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TURBO CHANNEL ESTIMATION FOR BIT-INTERLEAVED CODED
MODULATION

Abstract— This contribution deals with code-
aided channel estimation for bit-interleaved
coded modulation (BICM) for single- and multi-
antenna systems. Based on the Expectation-
Maximization algorithm, a low-complexity esti-
mator is derived. The receiver iterates between
estimation and detection and operates by accept-
ing soft information from the detector. Through
computer simulations the proposed estimator,
and variations thereof, are investigated in terms
of computational complexity, BER performance
and mean square error (MSE) performance.
Furthermore, the impact of the symbol mapping
is investigated.

I. INTRODUCTION

Bit-interleaved coded modulation (BICM)
is a popular technique that combines error-
correcting codes with high-order modulation
schemes. Although originally developed for
fading single-input single-output (SISO) chan-
nels [1], [2], BICM has quickly found its
way in state-of-the-art multi-antenna systems
(MIMO systems) [3]. It is now a serious con-
tender against space-time (ST) codes, which
exploit the spatial diversity in rich scattering
MIMO environments at a cost of reduced trans-
mission rates. BICM, on the other hand, can
combine high data rates while still maintaining
high diversity [4].

In its original form, BICM combines a

convolutional encoder and a symbol mapper,
separated by a pseudo-random interleaver. The
interleaver spreads adjacent coded bits over
different symbols, thus increasing the time-
diversity. Later, BICM was extended by means
of the turbo-principle [5]: by considering the
symbol mapper as an additional code, one can
iterate at the receiver between the demapper
and the decoder. This is known as BICM-ID.
It was shown in [6] that good mappings in con-
ventional systems (such as Gray mapping), can
be outperformed in BICM-ID by different, non-
standard mappings, albeit only above a certain
SNR and at the cost of increased computational
complexity. Extension to MIMO systems is
straightforward: the convolutional encoder, bit-
interleaver and symbol-mapper are now fol-
lowed by a serial-to-parallel (S/P) converter,
which passes the coded symbols to the different
antennas in a round-robin fashion. This form of
vertical encoding has the potential of achieving
full diversity as each information bit can be
spread across all the transmit antennas. Again
the mapping strategy is a crucial design pa-
rameter [7], [8]. Many variations on this basic
theme has since been developed (e.g. [9]).

While BICM-ID systems have been shown
to achieve excellent performance in a great
variety of scenarios, the impact of channel
estimation should be considered [10]. Stan-



dard channel estimation techniques are based
on the presence of pilot (training) sequences
at some point in the transmitted frame. As
these pilots effectively reduce the transmission
rate, they are wasteful. Hence, the number of
pilot symbols should be low (compared to the
overall frame length). Since the transmitted
bits are commonly protected by powerful error-
correcting codes, it makes sense to exploit
the code properties during estimation. In fact,
many technical papers have been devoted to
the problem of code-aided channel estimation.
Depending on the channel type (i.e., multi-path
vs. flat fading and time-varying vs. static chan-
nels), different techniques are applied: iterative
receivers with different coding schemes have
been proposed using the Expectation Maxi-
mization (EM) algorithm for joint channel esti-
mation and data detection in a MIMO context
[3], [11]–[13]. The EM algorithm is utilized
in [11] to perform joint noise variance and
channel estimation for fast fading channels
with space-time coding and MAP decoding. An
MMSE channel estimator that exploits knowl-
edge of the transmitted symbols via a modi-
fied Viterbi decoder is considered in [12] and
[13]. In [3], joint MIMO channel estimation
and MAP ST-BICM decoding is performed.
Extensions to ST-OFDM have been proposed
in [14]. Rather ad-hoc methods have been
considered for iterative decoding and MIMO
channel estimation, such as frequency selective
channel estimation using decision feedback for
space-time codes with Viterbi decoding [15]
and MAP decoding [16].

Our mathematical framework is developed
for flat-fading MIMO channels, but is also
applicable to SISO channels since the latter are
just a special case of the former. For short burst
data transmission, we can assume the channel
to remain static during each burst. We derive

an estimation algorithm, based on the iterative
EM algorithm, that should, in principle, be
able to achieve optimal Maximum Likelihood
(ML) performance. In its exact formulation,
the algorithm is still prohibitively complex. We
will introduce two sub-optimal variations of the
complex EM estimator. The first treats the data
as uncoded during the estimation process. The
second variation is obtained by making a sim-
ple approximation and results in an estimator
that is truly embedded in the iterative detec-
tor. The proposed estimators combine excel-
lent performance with fairly low computational
overhead. This is verified through Monte Carlo
simulations.

