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Abstract— This contribution considers the data-aided (DA)
maximum-likelihood carrier phase ambiguity resolution al-
gorithm for coded M-PSK signaling. We derive analytical
performance results of the algorithm when operating in the
presence of phase estimation errors. As the use of a pilot
sequence reduces the spectral efficiency of the system, we
determine analytically the minimal pilot sequence length
for coded and uncoded systems such that the overall BER
degradation due to phase ambiguity resolution errors is
limited to an acceptable value. We show that powerful error-
correcting codes require pilot sequences that are substantially
longer than for uncoded transmission; however, these longer
pilot sequences usually account for only a small fraction of
the overall frame length.

I. INTRODUCTION

In packet transmission, frames arrive at the receiver with
an unknown carrier phase. This phase can be estimated with
a non data-aided algorithm (such as [1]). However, due to
the rotational symmetries in the signaling constellation, the
resulting estimate exhibits a phase ambiguity that needs
to be resolved in order to perform coherent detection. The
need for phase ambiguity resolution (PAR) can be removed
by using differential encoding [2], which unfortunately re-
sults in a BER degradation, and requires significant changes
to the decoder in case of iterative demodulation/decoding
[3]. Another possibility is the use of rotationally invariant
codes [4], [5], whereby rotated versions of codewords
are decoded to the same information sequence. However,
this technique requires specially tailored codes. In the
current paper we do not assume rotational invariance, nor
differential encoding.

As a PAR error results in the loss of an entire frame,
its probability of occurrence should be sufficiently small.
A well-known method to perform PAR is the insertion of
a known word (pilot sequence) at some point in the frame,
resulting in a purely data-aided (DA) PAR algorithm [6].
However, the presence of this word results in a reduction
of spectral efficiency. It is therefore important to carefully
select the length of the pilot sequence for a given coded or
uncoded system.

In this contribution we consider the maximum likelihood
(ML) DA PAR algorithm for M-PSK signaling. We analyt-
ically determine both its performance and its impact on the
overall BER. From these results, we derive the minimum

length of the pilot sequence such that the resulting BER
degradation is limited to an acceptable amount. This paper
is organized as follows: the system set-up is described in
section II. In section III, we provide analytical performance
results of the DA PAR algorithm. Numerical performance
results are presented in section IV. Finally, conclusions are
drawn in section V. Our main conclusion is that consid-
erably longer pilot sequences are required for state of the
art error-correcting codes than for uncoded transmission,
but these longer sequences usually represent only a small
fraction of the total frame length.

II. SYSTEM DESCRIPTION

We consider a transmitted (coded or uncoded) symbol
sequence s consisting of a pilot sequence (p) of L known
symbols and an unknown data sequence (a) of length N ,
so that s = [p a]. The received vector is given by:

y = sejθ + n (1)

where n is a row vector consisting of L + N indepen-
dent complex AWGN samples with nk ∼ N

(
0, 2σ2

)
.

Here, σ2 = N0/ (2Es), with Es denoting the energy per
transmitted symbol. The pilot and data symbols are taken
from an M-PSK constellation with |pm| = |an| = 1, for
m = 0, 1, . . . , L−1 and n = 0, 1, . . . , N−1. The unknown
carrier phase θ is in the interval (−π, π). Detection of the
data symbols a is based upon the rotated vector ye−jθ̂, with
θ̂ denoting an estimate of the carrier phase θ. We introduce
the integer part, 2πk/M , and the fractional part, eθ, of the
phase θ, defined by

θ =
2π

M
k + eθ (2)

where |eθ| < π/M and k ∈ {0, 1, . . . ,M − 1} for M -
PSK signalling. A Non Data-Aided (NDA1) phase esti-
mation algorithm (such as the Viterbi&Viterbi algorithm
[1]) involves the estimation of the continuous parameter
eθ, whereas PAR refers to the estimation of the discrete
parameter k. As the phase estimate êθ is not perfect, we

