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Abstract - In this paper we derive the Cramer-Rao bound 
(CRB) for joint estimation of carrier phase, carrier frequency 
and timing from a noisy linearly modulated signal with coded 
data symbols. We obtain a closed-form expression for the CRB in 
terms of the marginal a posteriori probabilities of the coded 
symbols, allowing efficient numerical evaluation of the bound. 
We find that at low SNR, the CRB for coded transmission is 
considerably smaller than the CRB for uncoded transmission. 
We show that practical synchronizers that make clever use of the 
code properties yield a mean-square estimation error that is close 
to the CRB for coded transmission.   

I. INTRODUCTION 

A common approach to judge the performance of parameter 
estimators consists of comparing their resulting mean-square 
estimation error (MSEE) to the Cramer-Rao bound (CRB), 
which is a fundamental lower bound on the error variance of 
unbiased estimators [1]. In order to avoid the computational 
complexity related to the true CRB, a modified CRB (MCRB) 
has been derived in [2] and [3]. The MCRB is much simpler to 
evaluate than the true CRB, but is in general looser (i.e. lower) 
than the CRB, especially at lower SNR. The CRB for the 
estimation of the carrier phase, the carrier frequency and the 
timing delay from uncoded  data symbols has been obtained in 
[4]-[7]. In [8], the CRB for carrier phase estimation from 
coded data has been expressed in terms of the marginal a 
posteriori probabilities (APPs) of the coded symbols, allowing 
the numerical evaluation of the bound for a wide range of 
coded systems, including schemes with iterative detection.  

In this contribution we consider the CRB for joint carrier 
phase, carrier frequency offset and timing recovery in coded 
systems. The bound is compared to (i) the MCRB, (ii) the 
CRB for uncoded transmission and (iii) the performance of 
practical synchronizers.  

II. PROBLEM FORMULATION 

Let us consider the complex baseband representation r(t) of 
a noisy linearly modulated signal : 
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where a=(a-K, ... aK) is a vector of L=2K+1 symbols taken 

from an M-PSK, M-QAM or M-PAM constellation according 
to a combination of an encoding rule and a mapping rule; h(t) 
is a real-valued unit -energy square-root Nyquist pulse; τ is the 
time delay, θ is the carrier phase at t=0, F is the carrier 
frequency offset; T is the symbol interval; w(t) is complex-
valued zero-mean Gaussian noise with independent real and 
imaginary parts, each having a normalized power spectral 
density of N0/(2Es), with Es and N0 denoting the symbol 
energy and the noise power spectral density, respectively.  

Suppose that one is able to produce from an observation 
vector r an unbiased estimate û  of a deterministic vector 
parameter u. Then the estimation error variance is lower 
bounded by the CRB [1]: )(CRB])uû[(E i

2
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CRBi(u) is the i-th diagonal element of the inverse of the 
Fisher information matrix (FIM) J(u). The (i,j)-th element of 
J(u) is given by 
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Note that J(u) is a symmetrical matrix. When the element 
Jij(u)=0, the parameters ui and uj are said to be decoupled. The 
probability density p(r;u) of r, corresponding to a given value 
of u, is called the likelihood function of u, while ln(p(r;u)) is  
the log-likelihood function  of u. The expectation Er[.] in (2) is 
with respect to p(r;u). When the observation r depends not 
only on the parameter u to be estimated but also on a nuisance 
vector parameter v, the likelihood function of u is obtained by 
averaging the likelihood function p(r|v;u) of the vector (u,v) 
over the a priori distribution of the nuisance parameter: 

)];|([);( uvrur v pEp = . We refer to p(r|v;u) as the joint 

likelihood function, as p(r|v;u) is relevant to the joint 
estimation of u and v. 
As the evaluation of the expectations involved in J(u) and 
p(r;u) is quite tedious, a simpler lower bound, called the 
modified CRB (MCRB), has been derived in [2] and [3]. The 
MCRB for joint carrier phase, carrier frequency offset and 
timing estimation, corresponding to r(t) from (1), is given by 
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The MCRB is much simpler to evaluate than the true CRB, 
but is in general looser than the CRB, i.e., 

)()(])ˆ[( 2 uur iiii MCRBCRBuuE ≥≥− . In [9], the high-SNR 

limit of the true CRB related to the estimation of a scalar 
parameter has been evaluated analytically and has been shown 
to coincide with the MCRB from (3)-(5). 

