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Abstract— This contribution deals with the problem of combin-
ing (non-binary) error-correcting codes with higher-order modu-
lation schemes on AWGN and flat fading channels through inter-
leaved coded modulation. We extend the idea of bit-interleaved
coded modulation (BICM) to a more general form. With the
aid of factor graph representations, we show how higher-order
modulation can be combined with non-binary codes so that non-
iterative detection becomes optimal. This is in contrast with
conventional BICM, for which non-iterative detection can be far
from optimal. Through computer simulations, we compare an
optimal non-iterative scheme with conventional BICM. It turns
out that the gain due to optimal detection is outweighed by the
loss in time-diversity as compared to BICM-ID.

I. INTRODUCTION

While state-of-the-art error-correcting codes have been
shown to achieve near-capacity performance, their relatively
low rates result in a significant bandwidth expansion. To
combat this, a number of techniques combining channel coding
with higher-order modulations have been proposed. They in-
clude trellis coded modulation (TCM), Turbo-TCM, multilevel
coding (MLC) and bit-interleaved coded modulation with or
without iterative decoding (BICM-ID and BICM resp.).

TCM was first proposed in [1] for convolutional codes
whereby the signalling constellation was partitioned in subsets
in such a way that the free Euclidean distance is increased.
To obtain good performance in this technique, one must take
care in the selection of bit-to-constellation mappings, avoiding
parallel transitions, etc. In TTCM [2] this idea was extended
to turbo codes with bit- or symbol-interleaving [3]. Despite
good performance results, the computational complexity of
(T-)TCM is fairly high. In MLC [4], the idea is to partition
the signal constellation and to protect each level of the
partition with separate binary codes. Good performance has
been reported for MLC with both turbo- and low density parity
check (LDPC) codes, but at the cost of high complexity [5].

A more attractive solution is BICM [6], [7]. Encoding
and mapping are now completely disjoint, with coder and
mapper separated by a bit-interleaver. When applied with
iterative decoding [8], one iterates at the receiver side between
decoding and demapping with the exchange of extrinsic infor-
mation. Although this iterative decoding/demapping approach
is suboptimal, it is shown in [9] that at a fixed complexity,
BICM-ID has superior performance as compared to (T-)TCM
in both AWGN and Rayleigh fading channels. Recently, in
[10], a way to deal with this sub-optimality was proposed:

by using symbol-decoding, rather than bit-decoding a 0.2
dB gain was observed for LDPC codes. One of the main
issues in BICM-ID is finding the optimal mapping strategy. In
[11], heuristics have been proposed to find optimum mapping
strategies for BICM-ID.

Non-binary codes have been investigated in [12]–[15]. In
particular, LDPC codes over finite fields have received a lot of
attention [16]. Combining non-binary codes with interleaved
modulation was considered in [13], [15] for LDPC codes and
turbo codes, respectively. The main focus in [15] was on code
design for codes over groups and rings. In [13] non-binary
turbo codes and mapping were combined, but no comparisons
with BICM were made.

In this contribution we propose an extension of BICM-ID
for codes over binary extension fields based on factor graphs
[17] and the sum-product (SP) algorithm. It can be shown that
when a factor graph contains cycles, the performance of the
SP algorithm is degraded [18]. By modifying the scheduling
strategy of the SP algorithm, sensitivity to cycles can be
reduced. We demonstrate that a cycle-free factor graph can
be constructed when the number of constellation points in the
signal set does not exceed the number of elements in the field
over which the code is defined. This results in an non-iterative
optimal receiver, which turns out to be fairly insensitive
to mappings and does not require us to find an optimal
message scheduling strategy. We compare, through computer
simulations, the performance of such a scheme with a BICM
and BICM-ID algorithm for a non-binary convolutional code
with 8-PSK mapping. We show that the removal of cycles in
the graph results in a loss of time-diversity as compared to
BICM. Hence, the gain resulting from optimal detection is
reduced because of a degradation due to diversity loss. This
can be seen as a generalization of BICM from [6], where it
was noticed that the gain in diversity thanks to bit-interleaving
can more than compensate for the sub-optimal decoding as
compared to symbol interleaving. The proposed framework
for interleaved coded modulation allows the code designer
to trade time-diversity for decoding complexity and decoding
optimality.

