAM in [1,2,3], assuming 
a simplified observation model. In this model, the received 
signal is fed directly to the matched filter (without first 
applying frequency error correction), and the observation 
consists of the matched filter output samples (taken at the 
decision instants). The simplification consists of neglecting the 
signal reduction and the ISI that occur at the matched filter 
output when the frequency offset is nonzero. In [8], the low-
SNR limit of the CRB for carrier phase or frequency 
estimation, again assuming this simplified observation model, 
has been obtained analytically for M-PSK, M-QAM and M-
PAM. 

In this contribution we consider a noisy linearly modulated 
signal with random data symbols (PSK, QAM or PAM), an 
arbitrary square-root Nyquist transmit pulse, and timing 
assumed to be known. We derive the associated CRBs and 
their low-SNR limit for the joint estimation of the carrier 
frequency and phase, based on the correct model of the 
received signal. Comparing our results with those from [1,2,3] 
that correspond to the simplified model, our main conclusion is 
that both models, although considerably different, yield 
essentially the same CRBs at SNR values of practical interest. 

II. PROBLEM FORMULATION 
Let us consider the complex baseband representation r(t) of 

a noisy linearly modulated signal: 

( ) )()()( 2 twekTthatr
K

Kk

Ftj
k +−ε= ∑

−=

θ+π  (1) 

where a = (a-K, ... aK) is a vector of L = 2K+1 data symbols 
(E[|ak|2] = 1); h(t) is a real-valued unit-energy square-root 
Nyquist pulse; θ is the carrier phase at t = 0; F is the frequency 
offset; T is the symbol interval; w(t) is complex-valued zero-
mean Gaussian noise with independent real and imaginary 
parts, each having a normalized power spectral density of 1/2; ε 
= (Es/N0)1/2, with Es and N0 denoting the symbol energy and the 
noise power spectral density, respectively. The data symbols 
are statistically independent and uniformly distributed over the 
M-PSK, M-PAM or M-QAM constellation. Based on the 
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observation model (1), the CRBs for joint phase and frequency 
estimation irrespective of the data symbols will be derived and 
investigated in this paper. 

In [1,2,3,8], CRBs related to frequency and phase 
estimation have been derived, assuming the following 
observation model: 

k
FkTj

kk wear +ε= θ+π )2(  (2) 
with k=-K, …, K. In (2), {wk} is a sequence of independent 
zero-mean complex-valued Gaussian random variables, with 
independent real and imaginary parts that each have variance 
equal to 1/2. The quantity rk stands for the matched filter output 
sample taken at the correct decision instant kT, when r(t) from 
(1) is applied to the matched filter (see Fig. 1) and the 
frequency offset is assumed to be so small (i.e., |FT|<<1), that 
signal reduction and ISI at the matched filter output can be 
neglected. It is important to realize that the observations r(t) 
from (1) and {rk} from (2) are not equivalent for nonzero F, as 
will be pointed out in the sequel.  

Suppose that one is able to produce from an observation 
vector r an unbiased estimate ( )θ̂,F̂  of a deterministic vector 
parameter ( )θ,F . Then the estimation error variance is lower 
bounded by the Cramer-Rao bound (CRB) [4]: 

FCRBFFE ≥− ])ˆ[( 2
r   

θ≥θ−θ CRBE ])ˆ[( 2
r   

where CRBθ=JFF/(JFFJθθ-JFθ
2) and CRBF=Jθθ/(JFFJθθ-JFθ

2). Jθθ, JFF 
and JFθ are the elements of the symmetrical Fisher information 
matrix J, and are given by 
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where u and v must be replaced by F or θ. The probability 
density p(r;F,θ) of r, corresponding to a given value of (F,θ), is 
called the likelihood function of (F,θ), while ln(p(r;F,θ)) is the 
log-likelihood function of (F,θ). The expectation Er[.] in (3) is 
with respect to p(r;F,θ). When using the simplified observation 
model (2), the vector r is given by (r-K, …, rK). When using the 
correct observation model (1), r is a vector representation of 
the signal r(t) from (1). 

As the observation r depends not only on the parameters F 
and θ to be estimated but also on a nuisance vector parameter 
a, the likelihood function of (F,θ) is obtained by averaging the 
joint likelihood function p(r|a;F,θ) of the vector (F,θ,a) over 
the a priori distribution of the nuisance parameter: 

)],;|([),;( θ=θ FpEFp arr a . 