II. SYSTEM MODEL

We consider a system with NT transmit and
NR receive antennas. The transmitter encodes a
stream of Nb bits using a rate R convolutional
encoder. The resulting Nc = Nb/R coded bits
are fed to an interleaver (denoted by Π) and
mapped to an M -point signaling constellation
Ω. This mapping operates on blocks of log2M
bits and results in a sequence of NSNT =
Nc/ log2M coded symbols. These are then
multiplexed with NPNT pilot symbols, deliv-
ered to the S/P converter. At each discrete
time instant, we transmit NT symbols, i.e.,
one per transmit antenna. Hence, the resulting
NT × 1 transmit-vector at time k, ak, depends
on NT . log2M bits. We denote these bits as
ak[m], m = 1, . . . , NT . log2M . The transmit-
vector ak is transmitted over the (unknown)
MIMO channel with equivalent, discrete-time
baseband NR × NT channel response matrix
H. This matrix is modeled as a block-fading
channel with hij = [H]ij a complex-valued
Gaussian random variable; its real and imag-
inary parts are statistically independent with
zero mean and variance equal to 1/2, so that
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Ĥ
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Fig. 1. BICM-ID detector with embedded estimator

E
[
|hij |2

]
= 1. We assume H is constant

during a burst of NS+NP symbol vectors, but
can change independently from burst to burst.
Adding thermal white Gaussian noise yields

rk = Hak + nk (1)

with nk an NR × 1 vector of complex iid
AWGN samples, with independent real and
imaginary part, each having variance σ2. After
reception of the entire frame, we can write:

R = HA+N (2)

R =[r0, . . . , rNP+NS−1],
A =[a0, . . . ,aNP+NS−1],
N =[n0, . . . ,nNP+NS−1]. The goal of
the receiver is to recover the information bits.
In order to do this, the channel matrix H
needs to be estimated.

III. BICM-ID DETECTOR

The detector iterates between demapping
and decoding according to the turbo principle.
For SISO channels, such iterative receivers
are well known [17]. The extension to BICM
MIMO systems has been addressed in [3], [18],
so we will only cover the parts essential to
this paper. Using turbo terminology, P e(x),
P a(x) and P p(x) = P

(
x
∣∣∣R, Ĥ

)
refer to the

a priori, extrinsic and a posteriori probabilities
of the random variable x, respectively.

The operation of the iterative turbo detec-
tor is described in Algorithm 1 and depicted
in Fig. 1. At each iteration, we discern two
stages: demapping and decoding. First, the
extrinsic probabilities of the coded bits ak[m]
are determined from rk and a priori knowl-
edge of {ak [m′]}m′ 6=m, using the function
fM (.). Once the extrinsic probabilities of all
the coded bits are known, they are delivered to
the decoder. The decoder (represented by the
function fD(.)) updates the a priori information
of the coded bits. As previously mentioned,
details of fM and fD can be found in technical
literature.

After a number of iterations (Imax), the a
posteriori probabilities of the coded bits are
determined as the product of the corresponding
extrinsic and a priori probabilities.

Algorithm 1 Turbo detector
1: input: R, Ĥ
2: initialize: P a (ak[m]) = 1/2, ∀ unknown bits
3: for j = 0 to Imax − 1 do
4: for all k and m do
5: //demapping
6: P e (ak [m]) =fM

(
rk, Ĥ, {P a (ak [m′])}m′ 6=m

)

7: end for
8: for all k and m do
9: //decoding

10: P a (ak [m]) = fD ({P e (ak′ [m
′])})

11: end for
12: end for
13: output: P p (ak [m]) ∝ P a (ak [m]) ×

P e (ak [m])

