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Abstract— In this paper, we consider the effect of a carrier
phase offset on the performance of a low-density parity-check
(LDPC) coded QAM modulated system. We investigate an ML-
based carrier phase synchronization algorithm, that makes use
of the posterior probabilities of the data symbols, provided by
the iterative decoder. The resulting carrier phase synchronizer
is an extension, to LDPC coded systems, of the iterative phase
estimator for turbo coded systems, presented in [1], and has
negligible BER performance degradation as compared to the
ideally synchronized system.

I. INTRODUCTION

Low-density parity-check (LDPC) codes were first intro-
duced by Gallager as a class of linear error-correcting block
codes, of which the check matrix is sparse. Gallager showed
that random LDPC codes can perform close to the Shannon
capacity limit when the block length increases [2]. However,
as no practical decoding algorithm was available that could
achieve the near-Shannon performance, the LDPC codes were
forgotten. Only recently, with the discovery of turbo codes
[3], the LDPC codes were rediscovered. A decoding algo-
rithm for LDPC codes, similar to that for turbo codes, has
been proposed [4]. In this decoding algorithm, we aim to
compute the marginal posterior probability that a received
bit is erroneous, given the information of the check matrix
and the syndrome. This computation of the marginal posterior
probability is done in an iterative way, by exchanging the belief
that the information is correct [5]. With this iterative decoding
algorithm, it has been shown in [6], [7], [8] that the Shannon
limit can be approached.

However, the excellent performance of the LDPC codes
was based on the assumption of ideal coherent detection, i.e.
the carrier reference must be estimated accurately before data
detection. This assumption may not be realistic in a system
without pilot tone, as the system is operating at signal-to-
noise ratios (SNR) that are extremely low. In this paper, we
show that the iterative decoder is quite sensitive to carrier
phase offsets, such that accurate carrier phase recovery is
necessary to realize the excellent performance of the LDPC
codes. To counteract the effect of the carrier phase offset on
the performance of the iterative decoder, we propose a simple
carrier phase synchronization algorithm, that is based on the
ML approach. In this algorithm, the (iterative) estimation of
the carrier phase is based on the soft decisions of the data
provided by the iterative detector at each iteration. In this
way, blind reliable synchronization is performed, and almost
ideal coherent detection is obtained, even at very low SNR, as
required in the LDPC coded system.

In section II, we briefly outline the LDPC coded system
in the presence of a carrier phase offset. The effect of the
carrier phase offset on the performance of the iterative decoder
is discussed. The blind soft-decision directed carrier phase
synchronizer is derived in section III, and we present the
relevant numerical results in section IV. The conclusions are
drawn in section V.

II. THE LDPC CODED SYSTEM IN THE PRESENCE OF

CARRIER PHASE OFFSETS

The conceptual block diagram of the LDPC coded system
in the presence of a carrier phase offset is shown in figure 1.
The bit sequence to be transmitted is first split into blocks b of
k bits, and fed to the (n, k) LDPC code, where n is the length
of the code word. The linear transformation that converts the
information word b into the code word c is characterized by
the generator matrix G. The corresponding check matrix H
is sparse, i.e. it contains a low density of ones. The resulting
code word is Gray-mapped onto the QAM symbols {ak} and
transmitted over the channel. The channel adds white Gaussian
noise {wk}, with uncorrelated real and imaginary parts, each
having a variance σ2. Further, the transmitted symbols are
affected by a carrier phase offset θ. At the receiver, we obtain
the sequence

rk = ak ejθ + wk. (1)

The symbols {ak} have average energy per symbol equal to
1.

First, we consider the case that the carrier phase offset is
not corrected at the receiver. The sequence (1) is applied to the
decoder. Let us define the set of code bits � that participate in
the m-th syndrome bit by L(m) ≡ {� : Hm,� = 1}, and the set
of syndrome bits m in which the �-th code bit participates by
M(�) ≡ {m : Hm,� = 1}, where H denotes the check matrix.
The decoder iteratively updates two quantities [4]: Λqm,� =
ln(q1

m,�/q0
m,�) and Λrm,� = ln(r1

m,�/r0
m,�), where qx

m,� is the
probability that the �-th code bit has the value x, given the
information obtained from the syndromes other than the m-
th syndrome. The quantity rx

m,� is the probability of the m-
th syndrome bit being zero, conditioned on the �-th code bit
having a value x, and assuming that the other bits have a
separable distribution given by the probabilities {qm,�′ : �′ ∈
L(m)\�}. Further, the algorithm computes Λq� = ln(q1