The joint likelihood function p(r|a;F,θ) is, within a factor 
not depending on (F,θ,a), given by 

( )∏
−=

=θ
K

Kk
kk xaFFap ,),;|(r  (4) 

where 

( ) ( )( )22*Re2exp, kkkkk axaxaF ε−ε=  (5) 
and xk depends on the observation model used.  

 
Figure 1.  Simplified  observation model (top) versus correct observation 

model (bottom) 

When using the simplified observation model (2), kx  
equals kr(  given by 

)exp()2exp( θ−π−= jFkTjrr kk
(  (6) 

As indicated in the top part of Fig. 1, the quantity kr is obtained 
by feeding r(t) to a filter matched to the transmit pulse h(t), and 
sampling the matched filter output at instant kT. The quantity 

kr(  is obtained by applying to kr  a rotation of –(2πFkT + θ) 
rad. When using the correct observation model (1) kx  equals 

kz(  given by 

)exp()()2exp()( θ−−π−= ∫ jdtkTthFtjtrzk
(  (7) 

As indicated in the bottom part of Fig. 1, the quantity kz(  is 
obtained by first applying to r(t) a constant-speed rotation of -
2πF rad/s, feeding the result to a filter matched to the transmit 
pulse h(t), sampling the matched filter output at instant kT and 
applying to the result a rotation of -θ rad. Note the similarity 
between expressions (6) and (7). However, unless F=0, it 
follows from Fig. 1 that kk zr (( ≠ . Actually, { kz( } cannot be 
computed from { kr( } when F is nonzero, and therefore 
estimating F from { kr } instead of r(t) is suboptimum.  

The log-likelihood function ln(p(r;u)) resulting from (4) is 
given by 

( ) 























=θ ∏
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K

Kk
kk xaFEFp ,ln),;(ln ar  (8) 

Computation of the CRB requires the substitution of (8) into 
(3), and the evaluation of the various expectations included in 
(8) and (3). 

As the evaluation of the expectations involved in J and 
p(r;F,θ) are quite tedious, a simpler lower bound, called the 
modified CRB (MCRB), has been derived in [5,6], i.e., 
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FF MCRBCRBFFE ≥≥− ])ˆ[( 2
r   

θθ ≥≥θ−θ MCRBCRBE ])ˆ[( 2
r  

The MCRBs for phase and frequency estimation happen to be 
independent of the observation model, and are given by [5,6] 
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In [7] it has been shown that the high-SNR limits (i.e., Es/N0 → 
∞) of the CRBs related to the estimation of the carrier phase or 
frequency converge to the corresponding MCRB.  

Also, a closed-form expression can be derived for the low-
SNR limit (i.e. Es/N0 → 0) of the CRB, which we call the 
asymptotic CRB (ACRB). In [8] this has been accomplished 
for the CRB related to carrier synchronization using the 
simplified observation model (2), yielding 
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where AN = E[ak
N], and N is related to the symmetry angle 

(2π/N) of the constellation : N=2 for M-PAM, N=4 for M-
QAM, and N=M for M-PSK. The superscript si denotes that 
the result was obtained with the simplified observation model 
(2). Note that ACRBF

si is proportional to (Es/N0)-N and to L-3, 
whereas ACRBθ

si is proportional to (Es/N0)-N and to L. Both 
ACRBs (11)-(12) depend on the constellation (through N and 
AN), but not on the shape of the transmit pulse h(t); obviously, 
this is because the simplified observation model (2) does not 
depend on h(t). 

Similarly, one can derive the ACRBs related to the correct 
observation model (1). For carrier phase estimation we obtain 
ACRBθ

co = ACRBθ
si, where the superscript co denotes that the 

results where obtained with the correct observation model (1). 
For frequency estimation we must distinguish between N>2 
and N=2.  

• For N=2 (real-valued constellation), we find that for 
large L, ACRBF

co converges to ACRBF
si from (13), 

evaluated for N=2; hence, for N=2 both observation 
models yield essentially the same ACRB.  

• For N>2 (complex-valued constellation), we obtain 

( )∫
∞+

∞−






π

=

dtthtL
N
E

ACRB
s

co
F

22
2

0

28

1 , N>2 (13) 

which is only proportional to (Es/N0)-2 and to L-1. Note 
also that (13) is independent of the type and size of the 
complex-valued constellation, but is affected by the 
shape of the transmit pulse h(t).  