IV. ESTIMATION THROUGH THE EM
ALGORITHM

Assume we want to estimate a parameter
vector b from an observation r in the presence



of a so-called nuisance parameter vector a,
with distribution p(a). The maximum likeli-
hood (ML) estimate (b̂ML) of b maximizes the
log-likelihood function (LLF):

b̂ML = arg max
b
{ln p (r |b)} (3)

where

p (r |b) =

∫

a
p (r |a,b) p (a) da. (4)

denotes the likelihood function. Often p (r |b)
is very difficult to calculate. The EM algorithm
is a method that iteratively solves (3), without
the explicit calculation of (4). Defining the
complete data x, related to the observation r
through a many-to-one mapping, the EM algo-
rithm breaks up in two parts: the Expectation
part (Eq. 5) and the Maximization part (Eq. 6):

Q
(
b, b̂(i)

)
=

∫

x
p
(
x
∣∣∣r, b̂(i)

)
ln p(x|b)dx(5)

b̂(i+1) = arg max
b

{
Q
(
b, b̂(i)

)}
. (6)

It has been shown that b̂(i) converges to a
stationary point of the LLF under fairly general
conditions [19]. The EM algorithm can easily
be extended to acquire the Maximum a Pos-
teriori (MAP) estimate of b, by taking the a
priori distribution p(b) into account in (5).

V. TURBO ESTIMATION

Initialization: In order to converge to the
ML estimate, the EM algorithm requires proper
initialization. We resort to a data-aided (DA)
ML estimator to provide the initial estimate
Ĥ(0) of H [20]:

Ĥ(0) = RAH
P

(
APAH

P

)−1
(7)

where AP denotes the NR×(NS +NP ) matrix
obtained by replacing all (unknown) coded

symbols in A by 0. Note that AH
P

(
APAH

P

)−1

can be precomputed and stored at the receiver-
side. Performance of this estimator depends
on the structure of the training sequence. It
was shown in [20] that orthogonal training
sequences (i.e. where APAH

P is a diagonal
matrix) yield estimates with the lowest MSE.
Hence, we initialize the EM algorithm using
(7) with a limited number of orthogonal pilot
symbols.

The EM algorithm to be described in-
volves including Algorithm 1 into an additional
for-loop: at each EM iteration i (for i =
0, . . . , IEM − 1) we first perform Algorithm 1
and then execute the following two steps.

Expectation Step: In the context of the
MIMO transmission system, a and b from
section IV represent the transmitted symbols
and the channel gains, respectively: r ↔ R,
a ↔ A and b ↔ H 1. We select as complete
data x = [R,A]. Considering the fact that H
and A are independent, (5) is transformed into:

Q
(
H, Ĥ(i)

)
= EA

[
ln p (R|A,H)|R, Ĥ(i)

]
.(8)

Taking into account the properties of the noise,
the LLF ln p (R|A,H) can be written as fol-
lows (up to irrelevant constants):

ln p (R|A,H) = (9)

− tr
(
HAAHHH

)
+ 2<

(
tr
(
RAHHH

))

where tr (X) denotes the trace of the square
matrix X. Substituting (9) into (8) yields:

Q
(
H, Ĥ(i)

)
=

− tr
(
HAAHHH

)
+ 2<

(
tr
(
RA

H
HH

))

1Actually, a vectorized representation of R, A and H



with

AAH = EA

[
AAH

∣∣R, Ĥ(i)
]

A = EA

[
A|R, Ĥ(i)

]
.

Since AAH = EA

[∑
k aka

H
k

∣∣R, Ĥ(i)
]
, both

AAH and A can be determined based on the a
posteriori probabilities of the transmit vectors
ak (i.e., P p (ak) = P

(
ak

∣∣∣R, Ĥ(i)
)

):

P p (ak) = γP
(
rk

∣∣∣ak, Ĥ(i)
)∏

m

P a (ak [m])

(10)
for some normalizing constant γ. The a priori
probabilities P a (ak [m]) in (10) are provided
by the iterative detector. In passing, we men-
tion that in several papers P p (ak) is approx-
imated as P p (ak) ≈

∏NT log2 M
m=1 P p (ak [m])

or as P p (ak) ≈
∏NT
l=1 P

p (ak,l) with ak,l ∈ Ω
denoting the l-th symbol and ak[m] ∈ {0, 1}
the m-th bit of symbolvector ak. This approach
inevitably gives rise to some degradation as
compared to the correct expression (10).

Maximization step: An exact solution of (6)
is given by:

Ĥ(i+1) = RAH
(
AAH

)−1
. (11)

Notice the resemblance with the DA estimator
(7). In fact, the training symbols from (7) are
now replaced with the a posteriori first and
second order moments of the data symbols.
Observe that

(
AAH

)
is an NT ×NT matrix,

so
(
AAH

)−1
is generally easy to compute.