1To avoid confusion, we remind that a DA algorithm exploits the exact
knowledge of the pilot symbols (p), while a NDA algorithm exploits
statistical properties of the entire sequence s.



introduce the phase error, φ = eθ − êθ. This phase error is
generally modeled as having a Gaussian distribution with
zero-mean and variance σ2

φ [7]. The received vector y is
rotated over an angle −êθ to compensate for the fractional
part of the carrier phase, yielding

r = y exp (−jêθ) = s exp

(
j

2π

M
k

)
exp (jφ) + ñ (3)

where ñ is a noise vector with the same statistics as n in
(1). The first L components of r (which we denote as rp =
[r0, . . . , rL−1]) correspond to the pilot sequence p, and are
used for PAR, i.e., for estimating the integer part 2πk/M
of the carrier phase. After obtaining the estimate k̂ of k, the
last N components of r are rotated by an angle −2πk̂/M to
compensate for the integer part of the carrier phase. Finally,
these rotated components are fed to the decision device that
detects the data symbol sequence a.

III. ML DATA-AIDED PAR

The goal of the data-aided PAR algorithm is to determine
from rp the carrier phase shift 2πk/M in (3), based on
the knowledge of the pilot sequence. The PAR algorithm
assumes that the fractional part of θ has been perfectly
compensated for, i.e., φ = 0 in (3). Using the ML criterion,
it can easily be shown that

k̂ML = round
(
M

2π
arg (Cp)

)
(4)

where Cp denotes the time-correlation between the se-
quences rp and p, i.e., Cp = rpp

H .

A. PAR Error probability

First, we consider the conditional error probability,
Ppar (φ) = P

[
k̂ 6= k

∣∣∣φ
]
, which is the probability of a

PAR when the fractional phase error equals φ. A PAR error
occurs when the argument of Z = Cp exp (−j2πk/M)
falls outside the range (−π/M, π/M). For given k and
φ, Z is a complex-valued Gaussian random variable with
mean L exp (jφ); the real and imaginary parts of Z are
statistically independent, and both have a variance equal to
Lσ2. Taking into account the statistics of ñ, we obtain, for
M > 2

Ppar (φ) ≈

Q

(√
2γ sin2

( π
M

+ φ
))

+Q

(√
2γ sin2

( π
M
− φ

))

(5)

where γ = L/
(
2σ2
)

and Q (x) =

1/
√

2π
∫ +∞
x

exp
(
−t2/2

)
dt. For M = 2, the

conditional PAR error probability is given by
Ppar (φ) = Q

(√
2γ cos2 (φ)

)
. Note that Ppar (φ)

depends on the pilot sequence only through its length, L,
not through its constituent symbols, nor its location within
the frame.

Secondly, the unconditional PAR error probability is then
obtained as Ppar = Eφ [Ppar (φ)], where Eφ [.] denotes
the averaging with respect to the distribution of the phase
error φ. Since φ is assumed to have a Gaussian distribution,
Ppar can be obtained through low-complexity numerical
integration techniques.

B. BER performance

Of more practical interest than the PAR error rate itself
is the BER degradation due to PAR errors. Let us denote
by BER0 (φ) the bit error rate conditioned on the phase
error φ, for frames that are not affected by a PAR error;
similarly, we define BER1 (φ) as the conditional bit error
rate for the frames that are affected by a PAR error. Then
the overall conditional bit error rate BER (φ) is given by

BER (φ)

= BER0 (φ) (1− Ppar (φ)) +BER1 (φ)Ppar (φ)

< BER0 (φ) + Ppar (φ) . (6)

From (6), we obtain the following bound:

BER < BER0 + Ppar = BER0

(
1 +

Ppar
BER0

)

where BER and BER0 are the unconditional bit error
rates, obtained by averaging BER (φ) and BER0 (φ) over
φ. Our goal is, for a given scenario (i.e., for given BER0),
to determine the length L of the pilot sequence such that
the resulting BER degradation is negligible.

