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I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
received intense interest from the research community during
the past few decades. Its robustness to frequency selective
channels has made it one of the main candidates for high data
rate transmission for current and next-generation wireless and
wireline applications [2].

All OFDM-based transmission requires accurate timing
and frequency synchronization [3]. Additionally, the channel
impulse response (CIR) must be known to coherently detect
the data per subcarrier. Among the different synchronization
policies, one can identify conventional techniques that are
either data-aided (i.e., exploiting training symbols in the time-
or frequency domain) [1], [4], [5] or blind (e.g., exploiting the
presence of the cyclic prefix) [6], [7].

With the advent of powerful error-correcting codes (includ-
ing turbo- and LDPC codes), these conventional techniques
cannot always be applied successfully. Powerful codes lead
to a combination of low BER at low SNR, thus rendering
blind techniques unreliable. Similarly, data-aided algorithms
require an unreasonable amount of power and bandwidth
to be devoted to training. This has spurred several research
groups to consider ’code-aided’ or ’code-aware’ estimation
algorithms. These algorithms iterate between data detection
and estimation, thus improving both the estimates of synchro-
nization parameters and CIR, while simultaneously perform-
ing increasingly reliable data detection. Such techniques are
often inspired by the turbo-principle [8] or the Expectation-
Maximization (EM) algorithm [9], [10]. In [11], an EM-based

semi-blind technique is described that performs code-aided
estimation of the CIR per Multi-Carrier (MC) symbol. The
same idea was applied in the frequency domain in [12] for
a multi-antenna, multi-user system. The EM algorithm was
again considered in [13] for estimation of the CIR for a time-
varying MIMO-OFDM scenario. Finally, [14] proposes an
ad-hoc code-aided channel estimator for time-varying OFDM
systems. Code-aided estimation of synchronization parameters
has received little attention.

In the current paper, we tackle the problem of joint chan-
nel estimation and frame synchronization for downlink MC-
CDMA. Starting from the Maximum Likelihood (ML) prin-
ciple, we derive an estimation algorithm based on the EM
algorithm, exploiting information from the pilot symbols and
coded data symbols in a systematic fashion.

II. MC-CDMA DOWNLINK SYSTEM MODEL

A. Transmitter

We consider bit-interleaved coded modulation transmission
in the downlink of a MC-CDMA system with Ku active
users. The Base Station transmits frames consisting of Ms

MC symbols to each of the users as depicted in Fig. 1.
An information sequence intended for user k is encoded,

interleaved and mapped to a signal constellation Ω, resulting
in a sequence d(k) of Nd data symbols. This sequence is
broken up into Ms blocks of length P (= Nd/Ms). Each of
these blocks is spread with a length Ns spreading sequence,
resulting in a sequence of N = (NsP ) spread symbols. Each
of these spread symbols is mapped to a unique subcarrier,

resulting in a sequence a
(k)
i =

[
a

(k)
i,0 , . . . , a

(k)
i,N−1

]T
. After

an Inverse Discrete Fourier Transform (IDFT) operation, a ν-
point cyclic prefix is pre-appended resulting in N + ν time-
domain samples per block: the samples of the i-th (0 ≤ i <

Ms) block are written as
[
s

(k)
i,−ν , . . . , s

(k)
i,−1, s

(k)
i,0 , . . . , s

(k)
i,N−1

]T

where s(k)
i,l = s

(k)
i,l+N , for l = −ν, . . . ,−1 and

s
(k)
i,m =

√
Es

N + ν

N−1∑

n=0

a
(k)
i,ne

j2πnm/N . (1)

In (1) Es denotes the energy per data symbol. We further
define the MC symbol period T and the sampling period Ts =
T/NT .
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Fig. 1. Frame construction for the k-th user.

Finally, the signals of the Ku different users are added,
shaped with a normalized transmit filter and transmitted over
the channel to the mobile stations. A Common Control Physi-
cal Channel (CCPCH) is assumed whereby a sequence of Mp

MC symbols is time-multiplexed at the header of the com-
posite Dedicated Physical Channels (DPCH). These symbols
do not undergo spreading (i.e, Ns = 1 in the CCPCH). A
fraction (say, f ∈ [0, 1]) of the subcarriers of the MC symbols
in the CCPCH is devoted to training symbols, which serve
to synchronize the mobile receivers. The remainder of the
carriers (i.e., the fraction 1−f ) is taken up with administrative
data. For convenience, we will refer to these Mp MC symbols
as ’pilot MC symbols’. The pilot MC symbols may have
a repetitive structure in the time-domain, to accommodate
specific synchronization algorithms [4].