VI. LOW-COMPLEXITY APPROXIMATION:
TURBO ESTIMATION

The main drawback of the proposed channel
estimator is its high computational complexity:

indeed, each time we update Ĥ, Algorithm 1
has to be executed. Hence, if Ĥ is updated
IEM times, the complexity is IEM times that of
Algorithm 1, which is generally unacceptable.
We will propose two ways of reducing this
complexity.

Uncoded estimation: One approach to avoid
unnecessary decoding stages, is to ignore the
presence of the code in the iterative estimation
algorithm. This way, the exact a posteriori
probabilities of the symbol vectors are obtained
from the received signal by formally replac-
ing in expression (10), P a (ak [m]) with 1/2

when ak [m] is an (unknown) coded bit and
P a (ak [m]) = 1 or 0 when ak [m] is part of a
pilot symbol (-vector). The iterative estimator
will again converge to a stationary point of the
’uncoded’ likelihood function. This ’uncoded’
likelihood function is again given by (4), but
the expectation in (4) involves averaging with
respect to all possible (uncoded) symbols, in-
stead of all possible codewords. The estimate
of H is then delivered to the iterative detector.

Algorithm 2 Embedded estimator
1: input: R, Ĥ(0)

2: initialize: P a (ak[m]) = 1/2, ∀ unknown bits
3: for i = 0 to IEM − 1 do
4: perform Algorithm 1 using Ĥ(i) without

initialization steps
5: determine Ĥ(i+1) using (11)
6: end for
7: output: P p (ak [m]) ∝ P e (ak [m]) ×
P e (ak [m])

Embedded estimation: In order to exploit
all available information with no significant
additional computational cost, we propose to
embed the estimation steps in the turbo detec-
tor. The idea is to move the initialization steps
in Algorithm 1 outside the for-loop and simul-
taneously reduce Imax. The additional compu-



tational complexity compared to Algorithm 1
is now only marginal. For instance, if we set
Imax = 1, the only additional complexity, in
the best case (i.e., when the estimate of H
converges after one or two EM iterations), lies
in computing P p (ak) in (10) and the matrix
computation in (11). Although this approach
is not optimal in the sense of determining
the ML estimate of H, we will show through
computer simulations that the performance of
this practical algorithm is still excellent. The
resulting algorithm is shown in Algorithm 2.

VII. PERFORMANCE RESULTS

We have carried out computer simulations
using a recursive systematic rate 1/2 convolu-
tionally encoder with octal generators (27,33)
and a random interleaver. We consider two
channel types: a SISO AWGN channel using
16QAM signaling, and a flat-fading MIMO
channel with BPSK signaling. The considered
performance measures are the bit-error-rate
(BER) and the mean square error (MSE) of the
estimates. The BER will be compared to the
BER under perfect synchronization, while the
MSE will be compared to the modified Cramer
Rao Bound (MCRB), which is a lower bound
on the MSE of any unbiased estimator [21].

A. SISO AWGN

Let us consider a SISO AWGN channel with
both Gray and optimized non-Gray mapped
16QAM symbols. Frames consist of 256 sym-
bols and initial estimates for the iterative es-
timation algorithms are obtained by means of
only 8 pilot symbols. The BER is plotted in
Fig. 2 for several estimation schemes. When
the channel is perfectly known, the non-Gray
mapped scheme outperforms the Gray-mapped
scheme for Eb/N0 > 5 dB. However, the
benefit from choosing an optimized mapping
is lost when estimating the parameters based
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Fig. 2. BER of joint estimation and detection over
AWGN channel for Gray (dashed lines) and non-Gray
mapping (full lines).

on pilot symbols only. Non-Gray BICM-ID
schemes appear to be more sensitive to channel
errors, than their Gray-mapped counterparts.
This emphasizes the importance of accurate
channel estimation algorithms for configura-
tions using advanced mappings. Using the em-
bedded turbo-estimator from section VI yields
an error rate within 0.1 dB of the perfectly
synchronized performance. Compared to the
data-aided estimator using 8 pilot symbols,
a gain of more than 2 dB is achieved for
Non-Gray mappings. The ’uncoded’ estimator
yields a degradation of 0.5 dB compared to
perfect channel knowledge for non-Gray map-
pings, whereas for Gray mappings hardly any
degradation is observed.