II. INTERLEAVED CODED MODULATION

The ICM system under consideration consists of the follow-
ing parts:



• a block code C over a binary extension field GF (q),
with C ⊂ GF (q)L, where L ∈ N denotes the length of
the codewords. We restrict ourselves to codes that have
a practical soft-decoding algorithm based on the sum-
product algorithm [18]; 1

• a bijective field-conversion function ϕ (.). This function
maps a sequence of n1 elements from GF (q) to a
sequence of n2 elements in GF (q̃), with qn1 = q̃n2 ;

• a pseudo-random interleaver Π(.) over GF (q̃) of size
Ln2/n1;

• a mapping function ψ (.) from GF (q̃)m onto a M -point
complex signalling constellation Ω. This function is also
bijective, which implies q̃m = M .

Hence, the main system parameters are q (the size of the field
over which the code is defined), q̃ (the size of the field in which
the interleaving takes place) and M (the number of points in
the signalling constellation). The code C can be seen as an
outer code, while the mapping ψ (.) can be interpreted as a
inner code [19]. The transmitter operates as follows: bits are
grouped to form elements in GF (q). These elements are then
block-encoded. A sequence c of L coded symbols is converted
by ϕ (.) to a sequence c̃ of Ln2/n1 elements in GF (q̃), i.e.,
ϕ (c) = c̃ 2. The sequence c̃ is then interleaved resulting into
Π(c̃). The interleaved sequence Π(c̃) is split up into groups of
m elements; each group of m elements in GF (q̃) is mapped
onto a point in the constellation Ω. This results in a sequence
x ∈ ΩN , with x = ψ (Π (c̃)). Note that N = Ln2/ (n1m).

We will investigate both AWGN and flat fading channels.
In both cases, the received discrete-time signal can be written
as

r = y + n (1)

with yk = αkxk, where αk are the complex gains, with
E

[
|αk|2

]
= 1, while n = [n0 . . . nN−1] is a vector of inde-

pendent complex AWGN samples with nk ∼ CN (
0, 2σ2

)
. In

the case of a simple AWGN channel, the channel coefficients
yield αk = 1, ∀k. We assume perfect channel knowledge at
the receiver side.

III. ICM: A FACTOR GRAPH APPROACH

A. Factor graphs and indicator functions

We will use the normal graphs (NG) that were introduced
in [17]. An NG is a diagram that represents the factorization
of a function of several variables:

f (a1, a2, . . . , aN ) =
∏
j

fj (Aj)

where Aj is a subset of {a1, a2, . . . , aN}. An NG consists of
nodes, edges and half-edges (the latter are connected to only
one node). The NG is related to the function f (.) as follows:
there is a node for every factor fj (.) and one (half-) edge

1Such codes include convolutional and turbo codes, LDPC and Repeat-
Accumulate (RA) codes

2Throughout this paper, we use the following notational shorthand: for
a function f : A → B, with f (ai) = bi, we denote by f (a) �
[f (a0) . . . f (aL−1)], for a � [a0 . . . aL−1].

for every variable ak. Node fj is connected to variable ak iff
ak ∈ Aj . Finally, edges are connected to exactly two nodes.

We also introduce the notion of the so-called indicator
function, I [b]: i.e., a binary valued function defined as follows.
For a predicate b, I [b] = 0 if b is false and I [b] = 1 if b is
true.

B. ICM as a factor graph

The valid configurations of transmitted frames and the
fading coefficients from section II can be easily translated into
function with a = {c, c̃,x,y}

f (a) = (2)

I [c ∈ C] I [ϕ (c) = c̃] I [ψ (Π (c̃)) = x]
∏
k

I [xkαk = yk] .

