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Abstract - This contribution considers the joint estimation of the 
carrier phase and the frequency offset from a noisy linearly 
modulated burst signal containing random data symbols (DS) as 
well as known pilot symbols (PS). The corresponding Cramer-
Rao lower bound (CRB) is derived. This bound indicates that it is 
potentially more accurate to estimate carrier phase and 
frequency from such a ‘hybrid’ burst than from a burst without 
PS or from the limited number of PS only. The new bound is then 
compared with the performance of new and existing carrier 
synchronizers. We present the iterative Soft-Decision-Directed 
estimator with combined Data-Aided/Non-Data-Aided 
initialization, which performs closely to the CRB, and provides a 
large improvement over the classical Non-Data-Aided estimator 
at low and moderate Signal-to-Noise Ratio.  

Carrier Synchronization, Cramer-Rao Lower Bound, Phase 
Estimation, Frequency Estimation, Pilot Symbols 

I. INTRODUCTION 
In burst transmission with coherent detection, the recovery of 
the carrier phase and frequency offset is a key aspect. We 
assume that phase coherence over successive bursts cannot be 
maintained, so that the carrier phase and frequency offset have 
to be recovered on a burst-by-burst basis. Most burst 
synchronizers belong to one of the following types: Data-
Aided (DA) synchronizers use known pilot symbols (PS), 
while Non-Data-Aided (NDA) and Decision-Directed (DD) 
estimators operate on modulated data symbols (DS). DD 
estimators are similar to DA estimators, but use, instead of PS, 
hard or soft decisions regarding the DS, that are provided by 
the detector; NDA estimators apply a non-linearity to the 
received signal to remove the data modulation.   

Assuming the parameter estimate is unbiased, the variance 
of the estimation error is often used as a performance measure. 
The Cramer-Rao lower bound (CRB) is a fundamental lower 
bound on the variance of any unbiased estimate [1], and is also 
known to be asymptotically achievable for a large enough 
number of observations, under mild regularity conditions. The 
CRBPS(Np) for phase and/or frequency estimation from Np 
known PS has been derived in [2-3]. The CRBDS(Nd) for joint 
carrier phase and frequency estimation from Nd random DS 
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has been addressed in [4-7]. In order to avoid the 
computational complexity related to the true CRBDS, a 
modified CRB (MCRB) has been derived in [8,9]. The MCRB 
is much easier to evaluate than the CRB, but is in general 
looser (i.e. lower) than the true CRB, especially at low Signal-
to-Noise Ratio (SNR). In [10], the high-SNR limit of the 
CRBDS has been obtained analytically, and has been shown to 
coincide with the MCRB.  

Except for very high SNR and/or very large bursts, accurate 
estimation of large frequency offsets is far from trivial, 
because of the threshold phenomenon [2]. In [11], it has been 
shown that a frequency estimator that utilizes both PS and DS 
may provide the combined advantages of DA estimators and 
NDA estimators, and allow more accurate synchronization at 
lower SNR. It is obvious that phase estimation may also 
benefit from the simultaneous use of PS and DS to resolve the 
phase ambiguity, caused by the rotational symmetry of the 
constellation.  

This contribution further examines joint phase and 
frequency estimation from the observation of a burst that 
contains Np pilot symbols as well as Nd data symbols. We 
derive the corresponding true CRBPS-DS(Np,Nd), which can be 
viewed as a generalization of both CRBDS and CRBPS. 
Comparing to the true CRB the performance of the estimation 
algorithm from [11], that uses both the PS and the DS, it is 
concluded that more efficient algorithms may exist that 
perform more closely to the CRB. We propose some new 
algorithms, including an iterative soft-DD estimator with 
combined DA/NDA initialization that yields a close agreement 
between the simulated performance and CRBPS-DS.  