B. Receiver

Each user has to process a total of M = Ms + Mp

MC symbols. From this point on, we focus on a specific
mobile station, say the k′-th. The signal from the base station
propagates to the k′-th mobile station through a channel with
overall Channel Impulse Response (CIR) hch (t). This CIR
incorporates the transmit filter, physical propagation channel
and receive filter (e.g., matched filter). We assume a quasi-
static block-fading channel that remains constant during each
frame but can vary independently from frame to frame. The
CIR is assumed to have a delay spread no greater than LTs:
hch (t) = 0 for t < 0 and for t > LTs. Additionally, the signal
arrives at the mobile station with a certain delay τ ∈ [0, τmax]1

and is corrupted by thermal noise. Hence, we may write the
received signal r (t) as

r (t) =

Mp−1∑

i=0

N−1∑

m=−ν
si,mhch (t−mTs − iT − τ) (2)

+

Ms−1∑

i=0

N−1∑

m=−ν

Ku∑

k=1

s
(k)
i,mhch (t−mTs − (i+Mp)T − τ)

+ w (t)

where the first term corresponds to the control channel,
the second term to the Ku dedicated channels and w(t) is
the baseband representation of the Additive White Gaussian
Noise (AWGN) with power spectral density N0/2 per real
dimension.

1τmax is assumed to be known to the receiver.

The receiver is fully digital and samples the received
signal r (t) at a rate 1/Ts resulting in a sequence of samples
{r (lTs)}. Following [1], we break up τ as τ = ∆Ts+δTswith
∆ ∈ {0, 1, . . . ,∆max

.
= bτmax/Tsc} and δ ∈ [0, 1[. Defining

h (t) = hch (t− δTs), the channel is fully characterized
by the vector h = [h (0) , h (Ts) , . . . , h ((L− 1)Ts)]

T

and ∆. We sample the signal at times
−νTs, . . . , ((Ms +Mp)T + (∆max + L− ν − 1)Ts),
yielding an observation r. We select ν such that νTs > LTs
so that the MC system does not suffer from inter-symbol-
interference (ISI).

When the receiver has available an estimate of h (say ĥ)
and of ∆ (say, ∆̂), data detection is a well-known task. Since
we focus on channel estimation and synchronization, we will
not give a full description of the detector. From our point of
view, data detection is a process that computes, in an iterative
manner, a posteriori probabilities of the spread data symbols

p

(
a
(k′)
i,n

∣∣∣r, ĥ, ∆̂
)

, 0 ≤ i < Ms, 0 ≤ n < N . For additional

details, the reader is referred to [15] and to [16].

III. CHANNEL ESTIMATION

It is clear that the detector from the previous section requires
the estimates of both the delay shift ∆ and the channel taps
h. In this section we describe how these quantities may be
estimated by the k′-th user. We start from the Maximum
Likelihood (ML) criterion and derive a Data-Aided (DA)
estimator. Then, capitalizing on the Expectation-Maximization
(EM) algorithm, a code-aided (CA) estimator is constructed
that exploits information from both the pilot MC symbols and
the data MC symbols.

A. ML estimation
We first write our observation into a more convenient form.

We start again from our observation-vector r. Note that the
length of this vector is independent of ∆.

We now introduce row-vectors of length NT : siC =
[si,−ν , . . . , si,N−1] consists of the NT = N + ν time-domain
samples of the i-th pilot MC symbol (i = 0, . . . ,Mp − 1).

Similarly, siD =

[
s
(k′)
i,−ν , . . . , s

(k′)
i,N−1

]
consists of the NT =

N + ν time-domain samples of the i-th data MC symbol
(i = 0, . . . ,Ms−1) of the k′-th user. Then a vector s of length
(NT (Ms +Mp) + 2L− 2) is constructed by concatenating
all these time-domain samples, padded with L − 1 zeros at
the beginning and end of the vector, leading to

s
.
=
[
01×(L−1) s0

C . . . s
Mp−1
C s0

D . . . sMs−1
D 01×(L−1)

]
(3)



where 0X×Y is an X × Y matrix consisting of all zeros.
Now we define an (NT (Ms +Mp) + L− 1)× L Toeplitz

matrix S as follows: the n-th row of S is obtained by time-
reversing the n-th until the (n+ L− 1)-th sample of s. For
instance, the first row is given by

[
s0,−ν ,01×(L−1)

]
, the

second row by
[
s0,−ν+1, s0,−ν ,01×(L−2)

]
and so forth. Note

that we can write S as the sum of two Toeplitz matrices of
size (NT (Ms +Mp) + L− 1)×L: S = SP +SD, where SP
contains only the pilot MC symbols and SD contains only the
data MC symbols.