� /q0
� ),

where qx
� is the pseudoposterior probability that the code bit

has value x. The iterative decoding algorithm is summarized
in table I. The algorithm initializes the quantities qx

m,� to the
prior probability that the corresponding code bit � has value
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Fig. 1. Block diagram of LDPC coded system

TABLE I

THE ITERATIVE DECODING ALGORITHM [3]

Initialization

initialize Λqm,� = Λp� = ln
(

p1
�

p0
�

)

Iteration
Horizontal step

update Λrm,� = ln




1−

∏

�′∈L(m)\�

−tanh
Λq

m,�′
2

1+
∏

�′∈L(m)\�

−tanh
Λq

m,�′
2





Decoding
compute Λq� = Λp� +

∑
m∈M(�)

Λrm,�

select ĉ� =

{
0 Λq� < 0,

1 Λq� ≥ 0.

Vertical step
update Λqm,� = Λp� +

∑
m′∈M(�)\m

Λrm′,�

x, i.e. px
� . For the considered system, the prior probability that

the corresponding code bit � equals 1, is given by

p1
� =

∑
ak:c�=1

e− 1
2σ2 |rk−ak|2

∑
∀ak

e− 1
2σ2 |rk−ak|2

, (2)

and p0
� = 1 − p1

� , where σ−2 = 2Es/N0. After each iteration,
an updated version ĉ of the code word is computed, based on
the pseudoposterior probabilities, and the syndrome is com-
puted to check whether ĉ is a valid code word. The algorithm
stops if a valid code word is found, or if the maximum allowed
number of iterations is reached, in which case the algorithm
reports that the decoding was not successful.

We evaluate the performance of the iterative decoder by
means of simulations, as an analytical approach is too com-
plex. We consider the case of a rate R = 1/2 LDPC encoder
with block length n = 1000. The maximum number of
iteration steps is set to 20. A 4-QAM modulated system
is considered. Figure 2 shows the bit error rate (BER) as
function of Eb/N0, where Eb denotes the energy transmitted
per information bit, for different values of θ. In figure 3, the
BER is shown as function of the angle θ, for different values of
Eb/N0. As we observe, the presence of a carrier phase offset
causes severe performance degradations. Hence, in order to
achieve a performance that is close to the performance of the
case of ideal coherent detection, the carrier phase offset must
be accurately estimated and compensated for.
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Fig. 2. BER performance of the iterative decoder versus Eb/N0
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Fig. 3. BER performance of the iterative decoder versus carrier phase offset

III. THE CARRIER PHASE SYNCHRONIZATION

ALGORITHM

The carrier phase estimator to be proposed in this section
iteratively maximizes the log-likelihood function p(r|θ), by
exploiting the posterior probabilities of the coded bits, that
are provided by the iterative LDPC decoder. The resulting syn-
chronizer can be viewed as an extension to LDPC codes of the
synchronizer for turbo-coded systems from [1]. Whereas the
latter synchronizer has been introduced as an ad hoc algorithm,
it has been shown in [9] that its operation is mathematically
equivalent to the expectation-maximization (EM) algorithm
[10], [11], [12] for iteratively maximizing the log-likelihood
function. In the following, we adopt the line of thought from
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[9].
The received vector r (1) depends of the data symbols a

with prior probability P (a), the noise vector w and the carrier
phase offset θ, which has to be estimated. The ML estimate θ̂
of θ is obtained as the solution of

θ̂ = arg max
θ

ln p(r|θ), (3)

where

p(r|θ) =
∫

a
P (a) p(r|θ,a) da (4)

is the likelihood function, after averaging over the data sym-
bols a. In [9], it is shown that the solution of (3) satisfies

∫

a
P (a|r,θ) ∂

∂θ
ln p(r|θ,a) da

∣∣∣∣
θ=θ̂

= 0. (5)

As the carrier phase appears in both term of the integrand, the
solution of (5) is hard to find. Therefore, we try to solve (5)
iteratively. In the proposed algorithm, a sequence of estimates
θ̂(k) is produced by solving

∫

a
P (a|r, θ(k−1))

∂

∂θ
ln p(r|θ,a) da

∣∣∣∣
θ=θ̂(k)

= 0, (6)

where the previous estimate θ̂(k−1) is used to resolve the
conditioning on θ in the first factor of the integrand. This
algorithm turns out to be equivalent with the EM algorithm,
which converges to the ML estimate [10], [11], [12].

