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Abstract
Orthogonal frequency division multiplexing (OFDM) has been of major interest for both
wire line and wireless applications due its high data rate transmission capability and
its robustness to multipath delay spread. However, OFDM systems can be extremely
sensitive and vulnerable to synchronization errors. This paper investigates the effect of
narrowband interference on timing synchronization for OFDM systems. The performance
of the Schmidl & Cox (S&C) symbol timing synchronizer [1] is evaluated in an analytical
way in the presence of narrowband interferers. Further, simulations have been carried
out to verify the validity of approximations in the analysis. It is shown that the S&C
algorithm is robust to narrowband interference as long as the signal to interference ratio
is not too low.
Keywords: Orthogonal frequency division multiplexing, symbol timing synchronization,
training symbol, and interference.

1 System Description

The basic block diagram of the OFDM system and NBI signal is shown in Fig.1. In the
OFDM transmitter, the data stream is grouped in blocks of Nu data symbols. Next, an
N - point inverse fast Fourier transform (IFFT) is performed on each data block, where
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Figure 1: block diagram of OFDM system including one interfering signal
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N > Nu, and a cyclic prefix of length ν is inserted [2,3]. The nth time domain sample of
the ith OFDM block can be written as

si(n) =

√

1

N + ν

∑

k∈Iu

ai
k e

j2πkn

N − ν ≤ n ≤ N − 1 (1)

where Iu is a set of Nu carrier indices and ai
k is the kth data symbol of the ith OFDM

block; data symbols are independently and identically distributed with zero mean and
variance E

[

|ai
k|

2
]

= Es. The time domain signal of the baseband OFDM signal su(t)

consists of the concatenation of all time domains blocks si(n):

su(t) =
∞
∑

i=−∞

N−1
∑

n=−ν

si(n) p0(t − nT0 − i(N + ν)T0) (2)

where p0(t) is the transmit pulse of the OFDM system and 1/T0 is the sample rate. The
transmit pulse p0(t) is assumed to be a square-root-raised cosine filter with rolloff α0. The
baseband signal (2) is up-converted to the radio frequency f0. At the receiver, the signal
is first down-converted, then fed to the matched filter and finally sampled at rate 1/T0,
resulting in the samples ru(mT0). Note that, when the number of carriers N is large, the
sample si(n) consists of a large number of contributions. Hence, taking into account the
central limit theorem, the real and imaginary parts of si(n) can be modeled as Gaussian
random variables with zero mean and variance σ2

s equal to Es·Nu/2
N+ν

. The OFDM signal
is disturbed by additive white Gaussian noise with uncorrelated real and imaginary parts,
each having variance σ2

n. The signal to noise ratio (SNR) at the output of the matched
filter is defined as σ2

s

σ2
n

.
Further, the signal is disturbed by narrowband interference residing within the same

frequency band as the wideband OFDM signal as shown in Fig. 2. The interfering signal
sI(t) may be modeled as the sum of NI narrowband interfering signals

sI(t) =
NI
∑

l=1

sl(t) (3)

where sl(t) is the lth NBI component:

sl(t) =
∞
∑

h=−∞

bl,hpl(t − hTl − τl) · e
j2π(f0+fc,l)t (4)

where bl,h is the hth interfering data symbol of the lth interferer, pl(t) is the transmit
pulse of the lth interferer, τl is its delay, and 1/Tl its sample rate; pl(t) is assumed to be
a square root-raised cosine filter with rolloff αl. The interfering signal is modulated to
radio frequency f0 + fc,l, where fc,l is the carrier frequency deviation from f0 for the lth
interferer. The total NBI signal may be seen at the output of matched filter of OFDM
receiver as

rI(t) =
NI
∑

l=1

∞
∑

h=−∞

bl,h ej2πfc,lhTl gl(t − hTl) (5)

where gl(t) is the convolution of p0(t) and pl(t − τl) exp(j2πfc,lt). It is assumed that the
interfering symbols are uncorrelated with each other, i.e. E[bl,hb