II. PROBLEM FORMULATION 
Consider the following observation model 

k
j

kk wear k += θ , k ∈ I = { -K, -K+1, …, K} (1) 

In (1), {ak: k ∈ I} is a sequence of L = 2K+1 transmitted M-
PSK, M-QAM or M-PAM symbols (E[|ak|2 ]=1). The symbol 
ak denotes a known PS for k belonging to the set of indices 
Ip={k0, k1, …, kNp-1} ⊆ I, where Np denotes the number of PS. 
For k ∈ Id={I \ Ip}, ak denotes an unknown DS. The Nd (=L-
Np) DS are assumed to be statistically independent and 
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uniformly distributed over the constellation. The sequence 
{wk: k ∈ I} consists of zero-mean complex Gaussian noise 
variables, with independent real and imaginary parts each 
having a variance of N0/2Es. The quantities Es and N0 denote 
the symbol energy and the noise power spectral density, 
respectively. The quantity θk = θ + 2πkFT is the instantaneous 
carrier phase, where θ represents the carrier phase at k = 0, F 
is the frequency offset and T is the symbol duration. Both θ 
and F are unknown but deterministic parameters. 

Let us denoted by p(r;u) the probability density function 
(pdf) of the observation vector r, where u is an unknown 
deterministic vector parameter. Suppose one is able to produce 
from r an unbiased estimate û  of the parameter u. Then the 
estimation error covariance matrix ])ˆ)(ˆ[(ˆ

TER uuuuuu −−=−  
satisfies  

0)(1
ˆ ≥− −
− uuu JR      (positive semi definite) (2) 

where J(u) is the Fisher information matrix (FIM). The (i,j)-th 
element of J(u) is given by 
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Note that J(u) is a symmetrical matrix. When the element 
Jij(u) = 0, the parameters ui and uj are said to be decoupled. 
The expectation Er[.] in (3) is with respect to p(r;u). The pdf 
p(r;u) of r, corresponding to a given value of u, is called the 
likelihood function of u, ln(p(r;u)) is the log-likelihood 
function of u. When the observation r depends not only on the 
parameter u to be estimated but also on a nuisance vector 
parameter v, p(r;u) is obtained by averaging the likelihood 
function p(r|v;u) of the vector (u,v) over the a priori 
distribution of the nuisance parameter: )];|([);( uvrur v pEp = . 

Considering the joint estimation of the carrier phase θ and 
frequency offset F from the observation vector r = {rk} from 
(1), we take u = (θ,F). The nuisance parameter vector v={ak: 
k∈Id} consists of the unknown DS. Within a factor not 
depending on F, θ and a, p(r|a;F,θ) is given by 

∏
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Averaging (4) over the DS yields p(r|F,θ). For ln(p(r|F,θ)) we 
obtain, within a term that does not depend on (F,θ) 
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−

=
α=

1

0
)~,()~(

M

i
kik rFrI , and {α0, α1, ...,αΜ−1} denotes the 

set of constellation points.  

It follows from (2) that the error variance regarding the 
estimation of θ and F is lower bounded by the Cramer-Rao 
Bound (CRB):  
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Similarly, (2) yields a lower bound on the variance of 
estimation error on the instantaneous phase: 
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As the evaluation of the various expectations in J(θ,F) and 
p(r|θ,F) is quite tedious, a simpler lower bound called 
modified CRB (MCRB), has been derived in [8,9], i.e., 

DSPS
x

DSPS
x MCRBCRBxxE −− ≥≥− ])ˆ[( 2 , where DSPS

xMCRB −  

is defined as DSPS
xCRB −  in (6-8) but with the FIM J(θ,F) 

replaced with the modified FIM (MFIM) JM(θ,F) given by 
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III. EVALUATION OF THE CRB 