Considering (1), the vector r conditioned on a and θ has a
Gaussian distribution with average aejθ and covariance matrix
σ2I , where I denotes the identity matrix. Neglecting the
irrelevant terms independent of a and θ, we obtain

ln p(r|θ,a) = − 1
2σ2

N∑

i=1

∣∣aie
jθ − ri

∣∣2 , (7)

where N is the number of complex data symbols that corre-
spond to a code word c (i.e. N = 
n/ log2 M�, where M is
the constellation size). Substituting (7) in (6), we obtain the
estimate

θ̂(k) = arg(rT ã), (8)

where

ã =
∫

a
a P (a|r, θ(k−1)) da (9)

is the posterior average of the vector a of the complex data
symbols. The data symbols a are related in a deterministic
way to the code bits c. Hence, obtaining the estimate (8)
requires the knowledge of the joint statistics of the code bits,
i.e. P (c|r,θ). An estimate of the joint statistics of the code
bits can be obtained from the iterative decoding algorithm:

P (c� = 1|r, θ) =
eΛq�

1 + eΛq�
, (10)

and P (c� = 0|r, θ) = 1 − P (c� = 1|r, θ). Denote cm =
(cm,1, . . . , cm,log2 M ), m = 1, . . . , N as the set of code bits

TABLE II

THE JOINT ITERATIVE CARRIER PHASE SYNCHRONIZATION AND

DECODING ALGORITHM

Initialization
initialize Λqm,�

Iteration
Horizontal step

update Λrm,�

Decoding
compute Λq�

select ĉ� =

{
0 Λq� < 0,

1 Λq� ≥ 0.

Phase estimation
compute θ̂ using (8)
update Λp�

Vertical step
update Λqm,�

that contribute to the data symbol am. The data symbol am

can take M different values with probability

P (am|r, θ) =
log2M∏

i=1
cm:am

P (cm,i|r, θ), (11)

where the set cm is mapped on the symbol am and
P (cm,i|r, θ) is given by (10). Note that in (11) it is tacitely
assumed that the coded bits are statistically independent. From
(11), the posterior average ã of a can be written as

ãm =
M∑

�=1

am,�

log2M∏

i=1
cm:am

P (cm,i|r, θ). (12)

For example, in the 4-QAM case, with the even bits mapped
on the real part of the data symbol and the odd bits on the
imaginary part of the symbol, the posterior average ã is given
by

ãm =
√

2
2

(
atan

Λq2m

2
+ jatan

Λq2m+1

2

)
. (13)

The phase estimate (8) is used to rotate the received samples
over the angle −θ̂(k), resulting in the sequence r(k) =
r(k−1)e−jθ̂(k)

. An updated version of the prior probabilities
Λp� is computed based on the rotated sequence r(k), and is
used to update the quantities Λqm,�. Hence, in each iteration
step, soft information is exchanged between the synchronizer
and the decoder. After a number of iterations, the estimate of
the carrier phase and the posterior probability of c converge
to their ”true” value. The joint carrier phase synchronization
and decoding algorithm is summarized in table II.

IV. SIMULATION RESULTS

To evaluate the performance of the proposed joint carrier
phase synchronization and decoding algorithm, simulations
have been carried out with the same LDPC code with rate
R = 1/2 and block length n = 1000 as in section II. We study
the mean E[θ̂] of the estimate θ̂, the BER and the root-mean
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Fig. 4. Mean estimated θ̂ for different number of iterations, Eb/N0 = 2
dB, 4-QAM

squared error (RMSE), in terms of the number of iteration
steps and Eb/N0. In the following figures, results are shown
for 4-QAM. However, similar results have been obtained for
16-QAM.