As f (a) is the product of indicator functions, it is itself an
indicator function: it indicates that the codeword c must satisfy
the code constraints, is converted to c̃, interleaved and mapped
to the transmitted sequence x. Then x is undergoes flat fast
fading with fading coefficients αk. Only those values of a
satisfying all conditions will evaluate to f (a) = 1. Note
that because of the assumption that the fading coefficients are
known at the receiver, αk is not part of a. The function (2)
can be represented by the factor graph from Fig. 1. This NG
consists of the following nodes:

• the code constraints (CC) block, representing I [c ∈ C].
In most cases this function can be factorized and repre-
sented by a NG;

• the field-conversion nodes (labeled ϕ) representing the
factorization of I [ϕ (c) = c̃];

• the mapper node (labeled ψ) representing the factoriza-
tion of I [ψ (Π (c̃)) = x];

• the fading nodes (with labels αk).

Note that the interleaver is not a node, just a re-ordering of
the edges.

Factor graphs not only allow us to visualize the system, but
can also be used to compute marginal probabilities: when all
codewords are equiprobable, it can be shown that the indicator
function f (a) is proportional to the prior distribution p (a) of
the set of variables a [18]. Hence, the posterior distribution
of a can be written as

p (a| r) ∝ p (r|a) p (a)
∝ p (r|a) f (a)

∝
∏
k

p (rk| yk) f (a) ,

where p (rk| yk) is related to the distribution of the AWGN
samples nk, i.e., p (rk| yk) = CN (

yk, 2σ2
)
. Consequently,

p (a| r) can be represented by the factor graph in Fig. 1. Note
that the observations rk are not variables in the factor graph:
they are known at the receiver and should be considered as
parameters.
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Fig. 1. Normal graph for general ICM. A Type I (II) cycle is shown in bold
(dashed).

C. Marginalization and message passing

Suppose we are interested in computing the posterior pdf
of the variable p (ak| r). It is clear that there is a great deal
of commonality in the computation of p (ak| r) and p (ak′ | r),
k′ �= k. To compute all p (ak| r) in an efficient manner, we
resort to the sum-product (SP) algorithm [18]: in this algorithm
we pass messages over the edges in the NG. These messages
are pdfs (or rather pmfs, in the case of discrete variables)
of the variables associated with the given edge. The message
from factor (node) fn to variable (edge) ak (with ak ∈ An)
is defined as:

µfn→ak
(ak = a) = γ

∑
An:ak=a

fn (An)
∏
l �=k

µal→fn
(al) (3)

with γ a normalization constant, such that∑
ak
µfn→ak

(ak) = 1. In the special case when fn
has degree 1, (3) becomes

µfn→ak
(ak = a) = γfn (a) . (4)

The message from variable (edge) ak to factor (node) fn (with
ak ∈ An) is denoted by µak→fn

(ak). When ak is a half-edge
µak→fn

(ak) ≡ 1. For ’real’ edges, since an edge connects
exactly two nodes, µak→fn

(ak) = µfm→ak
(ak) for some

factor fm �=n. The message passing algorithm starts from the
half-edges and nodes with degree 1. Only when all incoming
messages have been received, nodes compute the outgoing
messages. It can be shown (see, for example reference [18])
that for cycle-free NGs, this algorithm terminates after a finite
number of steps and results in the exact marginal pdfs. The

pdf p (ak| r) is given by the product of two messages over the
corresponding edge:

p (ak| r) = γ′µfn→ak
(ak)µak→fn

(ak) (5)

where γ′ is a normalization constant, such that∑
ak
p (ak| r) = 1.

When the graph contains cycles (loops), the SP algorithm
has no natural initialization, nor termination. Initialization can
be performed by setting all required messages to uniform
distributions. After a given number of iterations, the entire
system converges and the marginal pdfs can be computed
according to (5). However, the resulting marginal pdfs are not
the exact marginal pdfs, but an approximation of them. This
also brings up the question of scheduling: as there are many
possible ways to iterate (i.e., depending on how messages
are scheduled), there are many ways to perform the SP
algorithm. Different scheduling strategies will have different
performances. Finding the optimal scheduling strategy is not
a trivial task [20].

D. ICM through message passing

It is clear that the NG from Fig. 1 generally contains cycles.
We can discern two types of cycles: type I cycles between the
CC block and a mapping function nodes (shown in bold in
Fig. 1) and type II cycles between the CC block and a field
conversion node (shown in dashed in Fig. 1). This implies that
the SP algorithm between the decoder and the demapper/field
conversion will be iterative and therefore sub-optimal 3. As a
matter of fact, in code-design it is always important to avoid
cycles in NG, or make them as long as possible [21]. From
Fig. 1 is is also clear that type I cycles are less critical than
type II cycles, as the latter are generally longer.