Let us now examine the MSE performance,
as shown in Fig. 3 and Fig. 4 for Gray and
non-Gray mappings, respectively. We observe
that the ’uncoded’ estimator upper bounds the
embedded estimator. This is not surprising
since the embedded estimator has more in-
formation (i.e., from the decoder) at its dis-
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posal compared to the ’uncoded’ estimator. At
low SNR, the benefit from using the code is
negligible and the embedded and ’uncoded’
estimator converge. At high SNR, the MSE of
the embedded estimator approaches the MCRB
after convergence, whereas the MSE of the
’uncoded’ estimator does not attain the MCRB
for the considered SNR range. Note also that
the MCRB is reached at lower SNR for Gray
mappings compared to non-Gray mappings.
This can be explained by Fig. 2, where we
notice that the code becomes effective only
above a certain SNR-threshold for non-Gray
mappings (’waterfall region’). Hence, the es-
timator only benefits from decoder output at
high SNR.

B. MIMO

Similar results are obtained for channel es-
timation in multiple antenna configurations.
Fig. 5 and 6 illustrate the BER and MSE
performance of a BICM MIMO system with
NT = 4 transmit and NR = 2 receive antennas
using BPSK signaling. Frames consist of 1024
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Fig. 4. MSE of joint estimation and detection over
AWGN channel for non-Gray mapping.

bits (i.e., NS = 256) and initial estimates
are obtained by means of NP = 8 pilot
symbol vectors. We observe in Fig. 6 that
the MCRB is reached, above a certain SNR
threshold (Eb/N0 > 5 dB), using the embedded
estimator. This means that for Eb/N0 > 5 dB
the embedded estimator is as accurate as an
estimator that knows all the coded symbols
exactly. The suboptimal ’uncoded’ estimator
converges to the MCRB for higher SNR. From
the BER curves in Fig. 5, we observe that the
’uncoded’ estimator results in approximately 1
dB degradation, whereas the embedded estima-
tor degrades the BER by only 0.1 dB compared
to perfect channel knowledge. Again, a signif-
icant gain (2.5 dB) is achieved compared to
data-aided estimation using 8 pilot symbols per
transmit antenna.

VIII. CONCLUSIONS

In this paper, we addressed code-aided chan-
nel estimation in a (multi-antenna) BICM set-
up. Employing the Expectation Maximization
(EM) algorithm, an optimal (in the ML sense)
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estimator is derived. This estimator iterates
between detection and estimation by accepting
at each iteration soft information from the
detector.

In order to reduce the computational over-
head related to estimation, two low-complexity
estimators are proposed, both based on the
aforementioned optimal EM estimator. The
first one treats the data as uncoded during es-
timation, while the second embeds estimation
stages in the detection stages. Both BER and
MSE analysis demonstrate the near-optimal
performance of the embedded estimator.

ACKNOWLEDGMENTS

This work has been supported by the In-
teruniversity Attraction Poles Program P5/11-
Belgian Science Policy. The first author also
gratefully acknowledges the support from the
National Fund for Scientific Research (FWO-
Vlaanderen).

−5 0 5 10
10−3

10−2

10−1

100

101

M
S

E

E
b
/N

0

Embedded estimator
"Uncoded" estimator
DA estimator N

p
=8

MCRB

Fig. 6. MSE of joint estimation and detection over
MIMO channel (NT = 4, NR = 2, 15 iterations).

REFERENCES

[1] E. Zehavi, “8-PSK Trellis Codes for a Rayleigh
Channel,” IEEE Trans. Comm., vol. 40, no. 5, pp.
873–884, May 1992.

[2] G. Caire, G. Taricco and E. Biglieri, “Bit-
interleaved coded modulation,” IEEE Trans. on
Information Theory, vol. 44, no. 3, pp. 927–946,
May 1998.

[3] J.J. Boutros, F. Boixadera and C. Lamy, “Bit-
interleaved coded modulations for multiple-input
multiple-output channels,” in Proceedings of the
IEEE 6th Int. Symp. on Spread-Spectrum Tech. &
Appli., New Jersey, USA, Sept. 2000, pp. 123–126.

[4] G.J. Foshini and M.J. Gans, “On limits of wireless
communication in a fading environment when using
multiple amtennas,” Wireless Personal Communica-
tions, vol. 6, no. 3, pp. 311–335, Mar. 1998.