In figures 4 and 5, E[θ̂] is shown as function of the carrier
phase offset θ for different number of iteration steps, at
Eb/N0 = 2 dB, corresponding roughly to a BER=10−3 in
case of perfect synchronization, and for different values of
Eb/N0, for 20 iteration steps. As we observe, the proposed
algorithm is not able to avoid the four fold ambiguity caused
by the rotational symmetry of the QAM constellation. Further,
the correspondence between the mean estimated θ̂ and the
carrier phase offset θ increases with increasing number of
iterations and increasing Eb/N0, for carrier phase offsets in
the range [−45◦, 45◦], i.e. after correction of the carrier phase
offset, only a small residual phase offset is present. Hence, the
proposed algorithm provides good estimates for carrier phase
offsets up to 30◦ − 40◦. To overcome the four-fold ambiguity
of the algorithm, the input of the decoder must be compensated
by a coarse estimate (e.g., resulting from a few pilot symbols)
of the initial phase offset, such that the residual phase offset
is within the tracking range of the proposed algorithm in
the starting-up phase of the synchronizer. Alternatively, an
ambiguous phase estimate can be detected from a nonzero
syndrome, after which a multiple of π/2 is added to the
estimate until a zero syndrome is obtained. Further, the phase
estimate of the previous code block can be used as a finer
estimate of the phase offset to precorrect all signal samples of
the next code block, in order to keep the residual phase offset
in the vicinity of the origin. In this way, better estimates of
the carrier phase offsets can be obtained by the algorithm.

In figure 6, the BER, resulting from the combination of
synchronizer and decoder, is shown as function of the carrier
phase offset θ for different values of Eb/N0, assuming 20
iteration steps. As we observe, the BER is essentially inde-
pendent of the carrier phase offset and equal to the BER of
the perfectly synchronized system, for carrier phase offsets in
the range of [−30◦, 30◦]. Further, the BER is shown in figure
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Fig. 5. Mean estimated θ̂ for different values of Eb/N0, 20 iterations,
4-QAM
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7 as function of Eb/N0, for different values of the number
of iteration steps, and a carrier phase offset θ = 20◦. We
observe that the performance degradation is negligibly small as
compared to the perfectly synchronized system for 20 iteration
steps. These results confirm that the proposed algorithm can
perform joint carrier phase synchronization and decoding with
negligible BER performance degradation.

Finally, in figure 8, the RMSE is shown as function of
Eb/N0 for different values of the number of iteration steps.
For increasing Eb/N0, the RMSE decreases; for given Eb/N0,
the RMSE decreases with increasing number of iteration steps.
At high Eb/N0 (for 20 iteration steps, Eb/N0 ≥ 1.5 dB),
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the curves essentially coincide with the modified Cramer-Rao
lower bound (MCRB). This can be explained by observing that
for high Eb/N0, the posterior averages of the transmitted data
symbols are close to the true symbols, so the performance of
the algorithm reaches the performance of the data-aided carrier
phase synchronizer. Further, the RMSE for the classical carrier
phase estimator, corresponding to the estimate

θ̂ =
1
4

arg

(
L−1∑

k=0

r4
k

)
, (14)

is shown, where L denotes the number of data symbols used
to estimate the carrier phase. As observed, the RMSE for the
classical phase estimator is much higher than the RMSE for
the proposed algorithm.

V. CONCLUSIONS

In this paper, we have considered the effect of a carrier
phase offset on the performance of an LDPC coded QAM
modulated system. We show that the performance of the LDPC
coded system is severely degraded when the carrier phase
offeset is not compensated. To overcome the problem of the
degradation caused by a carrier phase offset, we propose a sim-
ple blind soft-decision directed carrier phase synchronization
algorithm, that is based on the ML approach. The algorithm
iteratively exchanges soft information between the synchro-
nizer and the decoder. The proposed algorithm introduces
negligibly small performance degradations as compared to the
ideally synchronized system for carrier phase offsets up to 30◦.
Larger carrier phase offsets can not be estimated effectively,
because of the rotational symmetry of the QAM constellation.
To counter this problem, we propose to compensate the input
of the decoder with a coarse estimate of the initial phase
offset when starting up the synchronizer, and to use the phase
estimate of the previous code block to obtain a finer estimate
of the carrier phase offset, which can be used to compensate
the signal samples of the next code block. In this way, the
residual phase offset is kept close to the origin, and better
estimates for the phase are obtained.
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