Finally, we define an (NT (Ms +Mp) + ∆max + L− 1)×
L matrix S∆ as

S∆ =




0∆×L
S

0(∆max−∆)×L


 . (4)

These transformations enable us to write the following
simple relationship between r, S∆ and h:

r = S∆h + w (5)

where w embeds the thermal noise and the Multiple Access
Interference (MAI) and is modeled as a zero-mean complex
Gaussian random variable with variance σ2 per real dimension.
Note that by substituting S = SP +SD into (4), we can break
up S∆ = S∆,P + S∆,D.

The ML estimate of the delay shift and channel taps is
obtained by maximizing the log-likelihood function

[
∆̂, ĥ

]
= arg max

∆,h
{log p (r |∆,h)} (6)

where

p (r |∆,h) ∝
∑

s

p (r |∆,h, s) p (s) (7)

and
p (r |∆,h, s) ∝ exp

(
− 1

2σ2
‖r− S∆h‖2

)
(8)

Unfortunately, the summation in (7) is intractable in practice,
as it requires the evaluation of (8) over all possible codewords.

B. Data-Aided estimation

The summation in (7) can be avoided by only taking into
account the pilot MC symbols, leading a

[
∆̂, ĥ

]
= arg max

∆,h
{log p (r |∆,h,SP ,SD = 0 )}

which can easily be solved as

∆̂ = arg max
∆

{
<
(
rHS∆,P

(
SHP SP

)−1
SH∆,P r

)}
(9)

and
ĥ =

(
SHP SP

)−1
SH

∆̂,P
r. (10)

Note that, contrary to the DA estimator from [1], the matrix
to be inverted in (10) is independent of ∆, thus reducing the
computational load at the receiver.

One of the main drawbacks of many frame synchronization
algorithms for MC systems is the presence of ambiguities . For
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Fig. 2. DA frame synchronization: trial value of ∆ vs. cost function. ∆
equals 17.

instance, the ML DA estimator from [1] is not able to estimate
values of ∆ beyond NT : when ∆max > NT ambiguities
occur. For the estimator we propose, which is based on a
slightly different observation model, no ambiguity is present.
To illustrate this point, we plot a typical realization of the
cost-function (9) for a single-user system in Fig. 2.

While DA estimation algorithms perform well for uncoded
systems, this is no longer true when error-correcting codes
are concerned. Since such codes operate in low SNR regimes,
many pilot symbols may be required to acquire reliable
estimates. As this results in a significant loss in terms of
power and bandwidth, there is great interest in developing
algorithms that are also able to exploit the data MC symbols.
In the following section, we describe a possible approach:
the EM algorithm. It turns out that there are some very nice
connections between the resulting code-aided algorithm and
the conventional DA algorithm.

C. EM estimation

1) Principle: The Expectation-Maximization (EM) algo-
rithm is a method that iteratively solves the ML problem
(6) [9]. It requires us to define the so-called complete data
z. The complete data is related to the observation r through
some, possibly random, mapping r = g (z). Let us denote the
parameter to be estimated θ (e.g., in our case, θ is a notational
shorthand for the vector

[
∆,hT

]
).

The EM algorithm starts from an initial estimate of θ (say,
θ̂ (0)) and iteratively computes new estimates. At iteration ξ,
the EM algorithm consists of two steps: given the current es-
timate θ̂ (ξ), we first take the expectation of the log-likelihood
function of the complete data, given the observation r and the
current estimate of θ:

Q
(
θ| θ̂ (ξ)

)
= Ez

[
log p (z| θ)

∣∣∣r; θ̂ (ξ)
]
. (11)



In the second step, we maximize Q
(
θ| θ̂ (ξ)

)
with respect to

θ to find a new estimate:

θ̂ (ξ + 1) = arg max
θ

{
Q
(
θ| θ̂ (ξ)

)}
. (12)

Convergence of the EM algorithm is guaranteed in a sense
that the likelihoods of the estimates are non-decreasing:

p
(

r| θ̂ (ξ + 1)
)
≥ p

(
r| θ̂ (ξ)

)
(13)

for ξ = 0, . . . ,+∞. Any value θ̂ for which θ̂ =

arg maxθQ
(
θ| θ̂
)

is called a solution of the EM algorithm.
One of these solutions is the ML estimate. In order to achieve
convergence to the ML estimate, a good initial estimate of θ
is required.