Differentiation of (5) with respect to θ and F and substituting 
the result into (3) yields 
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where 
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and 
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In (11), Er[.] denotes the average over r = a+n, where a is a 
random variable that takes any value from the constellation 
with equal probability, and n is complex zero-mean AWGN 
with variance equal to Es/N0. The quantity kG can be 
interpreted as the center of gravity of the sequence {βk}. We 
obtain 012 ≠−DSPSJ , unless kG = 0, which is achieved if both 
PS and DS are each located symmetrically about zero, and the 
PS satisfy |ak|=|a-k|. For kG ≠ 0, the parameters θ and F are 
coupled, meaning that the inaccuracy in the phase estimate has 
an impact on the frequency offset estimation and vice versa. 
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Note that the FIM does not depend on θ or F. Substituting (10) 
into (6-8) yields 
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The lower bound on ])ˆ[( 2
kkE θ−θ  is quadratic in k. Its 

minimum value is achieved at k = kG, and is equal to 
1/ DSPSJ −

11 , which is the CRB for the estimation of the carrier 
phase when the frequency offset is a priori known. Note from 
(10-11) that 1/ DSPSJ −

11  depends on the number (Np) of PS and 
the number (Nd) of DS, but not on the specific position of the 
PS in the burst. The bound (15) achieves its maximum value at 
k = -sign(kG).K, i.e. at one of the edges of the burst interval (or 
at both edges if kG=0). The difference between the minimum 
and the maximum value of (15) over the burst amounts to 
∆24π2CRBFT, where ∆ = K+|kG.| represents the distance (in 
symbols intervals) between the positions of the minimum and 
maximum value of the CRB (15). For given values of 
1/ DSPSJ −

11  and DSPS
FTCRB − , the detection of symbols located 

near the edge k = -sign(kG).K suffers from a larger 
instantaneous phase error variance as ∆ increases.  

Let us define by J∞ and J0 the high-SNR and low-SNR 
asymptotic FIM, that are obtained as the limit of the FIM for 
Es/N0 → ∞ and Es/N0 → 0, respectively. It can be verified that 
J0 equals the FIM for estimation from the PS only, that is 
given by (10) in which the summation over I is replaced with a 
summation over Ip only [3]; J∞ equals the MFIM from (9), that 
has been shown to coincide with the high-SNR limit of the 
FIM for estimation from L DS in [10]. This indicates that at 
very high (very low) SNR, NDA (DA) estimation techniques 
may perform close to optimal. 

Numerical results are obtained for a QPSK constellation. 
We assume a burst of 321 symbols. We restrict ourselves to 
symmetric burst structures yielding kG = 0, so that carrier 
phase and frequency estimation are decoupled. We will 
consider two different burst structures: burst structure #1 = 
(128 DS, 65 PS, 128 DS), burst structure #2 = (112 DS, 32 PS, 
33 DS, 32 PS, 112 DS) [11]. Both burst structures contain 
approximately 20% PS. Figs. 1-2 show the ratio CRBPS-

DS/MCRB for carrier phase and frequency estimation as a 
function of the SNR. The following observations can be made 
• In Fig.1, the curves for burst structures #1 and #2 coincide, 
as 1/J11 does not depend on the specific location of the PS in 
the burst. 
• The CRBs become close to their low SNR asymptote only at 
very low SNR. This low SNR asymptote is a fundamental 
lower bound on the performance of any DA estimator 
operating on the known PS only. The FIM related to DA joint 

phase and frequency estimation from an arbitrary arrangement 
of PS, derived in [3], shows that spreading the PS over the 
burst decreases the PS

FTCRB . Indeed, our results predict a better 
DA frequency estimation performance for burst structure #2 
than for burst structure #1. 
• For values of SNR larger than about 10 dB, the CRBs 
become close to the MCRB.  
• CRBPS-DS(Np, Nd) is smaller than both CRBPS(Np) and 
CRBDS(Np+Nd). This indicates that it is potentially more 
accurate to estimate F and θ from a hybrid burst than from a 
burst without PS, or from a limited number of PS only. The 
ratios CRBDS(Np+Nd) / CRBPS-DS(Np,Nd) and CRBDS(Np) / 
CRBPS-DS(Np,Nd) depend on the operating SNR and on the 
burst structure, and indicate to what extent synchronizer 
performance can be improved by making clever use of the 
knowledge about the PS and of the presence of the DS in the 
estimation process.   
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Fig.1: CRB for phase estimation 
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Fig.2: CRB for frequency estimation  