Comparing equations (11) and (13) reveals that, for N>2, 
the correct and the simplified observation models result in 
considerably different CRBF-values as Es/N0 → 0; this 
indicates that the simplified observation model is highly 
inaccurate, as far as frequency estimation at very low Es/N0 is 
concerned. In this contribution we study the effect of 
simplifying the observation model on the CRB at moderate and 
high SNR. Therefore, we derive in Section III the true CRB 
related to the correct observation model (2), and compare it to 
the results corresponding to the simplified observation model 
[1,2,3].  

It should be stressed that the ACRBs (11)-(13) do not 
necessarily provide a lower bound on the actual frequency 
error variance for moderate and large SNR, but only indicate 
the behavior of the CRBs at small SNR. 

III. EVALUATION OF THE TRUE CRB 
We obtain for the log-likelihood function ln(p(r|F,θ)) of 

(F,θ) 

( ) ( )( )∑
−=

=θ
K

Kk
kxIFp ln),|(ln r  (14) 

where  

( ) ( )∑
−

=

α=
1

0

,
M

i
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and {α0, α1, ...,αΜ−1} is the set of constellation points. 
Differentiation of (14) yields 
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where 

( ) ( ) )Re(2,,, * yxGyxH ikiki αα=α  (18) 

( ) ( )
( )k

ki
ki xI

xF
xG

,
,

α
=α  (19) 

and the subscript F denotes differentiation with respect to F. In 
these expressions kk rx (=  or kk zx (=  and kFk rTkjx (π−= 2  
or FkFk zx (= , according to the observation model being used. 
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As the variables F and θ in (3) correspond to the actual 
frequency and phase offsets, the quantities kr( , kz(  and Fkz(  
to be used in (16)-(17) can be decomposed as 

( )kNazr kkk +ε== ((  (20) 

( )kNaTkjz FkFk +επ−= 2(  (21) 

where N(k) and NF(k) are zero-mean Gaussian random 
variables, with  

( ) ( )[ ] nmnNmNE −δ=*  

( ) ( )[ ] nmF mTjnNmNE −δπ−= 2*  (22) 
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Taking (16) and (17) into account, JFF, Jθθ and JFθ from (3) can 
be represented as  
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where u and v must be replaced by F or θ, yθ(k) = -jxk, yF(k) = 
xFk, and E[.] denotes averaging over the data symbols and the 
noise. Note that (

1kx ,
2kx ) depends only on 

(
1ka ,

2ka ,
1kN ,

2kN ). Expression (23) can be further simplified 
by making use of the statistical properties of 1Fkx  and 2Fkx , 
conditioned on (

1ka ,
2ka ,

1kN ,
2kN ). The average in (23) is 

computed by first taking the expectation conditioned on 
(

1kx ,
2kx ), and then averaging over (

1kx ,
2kx ).  

We obtain 0=θFJ , indicating that the parameters F and θ 
are uncoupled; this implies that the joint estimation of the 
parameters F and θ yields the same CRBθ (= Jθθ

-1) and CRBF (= 
JFF

-1) as in the case of estimating one of these parameters, 
assuming the other parameter to be known.  

Substituting (20) to (17) gives rise to an expression that is 
the same for both observation models. Hence, the correct 
observation model and the simplified observation model yield 
the same CRBθ, the expression of which has been presented in 
[1,2,3]. Hence, in the sequel we mainly concentrate on CRBF.  

For the CRBF we obtain  
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where 
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We observe that co
FCRB/1  equals the sum of si

FCRB/1  and a 

positive term. Hence, co
FCRB  < si

FCRB , which indicates that 
frequency estimation from {rk} is suboptimum. We have 
verified that the term si

FCRB/1  dominates at high Es/N0 
(assuming large L), whereas at low SNR the additional term 
becomes the largest (this is consistent with the expressions for 
the ACRBs). Consequently, both  observation models yield 
essentially the same CRBF at sufficiently high SNR. The 
quantities A(Es/N0, N) and B(Es/N0, N) depend on the SNR and 
on the constellation, but not on the shape of the Nyquist 
transmit pulse. The shape of the transmit pulse affects only the 
coefficient of B(Es/N0, N) in (25). Note that evaluating si

FCRB  
from (24) for BPSK, QPSK and QAM yields the CRB for 
frequency estimation presented in [1,2,3]. 