∗
l′,h′ ] = E ′

lδll′δhh′ , where
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E ′
l is the energy per symbol of the lth interferer. Further, the interfering data symbols bl,h

are statistically independent of the OFDM data symbols ai
k. The signal to interference

ratio (SIR) at the input of the receiver is defined as

SIR =
2σ2

s/T0
∑NI

l=1
E′

l

Tl

(6)

2 Statistical Properties of the Timing Metric in the Presence of NBI

In the S&C algorithm [1], the training symbol contains two identical halves in the time
domain and the timing delay estimator searches for the peak of correlation between the
matched filter output samples that are separated by half an OFDM symbol. The sample
r(mT0) at the output of the matched filter of the OFDM receiver consists of a useful signal
ru(mT0), an interfering rI(mT0), and a noise w(mT0) component. It may be expressed
as

r(mT0) = ru(mT0) + rI(mT0) + w(mT0) (7)

The symbol timing estimator takes the instant d, where the timing metric

M(d) =
|P (d)|2

R(d)2
(8)

is maximum, as the starting point of the frame. In (8), P (d) and R(d) are given by

P (d) =
N/2−1
∑

m=0

r∗ ((d + m)T0) · r ((d + m + N/2)T0) (9)

R(d) =
N/2−1
∑

m=0

|r ((d + m + N/2)T0)|
2 (10)

This timing metric is not only used to find the optimum timing instant, but also to de-
termine whether or not a training sequence is received. To do this, we use a threshold:
when the timing metric exceeds this threshold for at least one value of d, we decide that it
is possible to detect a training sequence, whereas when the threshold is never exceeded,
we decide that it is not possible to detect a training sequence. The value of the threshold
must be selected such that the probability of missing a training symbol when there is one
present, and the probability of falsely detecting a training sequence when there is none
present, are as small as possible. To find these probabilities, and hence the threshold, we
need to know the statistical properties of the timing metric. In [1], the statistical proper-
ties of the timing metric at the optimum timing point and a position outside the training
sequence were investigated for a AWGN channel. In this section, we extend the results
of [1] to obtain the statistical properties of the timing metric in the presence of NBI.
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2.1 Optimum Timing Point

Let us define q = |P (dopt)|
R(dopt)

as the square root of the timing metric M(dopt) at the optimum
timing point dopt. To simplify the notation, we drop the subscript ’opt’. Due to the
symmetry of the pilot symbol, the signal component

∑N/2−1
m=0 r∗u((m + d)T0) · ru((m +

d + N/2)T0) of P (d) is real valued. It can easily be shown that the other components of
P (d) have zero mean and small variance when the SIR and SNR are sufficiently large.
Therefore, at high values of SIR and SNR, the imaginary part of P (d) can be neglected.
From (7), (9), and (10), it can be easily verified that |P (d)| and R(d) contain a common
term α. Hence, we can rewrite |P (d)| and R(d) as, |P (d)| = α + β and R(d) = α + γ.
It can easily be shown that the expressions for α, β, and γ consist of a large number
of contributions when N is large. Therefore, according to the central limit theorem, the
variables α, β, and γ have approximate Gaussian distributions. Taking into account that
for both the numerator and denominator of q, standard deviations are much smaller than
the averages, q can be approximated by a Gaussian variable [1] with mean and variance
given by the following approximations:

µq ≈
µα + µβ

µα + µγ
(11)

σ2
q ≈ µ2

q

(

σ2
β

(µα + µβ)2
+

σ2
γ

(µα + µγ)2

)

(12)

where µx and σ2
x is the mean and variance of x respectively. In (12), we have used the

approximation a(1 + b)/(1 + c) ' a(1 + b − c) as in [1]. Taking into account that q is
approximately a Gaussian random variable, and M(d) is the square of q, it follows that
M(d) also is approximately a Gaussian variable [4]:

M(d) =
(

µq + N
(

0 , σ2
q

))2

≈ µ2
q + 2 · µq · N

(

0 , σ2
q

)

(13)

where N(x, y) is a Gaussian random variable with mean x and variance y. The mean of
M(d), i.e. µM , can be easily computed calculated by using (11):

µM =





N + 1
σ2

s

∑NI

l=1 E ′
lΥl

N + N
SNR

+ 1
σ2

s

∑NI

l=1 E ′
lφl





2

(14)

where Υl and φl are given as :

Υl = Re
N/2−1
∑

m=0

∞
∑

h=−∞

g∗
l ((m + d)T0 − hTl) · gl((m + d + N/2)T1 − hTl) (15)

φl =
N/2−1
∑

m=0

∞
∑

h=−∞

|gl(m + d + N/2)T0 − hTl)|
2 (16)

It can be shown that Υl � φl. Hence, the effect of the interference on the numerator of
(14) will be much smaller than its effect on the denominator. Therefore, decreasing the
SIR will result in a decrease of µM . According to (13), the variance of M(d) is given by
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σ2
M = 4 · µ2

q · σ
2
q (17)

where σ2
q can be easily computed by using the equations (11) and (12).

2.2 Timing position outside of training sequence

In this section, the statistical properties of a timing position outside of the training se-
quence are considered, when NBI is present. Using a similar analysis as in [1], where the
analysis was done for AWGN channel and no NBI, it can easily be verified that for suffi-
cient large SNR and SIR, the timing metric is approximated by a chi-square distributed
random variable :

M(doutside) =
D2

2G2
χ2(2) (18)

where χ2(2) is a chi-square distributed random variable with two degrees of freedom and
its mean and variance equal 2 and 4 respectively; G and D2 are given in (22) and (21)
respectively. Therefore, the mean and the variance of M(doutside) are given by:

µM(doutside) =
D2

G2
(19)

σ2
M(doutside) =

D4

G4
(20)

where D2 and G are given as:

D2 = N/2
(

2σ2
s + 2σ2

n

)2
+

N/2−1
∑

m=0

A(m,m)(0, 0) · A(m,m)(N/2, N/2) (21)

G = N
(

σ2
s + σ2

n

)

+
N/2−1
∑

m=0

A(m,m)(N/2, N/2) (22)

and A(m,m)(x, y) is defined as

A(m,m′)(x, y) =
NI
∑

l=1

∞
∑

h=−∞

E ′
l g∗

l ((m + d + x)T0 − hTl) · gl ((m
′ + d + y)T0 − hTl)

(23)
Note that these results are the same as in [1] when SIR tends to infinity.

3 Analytical and Simulation Results

The numerical and simulation results in this paper are obtained with the following OFDM
and interference parameters: the total number of subcarriers is N = 1024, the total number
of active subcarriers is Nu = 1000, the guard interval is set to about 10 % of useful part,
ν = 102, the bandwidth of OFDM spectrum, B0 = 1024 kHz, QPSK modulation are used
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for the data symbols of the OFDM and the interferer signals, transmit filters are square-
root raised-cosine filters with roll off factors α0 = 0.25 and αl = 0.5 for OFDM and
interfering signals, respectively, and time delay of the interferers is τl = 0.

Fig.3 compares the analytical results with the simulation for the mean and the variance
of the timing metric at the optimum timing instant, as function of the SIR at NBW =
.0244, Γ = 0, and NI = 1 . NBW is defined as normalized interference bandwidth,
i.e NBW = B0