IV. PRACTICAL ESTIMATOR PERFORMANCE  
The general maximum likelihood (ML) estimator is known to 
be asymptotically optimal in the sense that it achieves the 
performance predicted by the CRB for large data records. 
However, the performance for finite signal durations cannot be 
determined analytically. In this section the simulated mean 
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square estimation error (MSEE) of practical synchronizers is 
compared to the CRB.   

A. DA synchronization  

The DA estimates using only the Np PS are given by 
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At high SNR, the CRBPS(Np) is reached. It is well known that, 
below a certain SNR threshold, the performance dramatically 
degrades across a narrow SNR interval, with an MSEE much 
larger than the CRB. This so-called threshold phenomenon 
results from the occurrence of estimates with large errors, i.e., 
outlier estimates [2]. The presence of important secondary 
peaks in the likelihood function results in a large probability of 
generating outlier frequency estimates at lower SNR, because 
these secondary peaks can more easily exceed the central peak 
when noise is added. The SNR threshold decreases with the 
number of available signal samples Np. For Np consecutive PS 
(as in burst structure #1), the threshold is in general very low 
(even for small Np) so that the DA estimator usually operates 
above threshold. However, the SNR threshold tends to 
increase as the PS are separated by DS [3,11]. In [11], burst 
structure #2 has been shown to provide a good compromise 
between a small value of PS

FTCRB  and a small SNR threshold.  

B. NDA synchronization  

Assuming a QPSK constellation, the NDA estimates are given 
by [2,12] 

∑
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The resulting MSEE converges to CRBDS(L) at high SNR. 
Simulation results indicate, however, that the value of SNR at 
which the MSEE becomes close to the CRB may be quite 
large. The SNR threshold for the NDA estimator is much 
higher than for the DA estimator, as the non-linearity increases 
the noise level. To cope with this problem, a two-stage coarse-
fine DA-NDA estimator has been proposed in [11]. A ML DA 
estimator is used to coarsely locate the frequency offset, and 
then the more accurate NDA estimator attempts to improve the 
estimate within the uncertainty of the coarse estimator. In fact, 
the search range of the NDA estimator is restricted to the 
neighborhood of the peak of the DA based likelihood function. 
This excludes a large percentage of secondary peaks from the 
search range of the NDA estimator, and thus considerably 
reduces the probability to estimate an outlier frequency. 
Assuming the MSEE of the initial DA estimate equals the 

)( p
PS
FT NCRB , this uncertainty range can be determined as 

)( p
PS
FT NCRBm± , where m should be carefully chosen. 

After frequency and phase correction, the samples for k∈Ip are 
compared to the original PS and, if necessary, an extra 
multiple of π/2 is compensated for. A major disadvantage of 
this DA-NDA algorithm is that it does not exploit the 
knowledge of the PS in the NDA fine estimation step. 
Therefore, its MSEE is lower bounded by the CRBDS(Np+Nd) 
≥ CRBPS-DS(Np,Nd). This implies that the DA-NDA algorithm 
is intrinsically suboptimal in the sense that under no 
circumstances its performance may meet the CRBPS-DS. Some 
other estimator may yield a MSEE between CRBDS and 
CRBPS-DS, but it should fully exploit the knowledge of the PS. 