[5] X. Li, A. Chindapol and A.R. Ritcey, “Bit-
Interleaved Coded Modulation With Iterative De-
coding and 8PSK Signaling,” IEEE Trans. Comm.,
vol. 50, no. 8, pp. 1250–1257, Aug. 2002.

[6] S.Y. Le Goff, “Signal Constellations for Bit-
Interleaved Coded Modulation,” IEEE Trans. In-
form. Theory, vol. 49, no. 1, pp. 307–313, Jan. 2003.

[7] J. Boutros, N. Gresset and L. Brunel, “Turbo Cod-
ing and Decoding for Multiple Antenna Channels,”
in International Symposium on Turbo Codes and
Related Topics, Brest, Sept. 2003.

[8] F. Simoens, H. Wymeersch and M. Moeneclaey,
“Spatial Mapping for MIMO systems,” in IEEE



Information Theory Workshop proceedings (to ap-
pear), San Antonio, Oct. 2004.

[9] T. Muharemovic, A. Gatherer, W. Ebel, S. Hosur, D.
Hocevar and E. Huang, “Space-time codes with bit
interleaving,” in Proc. IEEE GLOBECOM, 2001.

[10] Y. Huang and J.A. Ritcey, “16-QAM BICM-ID
in Fading Channels With Imperfect Channel State
Information,” IEEE Trans. Wireless. Comm., vol. 2,
no. 5, pp. 1000–1007, Sept. 2003.

[11] Z. Baranski, A.M. Haimovich and J. Garcia-Frias,
“EM-based iterative receiver for space-time coded
modulation with noise variance estimation,” in
IEEE Globecom, nov 2002, pp. 355–359.

[12] C. Cozzo and B.L. Hughes, “Joint Channel Esti-
mation and Data Detection in Space-Time Commu-
nications,” IEEE Trans. Comm., vol. 51, no. 8, pp.
1266–1270, aug 2003.

[13] Y. Li, C.N. Georghiades and G. Huang, “Itera-
tive Maximum-Likelihood Sequence Estimation for
Space-Time Coded Systems,” IEEE Trans. Comm.,
vol. 49, no. 6, pp. 948–951, June 2001.

[14] B. Lu, X. Wang and Y. Li, “Iterative receivers for
space-time block-coded OFDM systems in disper-
sive fading channels,” IEEE Trans. Wireless Comm.,
vol. 1, no. 2, pp. 213–225, Apr. 2002.

[15] A. Grant, “Joint Decoding and Channel Estimation
for Linear MIMO Channels,” in In proceedings of
Wireless Comm. and Networking Conf., Chicago,
USA, Sep 2000, pp. 1009–1012.

[16] R. Visoz and A.O. Berthet, “Iterative Decoding
and Channel Estimation for Space-Time BICM over
MIMO Block Fading Multipath AWGN Channel,”
IEEE Trans. Comm., vol. 51, no. 8, pp. 1358–1367,
Aug 2003.

[17] X. Li and J.A. Ritcey, “Trellis-coded modulation
with bit interleaving and iterative decoding,” IEEE
Journal on Selected Areas in Comm., vol. 17, no.
4, Apr. 1999.

[18] A. Stefanov and T.M. Duman, “Turbo-Coded
Modulation for Systems with Transmit and Receive
Antenna Diversity over Block Fading Channels:
System Model, Decoding Approaches, and Practical
Considerations,” IEEE Journal on Select. areas
Comm., vol. 19, no. 5, pp. 958–968, may 2001.

[19] A.P. Dempster, N.M. Laird and D.B. Rubin, “Max-
imum likelihood from incomplete data via the EM
algorithm,” Journal of the Royal Statistical Society,
vol. 39, no. 1, pp. pp. 1–38, 1977, Series B.

[20] T. L. Marzetta, “BLAST Training: Estimating
Channel Characteristics for High Capacity Space-
Time Wireless,” in Ann. Allerton Conf., Monticello,
Sept 1999.

[21] M. Moeneclaey, “On the true and the modified
Cramer-Rao bounds for the estimation of a scalar
parameter in the presence of nuisance parameters,”
IEEE Trans. Comm., vol. 46, no. 11, pp. 1536–1544,
Nov. 1998.