2) Code-aided estimation: We take as as complete data
z = [r, s]. Let us define S̃∆ = Es

[
S∆| r, θ̂ (ξ)

]
. Note

that S̃∆ can be obtained from the knowledge of the APPs

p

(
a
(k′)
i,n

∣∣∣r, ĥ, ∆̂
)

, computed by the detector. Also, define

S̃HS = Es

[
SHS

∣∣ r, θ̂ (ξ)
]
. We can then show that the EM

algorithm leads to the following updated estimates of the delay
shift and the channel taps:

∆̂ (ξ + 1) = arg max
∆

{
<
(

rH S̃∆

(
S̃HS

)−1

S̃H∆r

)}
. (14)

and
ĥ (ξ + 1) =

(
S̃HS

)−1

S̃H
∆̂(ξ+1)

r. (15)

When we approximate S̃HS ≈ S̃H S̃, the code-aided EM-
based algorithm is formally obtained by replacing in the
corresponding DA algorithms, pilot symbols with a posteriori
symbol expectations. For additional details, the reader is again
referred to [15].

Computational complexity: The computational complexity
of the proposed EM estimator is quite large. To reduce
the computational load, we can embed the EM estimation
iterations within the detection iterations: we perform a sin-
gle decoding iteration per EM iteration, and maintain state
information within the detector from one iteration to the next.

IV. NUMERICAL RESULTS

To validate the proposed algorithms, we have carried out
Monte Carlo simulations. We consider a system with Ku = 5
users, using a convolutional code with constraint length 5,
rate R = 1/2 and polynomial generators (23)8 and (35)8.
A block length of Nb = 240 information bits was chosen,
leading to Nc = 480 coded bits. Coded bits are Gray-mapped
onto an 8-PSK constellation, resulting in Nd = 160 data
symbols. This sequence of Nd 8-PSK symbols is broken
up into Ms = 20 blocks of P = 8 symbols. Spreading
sequences are real Walsh-Hadamard sequences, with chips
belonging to

{
− 1√

Ns
,+ 1√

Ns

}
and have a length Ns = 32,

leading to N = PNs = 256 required subcarriers. To initialize
the EM algorithm, the Ms = 20 data MC symbols are
preceded by Mp = 1 pilot MC symbols. Within the pilot
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Fig. 3. Frame synchronization: pmf of estimation error at 12 dB

MC symbols, only a fraction f = 0.25 of the subcarriers
are devoted to training. The remaining 75% of the carriers
is reserved for administrative data, and cannot be used during
the synchronization/estimation process. The channel has length
L = 15 and was modeled with independent components,
each being a zero-mean complex Gaussian random variable
with an exponential power delay profile [1] E

[
|h (l)|2

]
=

σ2
h exp (−l/5) , l = 0, . . . , L − 1, where σ2

h is chosen such
that the average energy per subcarrier is normalized to unity.
Hence, the energy of the channel is concentrated mainly
in the first few channel taps. To avoid ISI, a cyclic prefix
of length ν = 16 is employed. The estimation stages will
be embedded in the detection stages. We will denote joint
frame synchronization and channel estimation by IFS+ICH
(for Imperfect Frame Synchronization with Imperfect Channel
knowledge).

In Fig. 3, we show, for a SNR of 12 dB, the simulated
probability mass function (pmf) of the estimation error ε∆ =
∆̂ − ∆ (see Fig. 3). The DA estimator has a fairly broad
pmf, with a maximum ε∆ = 1. The pmf of ε∆ for the code-
aided EM estimator is much more narrow, with a distinct
maximum at ε∆ = 0. After ξ = 2 iterations, the pmf does
not change noticeably. It should be noted that although only
80% of the frames result in a correct estimate of ∆, this does
not mean that the Frame Error Rate equals 20%: when ε∆ > 0
(resp. ε∆ < 0), inter-symbol-interference occurs between the
current and the next (resp. previous) MC symbol. Since the
first few channel taps carry most of the energy, the situation
ε∆ < 0 is not very critical. On the other hand, ε∆ > 0 should
be avoided, as the estimate of h will not capture the dominant
components. From Fig. 3 it is clear that the latter situation
occurs only rarely for the EM-based estimator.

Finally, Fig. 4 shows the BER for joint frame synchroniza-
tion and channel estimation. As expected, the DA estimator
gives rise to large degradations. On the other hand, the EM
estimator results in a BER degradation of around 0.2 dB as
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compared to the case of perfect frame synchronization and
perfect channel knowledge after roughly ξ = 4 EM iterations.

V. CONCLUSIONS

We have presented a novel code-aided estimation algo-
rithm for joint frame synchronization and channel impulse
response estimation for downlink MC-CDMA. Based on the
EM algorithm, the receiver iterates between data detection
and estimation, with the exchange of soft information in
the form of a posteriori probabilities. Compared to the data-
aided algorithm, the code-aided algorithm results in impressive
gains in terms of mean squared estimation error and BER
performance. Although the complexity of this estimator is
fairly large, we have described how the computational load
may be reduced, resulting in a practical algorithm.

The proposed algorithm can easily be extended to take into
account other parameters (frequency offsets, for instance) and
other observation models (such as frequency-domain channel
estimation).
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