III. EVALUATION OF THE CRB 

A. CRB in terms of the marginal APPs of the coded symbols 
With u=(θ,F,τ) and v=a, the joint likelihood function 

p(r|a;θ,F,τ) is, within a factor not depending on (θ,F,τ,a), 
given by  
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In (7), r is a vector representation of the signal r(t) from (1), 
and θ−τ=τθ j

kk eFzFz ),(),,(~  , where ),( τFzk  is defined as 
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Hence, kz~  is a function of (θ,F,τ), whereas zk depends only on 
(F, τ). For the log-likelihood function ln(p(r;θ,F,τ)) we obtain  
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where p(r|ci,θ,F,τ) is given by (7) and i enumerates all ML 
symbol sequences ci of length L. Differentiation of (10) yields  
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Made use of Bayes’ rule, i.e., 
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and of (7), (11) is transformed into  
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where  
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[.]|raE  and [.]|rkaE  refer to averaging over ]F,,;|Pr[ τθrca i=  

and ]F,,;|Pr[ τθα rmka = , respectively, (α0, α1, ...,αΜ−1) denotes 

the set of constellation points, z~ =[ Kz−
~ , …, Kz~ ]T, and the 

subscript l denotes differentiation with respect to ul, i.e., 
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∂=  with (u1,u2,u3)=(θ,F,τ). No approximation is 

involved in obtaining (13). Substitution of (13) into (2) yields 
an exact expression of the FIM in terms of the marginal  APPs 

[ ]τθα= ,,;Pr Fa mk r of the coded data symbols.  

Taking (13) into account, the elements Jll' of the FIM from 
(2) can be represented as  
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where E[.] denotes averaging over the quantities z~ , 

1,
~

kzl and 

2,'
~

kzl , whose statistics do not depend upon (θ,F,τ). Taking into 

account the Gaussian nature of the noise components in kz~  

and kz ,
~

l  we were able to perform analytically the averaging in 

(15) over 
1,

~
kzl and 

2,'
~

kzl , conditioned on z~  (as in [7]). Further 

evaluation of (15) then requires numerical averaging only over 
z~ . The latter can be easily evaluated by numerical integration 
or Monte Carlo simulation over z~ ={ kz~ }={ak+nk}, where 

{ak} are data symbols taken from the constellation according 
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to the combination of the encoding rule and the mapping rule 
and {nk} are independent zero-mean complex Gaussian noise 
variables with variance equal to N0/Es.  

We obtain that J12, J22 and J23 are functions of the parameter 
τ. This implies that the CRB depends on the exact value of the 
unknown but deterministic time delay τ ∈ [-T/2, T/2] that is 
being estimated. However, under the usual assumption that the 
observation interval is much longer than the symbol duration 
(L>>1), this dependence can be safely ignored; this is 
confirmed by the numerical results (not reported here) for 
different values of τ. A similar quasi-independence (on τ) of 
the MCRB was pointed out in [3]. Inversion of the FIM (15) 
finally yields the CRB. 

B. Evaluation of the marginal APPs of the coded symbols 

In principle, any marginal APP [ ]θα= ;aPr mk r  can be 

obtained as a summation of joint APPs [ ]θ= ;Pr rca i , which in 

turn can be computed from (12). However, the computational 
complexity of this procedure increases exponentially with the 
sequence length L. 

For codes that are described by means of a trellis, the 
marginal APPs can be determined directly by means of the 
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [10]. As its 
computational complexity grows only linearly with the 
number of states and with the sequence length L, the BCJR 
algorithm is the appropriate tool for marginal APP 
computation in case of linear block codes, convolutional codes 
and trellis codes, provided that the number of states is 
manageable.  

When the coded symbol sequence results from the (serial or 
parallel) concatenation of two encoders that are separated by 
an interleaver (such as turbo codes [11]), the underlying 
overall trellis has a number of states that grows exponentially 
with the interleaver size. However, when the encoders 
themselves are described by a small trellis, the marginal APPs 
are computed by means of iterated application of the BCJR 
algorithm to the individual trellises, with exchange of extrinsic 
information between the BCJR algorithms at each iteration 
(the same computation is carried out when performing iterated 
turbo decoding instead of the too complex MAP symbol 
decoding). When the coded bits (conditioned on r and (θ,F,τ)) 
can be considered as independent (which is a reasonable 
assumption when the interleaver size is large), this iterative 
procedure yields the correct marginal APPs when reaching the 
steady state [12]. This approach is easily extended to other 
systems that use iterative decoding. 

IV.  NUMERICAL RESULTS AND DISCUSSION 

Simulation results are obtained for the observation of 
L=1001 QPSK turbo-encoded symbols. The transmit pulse is a 
square-root cosine roll-off pulse with an excess bandwidth of 
either 20% or 100%. The turbo encoder consists of the parallel 
concatenation of two identical recursive systematic rate 1/2 

convolutional codes with generator polynomials (37)8 and 
(21)8, through a pseudo random interleaver of length L; the 
output of the turbo encoder is punctured to obtain an overall 
rate of 1/2, and Gray mapped onto the QPSK constellation.  