In order that occasional PAR errors cause a low BER
degradation, the ratio Ppar/BER0 must be sufficiently
small, say less than ε, so that BER/BER0 is limited
to 1 + ε. From curves of BER0 as a function of Eb/N0

(= 1/
(
2rσ2 log2 (M)

)
, with r denoting the rate of the

coder2) it can be verified that taking ε = 1/8 for uncoded
systems and ε = 1/2 for coded systems corresponds to
a degradation in Eb/N0 not exceeding about 0.1 dB. The
condition Ppar/BER0 < ε imposes a minimal value Lmin
on the length of the pilot sequence, so that phase ambiguity
resolution errors cause no noticeable BER degradation.
Note that Lmin increases with the coding gain: a 3 dB
increase in coding gain requires Lmin to be doubled.

Finally, note that a similar argument can be applied to
the frame error rate (FER). Since the FER is always greater
than the BER, the minimal pilot sequence length that results
in a negligible FER degradation will be smaller that the one
that results in a negligible BER degradation.

IV. NUMERICAL PERFORMANCE RESULTS

We first illustrate the accuracy of the approximation (5)
for Ppar (φ). Assuming a pilot sequence of 5 symbols, we
show in Fig. 1 (left part) Ppar (0) as a function of Eb/N0

for uncoded M-PSK. We observe that Ppar (0) according to
the approximation (5) and the simulated Ppar (0) are nearly

2This Eb/N0 does not include the rate loss due to the pilot insertion.
To include this loss, one should replace r with r × (N/ (N + L)).
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Fig. 1. Ppar as a function of the SNR for a pilot sequence of 5 symbols for perfect phase estimation (left) and for Gaussian distributed phase errors
(for 4PSK; right)

identical. The right part of Fig. 1 shows for 4-PSK the effect
of a zero-mean Gaussian phase error φ with variance σ2

φ.
As expected, an increase in σ2

φ results in a higher PAR error
probability; the effect of σ2

φ on Ppar is more pronounced
at larger Eb/N0. Again, simulations confirm the accuracy
of the approximation (5).

To illustrate the effect of PAR errors on the bit error
rate, we have performed computer simulations for uncoded
4-PSK and for a turbo code [8] with bit-interleaved [9]
4-PSK signaling. The constituent convolutional codes of
the turbo code are systematic and recursive with rate 1/2,
generator polynomials (21, 37)8 and constraint length 5.
The turbo code consists of the parallel concatenation of two
unpunctured constituent encoders, which yields an overall
code rate of 1/3. Codewords consist of 1002 bits (not
including pilot bits), yielding 501 coded 4-PSK symbols.

Fig. 2 shows the value of Lmin resulting from the
condition Ppar/BER0 < ε. Results pertain to

• uncoded 4-PSK with perfect estimation of the frac-
tional part of the carrier phase (denoted by ’perfect
PE’) for various values of ε

• turbo coded 4-PSK with ε = 1/2 taking two different
assumptions regarding phase estimation, i.e., perfect
estimation and Viterbi&Viterbi (V&V) estimation [1]
using a fourth-power nonlinearity.

Obviously, reducing ε gives rise to a larger value of Lmin.
For uncoded 4-PSK transmission, Lmin decreases with
increasing Eb/N0: taking into account that Ppar (0) ≈
2Q
(√

2LEb/N0

)
and BER0 (0) ≈ Q

(√
2Eb/N0

)
it

can be verified that Lmin converges to 1 (irrespective
of ε) when Eb/N0 gets very large. Hence, for uncoded
transmission a short pilot sequence of only 2 symbols
should be sufficient at normal operating values of Eb/N0.
For the turbo-coded 4-PSK system a substantially larger
pilot sequence is required, because of the large coding
gain with respect to uncoded 4-PSK. In the case of perfect