IV. NUMERICAL RESULTS AND DISCUSSION 
As no further analytical simplification of (24)-(27) seems 

possible, we have to resort to numerical computation. This 
involves replacing the statistical expectations in (26)-(27) by 
arithmetical averages over a number of computer-generated 
vectors x. 

In the case of known data symbols, the CRBF resulting 
from the joint estimation of F and θ equals MCRBF. Hence, for 
any other scenario the ratio CRBF/MCRBF is a measure of the 
penalty occurred by not knowing the data symbols. Fig. 2 
shows, for BPSK and QPSK, the ratios CRBF/MCRBF and 
ACRBF/MCRBF, for both observation models. The behavior of 
the various curves is as follows.     

• For small (large) SNR, the CRBs converge to the 
corresponding ACRBs (to the MCRB). The value of 
Es/N0 at which the CRB comes close to the MCRB is 
larger for QPSK than for BPSK. We have verified that 
for all constellations considered (PAM, PSK, QAM) this 
value of Es/N0 increases with the constellation size M. 

• For N>2, the simplified observation model yields the 
larger CRBF. Indeed, as the transformation from r(t) to 
{rk} cannot be inverted, estimating F from {rk} instead 
of r(t) is suboptimum. We have pointed out in section III 
that both observation models yield the same CRBF for 
large values of Es/N0. Our numerical results indicate that 
the two observation models yield essentially the same 
CRBF for all SNR values of practical interest. The 
difference between these observation models becomes 
apparent only at (very) small SNR. Consequently, the 
shape of the transmit pulse has no effect on the CRB at 
moderate and high SNR.  
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Figure 2.  Effect of the observation model on the ratio CRBF/MCRBF 

• We have pointed out in section II that in case N=2 
(PAM), both observation models yield essentially the 
same ACRB. Our results show that both observation 
models also yield essentially the same CRB. 

Let us give an interpretation of the above results in terms of 
maximum-likelihood (ML) estimation of (F, θ). Denoting by 
(F', θ') a trial value of the estimate, the main point is that |xk| 
does not depend on F' when using the simplified model. The 
ML estimate F' maximizes L(F'), which denotes the maximum 
of the log-likelihood function over θ' at given F'. For high 
SNR, it can be verified from (8) that L(F') is determined by 

( )∑
−=

=
K

Kk
kkkk xxaajxxaaFL

l
llll

,

**2 )arg(exp||)'(  (28) 

For both observation models, we have )xxaaarg( *
k

*
k ll ≅  

)')(( FFk −−l , whereas || ll xxaa kk  depends on F' only when 
using the correct model. However, as both models yield 
essentially the same CRB for sufficiently high SNR, it follows 
that the main dependence of L(F') on F' is through 

)arg( **
ll xxaa kk , with l≠k . For low SNR and N>2, the 

function to be maximized becomes 

terms
orderNthxFL

K

Kk
k

−+= ∑
−=

2)'(   (29) 

with the Nth-order terms decreasing with decreasing SNR. 
When using the correct model, the quadratic term in (29) 

depends on F', and dominates at low SNR. In case of the 
simplified model, L(F') from (29) depends on F' only through 
the  higher order terms, yielding noise enhancement and 
resulting in a CRBF that is substantially larger than when using 
the correct model. For low SNR and N=2, the function to be 
maximized is given by 

∑∑
−=−=

+=
K

Kk
k

K

Kk
k xxFL 22)'(   (30) 

In this case, both observation models yield essentially the same 
CRBF; hence, a similar reasoning as for large SNR indicates 
that L(F') from (30) depends on F' mainly through )arg( 2*2

lxxk , 
with l≠k .  

V. CONCLUSIONS AND REMARKS 
In this contribution, we have considered the CRB related to 

joint carrier phase and frequency estimation of a noisy linearly 
modulated signal with arbitrary square-root Nyquist transmit 
pulse. We have contrasted the results obtained from the correct 
observation model with those resulting from a simplified 
model, used in [1,2,3,8].  

For both observation models the frequency and phase are 
uncoupled (i.e., JFθ = 0). As far as phase estimation is 
concerned, both observation models yield the same CRB, 
which can be found in [1,2,3]. For complex data symbols, the 
CRBs related to frequency estimation at practical SNR are 
essentially the same for both observation models; substantial 
differences occur only at very low Es/N0. This is because in the 
simplified model the frequency offset does not affect the 
magnitude of the matched filter output signal. For real data 
symbols both observation models yield essentially the same 
CRB, irrespective of SNR. 
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