C. Iterative DD synchronization  

DD estimators extend the sum over Ip in (16-17) with terms 
over Id in which the quantities ak are replaced by hard (hDD) 
or soft (sDD) decisions, that are based upon a previous 
estimate of (θ, F). For QPSK, the soft decisions are given by 
[4] 
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In (20), )ˆ2ˆ( )1()1()1(~ TFkj
kk

nnn
err

−−− π+θ−= . The normal operating 
SNR of the DD estimators is situated above threshold. The 
required an initial estimate )ˆ,ˆ( )0()0( Fθ  can be obtained from 
the NDA method; however, the performance below the NDA 
threshold rapidly degrades, because of an inaccurate initial 
estimate.  If PS are available, it is better to use DA or 
combined DA-NDA initialization. We will further refer to 
these schemes as DA-hDD, DA-sDD, DA-NDA-hDD and 
DA-NDA-sDD. After phase and frequency correction, the 
samples for k∈Ip are compared to the original PS and, if 
necessary, an extra multiple of π/2 is compensated for.  

Numerical results pertaining to the different algorithms are 
obtained for a QPSK constellation. We assume a burst with 
257 DS and 64 PS that are organized as in burst structure #2. 
In Figs. 3-4, we have plotted the ratio MSEE/MCRB for the 
estimation of F and θ as a function of the SNR. The phase 
error of the NDA estimator is measured modulo π/2. For the 
DA-NDA estimation we chose m=3. Our results show that: 
• The DA estimator achieves optimal CRBPS(Np) 
performance, which is considerably worse than the 
performance of the hybrid estimators. The ratio MSEE/MCRB 
regarding the DA frequency estimate equals 37.17 (curve not 
shown) over the whole SNR range from Fig. 4. 
• Above its SNR threshold (at about 5dB), the NDA estimator 
performs very closely to the CRBDS(L). 
• At high SNR, the performance of the DA-NDA estimator 
matches that of the NDA estimator, but the performance below 

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society



 

the SNR threshold degrades less rapidly and is still adequate 
for reliable receiver operation. 
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Fig.3: MSEE of the phase estimate 
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Fig. 4: MSEE of the frequency estimate 

• The MSEE resulting from the DA-hDD and DA-NDA-hDD 
estimators reaches a steady state after about five iterations. 
Only at high SNR these estimators outperform the DA-NDA 
estimator. At (very) low SNR, the performance gets worse 
when the iteration number increases. This can be seen in Fig. 3 
when comparing the DA-hDD after 1 and 5 iterations; the 
same occurs for the DA-NDA-hDD algorithm (curves not 
shown). This unexpected behavior indicates that at low SNR 
the initial estimates are more accurate than the steady-state 
hDD estimates. Hence, hard decisions are not useful at low 
SNR. 
• The MSEE resulting from the DA-sDD estimator reaches a 
steady state after 10 to 20 iterations. The DA-NDA-sDD 
estimator yields the same steady state performance as the DA-
sDD estimator, but after considerably less (no more than 5) 
iterations. This indicates the importance of an accurate initial 
estimate to speed up convergence. Because these estimators 
fully exploit PS information, their estimation variance must be 
compared with CRBPS-DS. The steady state phase MSEE of the 
DA-NDA-sDD estimator is located between CRBDS and 
CRBPS-DS, and attains CRBPS-DS for SNR ≥ 6 dB (Fig. 3). The 
DA(-NDA)-sDD estimators outperform by far the DA(-NDA)-

hDD estimators and provide a considerable improvement over 
the DA-NDA estimator. 

V. CONCLUSIONS 
In this contribution, we have investigated the joint phase and 
frequency estimation from the observation of a ‘hybrid’ burst 
that contains PS as well as DS. We have compared the CRBPS-

DS with the performance of new and existing carrier 
synchronizers. Numerical evaluation of this CRB shows that it 
is potentially more accurate to estimate carrier phase and 
frequency from a hybrid burst than from a burst without PS or 
from a limited number of PS only. We have pointed out that 
the hybrid DA-NDA estimator proposed in [11] is suboptimal, 
because it does not fully exploit the knowledge about the PS. 
Further, we have proposed a new iterative sDD estimator with 
combined DA/NDA initialization, that outperforms the DA-
NDA estimator and operates closely to the CRBPS-DS.  
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