Bl
, Γ is defined as normalized interference frequency, i.e Γ =

fc,l

(1+α0)/2T0

,
and NI is the number of interference signals. As can be observed, for a large range of
SIR, the theoretical results and the simulation results agree well. At large SIR, the
mean of the timing metric reaches an asymptote, corresponding to the case where no
interference is present. This asymptote only depends only on the SNR and is given by
(1 + 1/SNR)−2. At very low SIR, the mean of the timing metric becomes independent
of the SNR. The theoretical results give rise to a maximum timing metric that is smaller
than for the simulations when the SIR is small. Hence, the theoretical results can be
considered as a lower bound on the performance for small SIR. The variance of the
timing metric decreases for increasing SIR. The variance at large SIR decreases with
increasing SNR. This can easily be explained as at high SIR and SNR, the effect of
the noise and interference is small, such that the symmetry of the pilot symbol is almost
not affected, and the timing metric will be close to its average. At low SIR, the variance
decreases with decreasing SIR. The explanation for this is that at low SIR, the effect
of the interferer on the timing metric starts to to dominate. As the contribution of the
interferer to the variance of the timing metric is smaller than the contribution of the data
symbols and noise, the overall variance will reduce. We also observed that at low SIR,
the variance obtained with the theoretical results diverges from the obtained with the
simulations. As the standard deviation (i.e. the square root of the variance) in this case is
of the order of the mean, it is clear that the performance of S&C synchronization estimator
will be poor if the SIR is too small.

Fig. 4 displays the analytical and simulation results of mean and variance of the
metric at the optimum timing point as function of the interference bandwidth for different
values of SIR. The results indicate that at given SIR, the mean is independent of the
interference bandwidth. This can be explained as follows: it can easily be shown that φl

increases linearly with the interferer bandwidth, and according to the SIR definition (6)
at given SIR value, E ′

l decreases linearly with the NBW , so for given SIR, E ′
l · φl is a

constant. Taking into account the fact that Υl � φl, it is clear from (14) that at given value
of SIR, µM is essentially independent of interference bandwidth. Also it is observed from
Fig. 4 that the dependency of the variance on the interference bandwidth increases when
SIR decreases. This is explained as at high SIR, the effect of interference diminishes
and the variance mainly depends on noise. At low SIR, the variance decreases when the
interference bandwidth increases.

Fig 5. shows the mean and the variance of the timing metric at the optimum synchron-
ization point as function of the number of interfering signals, NI , in two cases. In case
’A’, we consider that the SIR is fixed per interferer, so the total SIR decreases inversely
proportional to NI . In case ’B’, we consider a fixed total SIR, i.e. SIR per interferer
decreases linearly as NI increases. As the mean and variance mainly depends on the total
SIR, it follows that the mean and variance will be decreasing functions of the number NI

of interferers in case ’A’, whereas they are independent of NI in case ’B’.
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Fig. 6 illustrates the analytical and simulation results of the mean and the variance of
the timing metric at a timing instant outside the training symbol as function of SIR. At
high SIR values, the interference signal does not affect the statistical properties of timing
metric outside training symbol. Note that the simulation results are slightly different from
the analytical results. This is caused by correlations between the signal terms r∗((m +
d)T0) and r((m+ d+N/2)T0) outside the training symbol, while the theoretical analysis
assumed that they were independent.

4 Conclusions

This paper evaluates the performance of the S&C symbol timing estimator [1] in the pres-
ence of narrowband interference for different interference signal parameters. The stat-
istical properties of the estimator are evaluated analytically and by means of simulation
at the optimum synchronization point and outside the training sequence. The agreement
between the theoretical and simulation results proves the validity of our analysis. Gener-
ally, results indicate that the estimator works well for a wide range of signal to interference
ratios. At high SIR values ( > 10 dB), results show that noise is the dominant factor on
the statistical properties of the estimator. Furthermore, at given value of SIR, the inter-
ference bandwidth does not influence the mean of the metric while the dependency of the
variance of the metric on the interferer bandwidth increases when SIR decreases. Results
show that the statistical properties of the estimator at optimum timing point do not depend
on the SIR per interferer but only depends on the total SIR. Finally, at high values of
SIR, results indicate that statistical properties of the estimator at outside training symbol
are essentially independent of the interference signal.
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