The computation of the posterior pdf p (ck| r) of the coded
symbols in the factor graph shown in Fig. 1 can be ac-
complished by applying the SP algorithm as follows. First
messages to the variables yk are computed using (4)

µp( r|y)→yk
(yk) = γp (rk |yk ) .

These messages are forwarded to the fading nodes where
messages to the variables xk are computed:

µαk→xk
(xk) = γ′µyk→αk

(αkxk) = p (rk |αkxk ) .

Suppose the k-th mapper node is connected to c̃k �[
c̃k0 , c̃k1 , . . . , c̃km−1

]
, then (3) becomes

µψ→c̃ki
(a) = γ′′

∑
x

µxk→ψ (x)




∏
l �=i

µc̃kl
→ψ

([
ψ−1 (x)

]
kl

)



(6)
where the summation is taken over all x whose inverse map-
ping has a as ki-th GF (q̃) symbol, i.e., all x :

[
ψ−1 (x)

]
ki

=

3In many cases the Code Constraint (CC) block in Fig. 1 will itself contain
cycles. This is the case for LDPC codes, Turbo codes, RA codes... but not for
convolutional codes. When cycles are present in the NG of the code, decoding
itself is iterative (and sub-optimal).
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Fig. 2. Convolutional code: SER performance of cycle free ICM compared to BICM-ID and BICM for Gray and set-partitioning mapping. Left: AWGN
channel; right: Fading channel

a with a ∈ GF (q̃). Because of the cycles in the graph,
we need to initialize µc̃kl

→ψ (c̃kl
) = 1/q̃. Messages are then

forwarded to the field conversion nodes and so forth.
After convergence, the probabilities p (ck| r) are used to

make final decisions on the coded symbols.

E. Optimal detection vs. diversity

To avoid type I cycles in the graph we need m = 1.
Similarly, to avoid type II cycles, we need to restrict n1 to
n1 = 1. Hence, optimal (i.e., non-iterative) detection can only
be achieved when M ≤ q and M = q̃. On the other hand,
it was shown in [6] that an interleaver in the binary field
achieves the best possible time-diversity, assuming sufficiently
large interleaver depth. This means that q̃ should be as small
as possible. Clearly, these objectives are contradictory. To
demonstrate this, we highlight three special cases.

Binary code with symbol-interleaving: This is equivalent
to the “baseline” system from [6]: groups of 3 bits form
symbols. These symbols are interleaved and mapped onto 8-
PSK symbols. With our notations, this becomes q = 2, n1 = 3,
q̃ = 8, n2 = 1 and m = 1. Such a scheme contains type
II cycles, but no type I cycles. In this case, we combine
non-optimal detection with low diversity, which is clearly not
a good situations. The principle of BICM from [6] can be
interpreted as trading type II cycles for type I cycles.

Bit-Interleaved Coded Modulation (with Iterative Decod-
ing): In the case of BICM and BICM-ID, q̃ = 2, n1 = 1,
n2 = log2 q and m = log2M : the field-conversion function
converts each symbol in GF (q) to a sequence of log2 q bits.
All L log2 q bits are interleaved and mapped onto an M-point
signaling constellation. Observe that no type II cycles are
present and that q̃ = 2, resulting in maximal time-diversity.
The performance of BICM-ID depends on the mapping func-
tion ψ(.), i.e., how bits are mapped onto the constellation.

The performance gain of a given mapping compared to an-
other mapping strongly depends on the SNR (and can even
be a performance loss for certain SNRs) [11]. Because the
NG corresponding to BICM-ID will contain type II cycles,
performance will also depend on the scheduling strategy. For
example, a possible strategy would be to not iterate between
the mapper nodes and the CC block. When we schedule in
this fashion, we end up with the standard BICM scheme from
[6]. In that case, ψ(.) should be Gray mapping.