phase estimation, Lmin steeply increases with Eb/N0 when
operating in the waterfall region (0 dB < Eb/N0 < 2
dB) of the turbo code; in the error floor region, Lmin
decreases with Eb/N0 because of the decreasing coding
gain, and converges for a very large Eb/N0 to a value that
is determined by the asymptotic coding gain. In the case
of V&V phase estimation, both the PAR performance and
the BER performance degrade as compared to the case of
perfect phase estimation. When the performance of the PAR
is less (more) sensitive to phase estimation errors than the
performance of the decoder, then Lmin in the presence of
phase estimation errors is smaller (larger) than in the case
of perfect phase estimation; Fig. 2 indicates that the turbo
decoding algorithm is more sensitive to phase errors than is
the PAR algorithm, when operating in the waterfall region.
Fig. 3 shows straightforward BER simulation results for
turbo-coded 4-PSK with PAR, for various pilot sequence
lengths L, assuming both perfect phase estimation and
V&V phase estimation. For a given Eb/N0, the value of
L that yields a negligible bit error rate degradation (see
Fig. 3) agrees well with the value of L that results from
the condition Ppar/BER0 < ε (see Fig. 2). Assuming
V&V (perfect) phase estimation, a pilot sequence of 15
symbols (19 symbols) is sufficient to obtain a very small
BER degradation for the considered turbo code; although
this pilot sequence is much longer than what is needed for
uncoded transmission, the resulting frame overhead is only
about 3% (4%). This overhead causes an equivalent rate
loss of less than 0.2 dB (not shown in Fig. 3). It should
be noted that obtaining a suitable value of L by means
of straightforward simulations of the PAR algorithm and
the turbo decoding algorithm requires a new simulation of
the PAR algorithm for each value of L considered. This
is in contrast with evaluating Ppar analytically and then
determining L from the condition Ppar/BER0 < ε. The
latter approach only requires a single simulation (viz., of
the turbo decoder, to determine BER0) .
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Fig. 2. Minimal length (L) of pilot sequence for uncoded and turbo
coded QPSK (for perfect phase estimation (PE) and a NDA PE algorithm
from [1]).

V. CONCLUSIONS AND REMARKS

We have investigated the performance of the ML data-
aided PAR algorithm for M-PSK signaling in the pres-
ence of residual carrier phase estimation errors. We have
presented an accurate approximation for the PAR error
probability, and determined a simple bound on the overall
BER. From these results, we have computed the minimal
length of the pilot sequence, such that the BER degradation
caused by occasional PAR errors is limited to a very
small value (say, about 0.1 dB in Eb/N0). For uncoded
transmission, a pilot sequence of only 1 or 2 pilot symbols
is sufficient, but for coded transmission the required pilot
sequence length is considerably larger, and increases with
the coding gain. Our analytical results have been validated
by means of computer simulations.

The ML PAR algorithm (4) makes use of the pilot
symbols, but does not exploit the remaining data symbols
in the frame. In the case of uncoded transmission, it can be
verified that the remaining data symbols do not provide any
information regarding the phase ambiguity, in which case
the PAR algorithm (4) is optimum. In the case of coded
transmission, the remaining symbols give an indication
about the ambiguity, provided that rotating the symbols of
a codeword by a multiple of 2π/M does not yield another
codeword. Hence, for some codes the PAR performance
can be improved by taking into account the coded symbols:
examples can be found in [10], [11]. Although such code-
aided PAR algorithms yield a gain in spectral efficiency
(as compared to (4), they need less pilot symbols), they
come with a significant cost: as they generally require many
decoding operations, their computational complexity can be
very high.

Finally, we should note that the pilot sequence is not only
used for PAR: for instance, it is also commonly exploited
during frame synchronization (FS) [12] and channel gain
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Fig. 3. BER performance for turbo coded QPSK for different values of
L (for perfect phase estimation (PE) and a NDA PE algorithm from [1]).

estimation. Especially frame synchronization puts addi-
tional requirements on the properties of the pilot sequence.
Performance analysis of DA joint FS and PAR remains a
topic of future research.
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