Our results indicate that the CRB for joint phase, frequency 
and timing estimation is essentially the same as the CRB for 
the estimation of a single parameter assuming the other 
parameters to be a priori known. There is almost no coupling 
between the parameters θ, F and τ, meaning that (at least for 
small errors) the inaccuracy in one parameter estimate does 
not impact the estimation of the other parameters.   

In Fig. 1 we have plotted the ratio CRB/MCRB as a 
function of Es/N0 per coded symbol (solid curves). The result 
for uncoded transmission (UC) is also displayed (dashed 
curves). The considered Es/N0-range covers the normal 
operating range of the turbo receiver (1dB-2dB). We observe 
that the CRB is considerably smaller for coded transmission 
than for uncoded transmission. This indicates that it is 
potentially more accurate to estimate the synchronizer 
parameters from coded data than from uncoded data. As the 
mean square estimated error (MSEE) of synchronizers that do 
not exploit the code properties in the estimation process 
(‘code-unaware’ synchronizers) is lower bounded by the CRB 
for uncoded transmission (which we denote as CRBuncoded), 
‘code-aware’ synchronizers are potentially more accurate than 
‘code-unaware’ synchronizers. The ratio CRBuncoded/CRB 
indicates to what extent synchronizer performance can be 
improved by making clever use of the code structure. At high 
SNR the CRB converges to the MCRB. 

V. ACTUAL ESTIMATOR PERFORMANCE  
In this section we consider the MSEE resulting from some 

joint phase and frequency estimators operating on the rate ½ 
turbo-encoded QPSK scheme from the previous section. The 
MSEE is compared to the CRB and the CRBuncoded . The joint 
estimation of carrier phase and frequency is only marginally 
affected by a small timing estimation error (because (θ,F) and 
τ are essentially decoupled); therefore we have determined the 
mean square phase and frequency error assuming the timing to 
be known. Two scenarios are considered: A) carrier 
synchronization independent of turbo decoding and B) joint 
carrier synchronization and turbo decoding. The latter 
approach will be referred to as turbo synchronization in the 
sequel. For both scenarios, the MSEE for phase (Fig. 2) and 
frequency (Fig. 3) estimation was obtained as a function of the 
SNR. An observation of L=1001 (i.e. block size of the code) 
unknown data symbols was considered. A preamble of N 
known pilot symbols (PS) may be added at the beginning of 
each block to aid synchronization. A minimum of 10000 trials 
has been run; at each trial a new phase offset θ and a new 
frequency offset FT are taken from a uniform distribution over 
[-π,π] and [-0.1,0.1], respectively. The phase error is measured 
modulo 2π and supported in the interval [-π,π], except for the 
Non-Data-Aided (NDA) estimator. The phase error of the 
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NDA estimator was measured modulo π/2, i.e. in the interval 
[-π/4, π/4], as the NDA estimator for QPSK gives a 4-fold 
phase ambiguity. 

A. Carrier synchronization independent of turbo decoding  
For the synchronization scenario A, we implement the 

conventional NDA carrier synchronization scheme proposed in 
[13] for operation at very low values of Es/N0. This algorithm 
was originally developed for uncoded sequences and does not 
exploit the code structure; as a result its performance is lower 
bounded by the CRBuncoded (with CRBuncoded  ≥ CRB).  

The dashed curve in Figs. 2 and 3 corresponds to the MSEE 
for carrier phase and frequency estimation, respectively, as 
obtained with the NDA estimator. We observe that, with the 
chosen parameter values, the NDA estimator does not function 
properly at the normal (low) operating SNR of the code (1dB-
2dB). The SNR threshold for frequency estimation from an 
observation of L=1001 symbols (see [14]) is located at about 
3.5 dB. For Es/N0≥3.5 dB, the algorithm achieves near optimal 
CRBuncoded performance, but for Es/N0<3.5 dB, the 
performance dramatically deteriorates across a narrow SNR 
interval.  

The SNR threshold can be decreased by increasing the 
observation length L [14] (in [13], L=8192). However, if 
enlarging the observation interval is not an option, the 
combined Data-Aided (DA) and NDA frequency estimation 
approach proposed in [15] may be applied to soften the 
threshold. This approach consists of a two stage coarse-fine 
search. The DA estimator is used to coarsely locate the 
frequency offset, and then the more accurate NDA estimator 
attempts to improve the estimate within the uncertainty of the 
coarse estimator. After frequency and phase correction, the 
samples of the preamble are compared to the original pilot 
symbols and, if necessary, an extra multiple of π/2 is 
compensated for. In Figs. 2 and 3, the square markers illustrate 
the MSEE for carrier phase and frequency, respectively, as 
obtained with this DA -NDA estimator assuming the initial DA 
estimate is based on the observation of N preamble symbols. 
Results are displayed for N=128 and N=256. A threshold is 
still evident, but the performance below the SNR threshold 
degrades less rapidly. The more PS are used, the more the 
threshold softens. Relatively large preambles are required for 
the DA-NDA estimator to performs closely to the CRBuncoded, 
e.g. with N=256 the overhead N/(N+L) equals about 20%. 