Cycle-free ICM: We now set m = n1 = 1. Since q̃m = M ,
this implies that q̃ = M . BICM-ID with BPSK modulation
is a special case of this. More generally, for any code over
GF (q), a signalling constellation of size M ≤ q exists such
that the resulting factor graph contains no loops. In this case
Eq. (6) becomes

µψ→c̃k0
(a) = γµxk→ψ (ψ (a)) . (7)

For example, an ICM scheme with a code over GF (16), q̃ =
4 and 4-PSK signaling will have a cycle-free NG4. In those
cases, the SP algorithm can be performed with a single pass
over the mapper nodes, passing messages to the CC-block
and perform the SP algorithm within the CC-block. There is
no need to return messages to the mapper nodes. Such an
approach has several advantages: no cycles, so SP between
mapper nodes and CC block is optimal. Moreover, when q̃ =
q, there is even no need for an interleaver. For codes that
exhibit a lot of inherent randomness, performance should not
be very sensitive to the specific mapping ψ. Note that since
q̃ = M , we cannot achieve maximal time-diversity.

4cycle-free in the sense that there are no cycles between the mapper nodes
and the CC block. There may of course still be cycles within the CC block.



IV. PERFORMANCE RESULTS

We can consider two types of outer codes: strong codes
(e.g., turbo and LDPC codes) and weaker codes (such as
convolutional codes). We will first discuss weaker codes and
end by making some comments regarding powerful codes.

We have carried out computer simulations for a convolu-
tional code over GF (8) with 8-PSK signaling. The convolu-
tional code is a rate 1/2 recursive systematic code over GF (8)
with constraint length 4 and block-size 60. We compare the
conventional BICM-ID scheme with a cycle-free ICM version.
For the BICM-ID scheme, we set q̃ = 2, n1 = 1, n2 = 3
and m = 3. We have considered both Gray mapping and
set-partitioning mapping. It is shown in [19] that 8-PSK set-
partitioning mapping benefits from iterative demapping, while
Gray mapping does not. In the cycle-free ICM, we set q̃ = 8,
n1 = 1, n2 = 1 and m = 1. Performance is measured in terms
of the symbol error rate (SER). We show results for both an
AWGN and a fast flat fading channel.

In the left part of Fig. 2, SER results are shown for
the AWGN channel: cycle-free ICM and BICM with Gray
mapping have similar performance. Observe the fairly low sen-
sitivity of the SER to the mapping, in contrast to the significant
impact of the mapping on BICM-ID. Compared with BICM-
ID for SP, cycle-free ICM is not able to compensate for the
time-diversity. In a fading environment (right part of Fig. 2),
the situation is even more pronounced: now cycle free ICM
is outperformed by all other schemes (except BICM with SP,
which is never used in practice). This corresponds nicely to
the results from [6] where BICM was introduced as an al-
ternative to symbol-interleaving (i.e., group-wise interleaving)
for binary codes.

When the outer codes is a powerful error-correcting code,
it does not benefit from iterative detection [22]: in the SNR-
range of interest, Gray mapping outperforms any other type of
mapping. Hence, for powerful codes, BICM with simple Gray
mapping achieves the best performance. We have verified for
an LDPC code over GF (8) with 8-PSK signaling (results not
shown) that cycle-free ICM yields performance results that
are independent of the mapping function. Moreover, the SER
performance was very similar to BICM with Gray mapping.
For fast fading channels, cycle-free ICM outperformed BICM
with Gray mapping with about 0.2 dB.

V. CONCLUSIONS AND REMARKS

We have considered the problem of combining non-binary
codes with higher-order signaling constellations by means of
interleaved coded modulation. With the aid of factor graph
representations, we have investigated an optimal detection
strategy based on cycle-free graphs. However, this approach
results in a reduction in time-diversity. For fading channels,
the net result is that cycle-free ICM gives rise to a degra-
dation compared to conventional BICM, due to the loss in
time-diversity. On the AWGN channel, cycle-free ICM and
BICM with gray mapping have similar performance. For weak
outer codes, BICM-ID with an optimized mapping is able to
outperform cycle-free ICM for both channel types, albeit at

a higher computational cost. Finally, for strong outer codes,
BICM with Gray mapping and cycle-free ICM yield roughly
the same performance.
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