B. Joint carrier synchronization and turbo-decoding 
For the turbo synchronization scenario B, we implement the 

joint carrier synchronization and turbo-decoding scheme 
proposed in [16], which we further refer to as soft-Decision-
Directed (sDD) estimator. As motivated in [16], it involves a 
practical implementation of the maximum likelihood (ML) 
estimator by means of the expectation-maximization (EM) 
algorithm. This algorithm converges iteratively to the ML 
estimate provided that the initial estimate is sufficiently 
accurate [17]. In our simulations we assume that the sDD 

estimator is initialized with a DA estimate obtained from a 
preamble of N consecutive PS, or with a combined DA-NDA 
estimate as described in subsection V.A. We will refer to these 
synchronization schemes as DA -sDD and DA-NDA-sDD, 
respectively. We assume that the PS are strictly used for the 
DA initialization, and that the (NDA-)sDD algorithm uses 
only the L coded symbols, so that the CRB derived in section 
III is indeed a valid lower bound on the overall performance of 
the algorithms. The synchronization process is completely 
integrated into the turbo detection system; at every turbo-
decoder iteration, one EM iteration is performed. The sDD 
estimator takes advantage of the code properties; therefore its 
performance is lower bounded by, and should be compared to, 
the new CRB for coded transmission. The curves marked with 
triangles in Figs. 2 and 3 show the MSEE for carrier phase and 
frequency, respectively, as obtained with the DA -sDD 
estimator after 10 iterations of the turbo decoder/estimator and 
for N=256 and N=512 preamble symbols. With N=512, the 
DA-sDD estimator performs very closely to the new CRB. 
However, the resulting overhead of about 34% is often not 
acceptable. For N=256, the DA-sDD estimator performs worse 
than the DA-NDA estimator, except at high SNR (>4.5 dB). 
The curves marked with circles in Figs. 2 and 3 show the 
MSEE for carrier phase and frequency, respectively, as 
obtained with the DA -NDA-sDD estimator after 10 iterations 
of the turbo decoder/estimator and for N=128 and N=256 
preamble symbols. Our results show that the DA -NDA-sDD 
estimator provides a considerable improvement over the DA-
NDA estimator within the useful SNR range of the code, and 
meets the new CRB for coded transmission at values of SNR 
larger than about 1.5 dB for N=256 (about 20% overhead) and 
2 dB for N=128 (about 11% overhead). This indicates the 
importance of an accurate initial estimate.  

For the sake of completeness, we mention that a more 
sophisticated distribution of the PS across the burst may 
reduce the number of PS required to obtain a certain DA 
estimation accuracy, thereby increasing the spectral efficiency 
of the transmission system [15],[18]. 

VI. CONCLUSION 

This contribution compares the CRB for joint carrier phase, 
carrier frequency offset and timing delay estimation in coded 
systems against the MCRB for transmission of a sequence of 
known training symbols and the CRBuncoded  for uncoded 
transmission. We have found that the synchronizer parameters 
are essentially decoupled. This implies that (at least for small 
errors) the estimation inaccuracy for one parameter does not 
impact the estimation of the other parameters. It was shown 
that, at the normal operating SNR of the code, the CRB is 
much less than the CRBuncoded . The CRBuncoded  is a lower 
bound on the performance of synchronizers that make no use 
of the code structure. This implies that in order to approach 
optimal performance, estimators should make clever use of the 
code properties during the estimation process. The advantage 
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of code-aware carrier recovery was illustrated with examples 
of joint carrier phase and frequency estimation techniques 
available in the literature. The turbo synchronizer presented in 
[16], which is code-aware and performs joint carrier 
synchronization and turbo detection, has been shown to 
operate very closely to the CRB provided that a sufficiently 
accurate initial estimate is available. For timing recovery, no 
performance results have been presented. However, it has 
been shown in [19] that applying the turbo synchronization 
approach to timing estimation results in a very low MSEE, 
which is close to  the new CRB for timing estimation from 
section III. 
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Fig.1: Comparison of the ratio CRB/MCRB for turbo encoded transmission 
with the ratio CRB/MCRB for uncoded (UC) transmission; for QPSK symbols 
and an observation length L=1001 
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Fig.2: Comparison of the MSEE of practical estimators with the CRB (phase 
estimate)   
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Fig.3: Comparison of the MSEE of practical estimators with the CRB 
(frequency estimate)   


