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Receivers require channel state information (CSI) to be able to detect the transmitted
information. Therefore the channel has to be estimated. This imperfect channel know-
ledge results in an extra noise term at the receiver side. In this paper, the influence
of a Gaussian channel estimation error on the performance of a linear Minimum Mean
Squared Error (MMSE) Finite Impulse Response (FIR) equalizer is investigated. The BER
degradation is calculated as a function of the variance of this Gaussian error. The per-
formance of a pilot aided Maximum Likelihood (ML) estimator is also investigated based
on the results for Gaussian errors.

1 Introduction

Frequency selective Multiple-Input Multiple-Output (MIMO) fading channels are of great
interest since they enable a high data-rate wireless communication [1]. Furthermore, these
frequency selective MIMO channels offer a high space- and frequency-diversity. To mit-
igate the interference arising from the multi-antenna set-up and the frequency selectivity
of the channel, several receiver structures have recently been proposed [2, 3, 4]. All
these receivers require knowledge of the CSI. In practice, this information is unavailable
at the receiver and has to be estimated before detection of the transmitted symbols can
take place. Because of noise and other disturbing effects, the channel estimators cannot
provide perfect CSI and the resulting channel estimation errors will cause a degradation
of the receiver’s performance.

In this paper, we investigate the sensitivity of a linear MMSE FIR equalizer to channel
estimation errors. We consider a channel estimate that consists of the correct channel tap
disturbed by a Gaussian distributed error and compute the BER degradation. Based on
this analysis, we investigate the performance of a pilot aided ML estimator.
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2 System Model

Consider a MIMO frequency-selective fading channel with NT transmit antennas, NR

receive antennas and a channel memory of length L. The received signal, sampled at
symbol-rate, can be modeled as

y(k) =
L−1
∑

l=0

H(l)a(k − l) + w(k) (1)

where H(l) denotes the NR × NT channel matrix corresponding to the l-th tap of the
channel impulse response, a(k) is the vector of the transmitted symbols and y(k) the
vector of the received signals at instant k, and w(k) denotes the additive white Gaussian
noise (AWGN) vector with independent real and imaginary components and variance N0.
We assume the different channel taps are i.i.d. Rayleigh distributed with variance 1.

At the receiver, we use a filterbank consisting of NT MMSE FIR filters [3], each with
L′NR coefficients, to detect the symbols transmitted by the different transmit antennas.
We choose the filter coefficients symmetric around the L time instants during which the
symbol vector to be estimated contributes to the received signals. So we define L′ as
L′ = 2q + L. The estimate of the k-th transmitted symbol vector a(k) is given by

â(k) = GH

(

HHH+
N0

Es

I

)−1

yEXT (2)

where yEXT = [y(k − q)T
, ...,y(k + q + L − 1)T]T has dimension L′NR × 1, G =

[0NT×qNR
,H(0)T

, ...,H(L− 1)T
,0NT×qNR

]T with 0i×j denoting the i× j all zeros matrix
and H a L′NR × (L′ + L − 1)NT matrix given by

H =









H(L − 1) . . . H(0) . . . 0
...

. . . . . .
...

0 . . . H(L − 1) . . . H(0)









(3)

3 Impact of an imperfect channel

From (2), it follows that the receiver needs the knowledge of the channel matrix H to
estimate the transmitted data symbols. In practice, the channel matrix H is not known
at the receiver and an estimate Ĥ is made. This estimate Ĥ is then substituted in (2) to
obtain the estimates of a(k).

â(k) = Ĝ

(

ĤĤH+
N0

Es

I

)−1

yEXT (4)

First, we investigate the effect of a Gausian channel estimation error. We model the l-th
tap channel estimate as follows:

Ĥ(l) = H(l) + E(l) (5)

where H(l) denotes the true channel tap, Ĥ(l) the estimate and E(l) a complex Gaussian
disturbance matrix with independent components with zero mean and independent real
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and imaginary parts each with a variance σ2
ε

2
. It is easily shown that this channel estim-

ation error results in an additional Gaussian noise term at the output of the MMSE FIR
filterbank. To investigate the influence of E(l) we write H(l) = Ĥ(l) − E(l). As E(l)
and Ĥ(l) are both Gaussian distributed with variances σ2

ε and 1 + σ2
ε respectively, and are

not statistically independent, E(l) can be decomposed into E(l) = αĤ(l) + β, where α

and β do not depend on Ĥ(l). This yields [5, chapter 12]

E(l) = EE

[

E(l) | Ĥ(l)
]

+ ∆(l)

=
σ2

ε

1 + σ2
ε

Ĥ(l) + ∆(l) (6)

where the elements of ∆(l) are i.i.d. Gaussian random variables with independent real
and imaginary parts, with zero mean and variance σ2

ε

1+σ2
ε

. Substituting (6) in (5) yields

H(l) =
1

1 + σ2
ε

Ĥ(l) − ∆(l) (7)

Taking into account (1) yEXT can be rewritten as

yEXT = HaEXT + wEXT (8)

where aEXT = [a(k − q − L + 1)T
, ..., a(k + q + L − 1)T]Tand wEXT = [w(k −

q)T
, ...,w(k + q + L − 1)T]T. Further defining H = 1

1+σ2
ε

Ĥ − ∆, we can rewrite (4) as

â(k) = Ĝ

(

ĤĤH+
N0

Es

I

)−1
[

1

1 + σ2
ε

ĤaEXT − ∆aEXT + wEXT

]

(9)

For given Ĥ, the signal-to-noise ratio (SNR) can be written as

SNR(Ĥ) =
Ea

[

∥

∥

∥E∆,w

[

â(k) | Ĥ
]∥

∥

∥

2
]

V ara,∆,w

[

â(k) | Ĥ
] (10)

with ‖A‖2 = tr(AAH). In (10), we have not taken into account the effect of intersymbol
interference (ISI). Indeed, the most important cause of detection errors is the AWGN noise
and not the ISI. Only at very high Es

N0

, the ISI will become important.
When Es

N0

is sufficiently large (but not so large that ISI becomes the important detection

error cause), ĤĤH+N0

Es
I can be approximated by ĤĤH. Hence (10) can be approximated

by

SNRest(Ĥ) =

Es

(1+σ2
ε )2

tr

[

ĜH

(

ĤĤH

)

−1
Ĝ

]

(

N0 + EsLNT σ2
ε

1+σ2
ε

)

∥

∥

∥

∥

ĜH

(

ĤĤH

)

−1
∥

∥

∥

∥

2 (11)

where we used E
[

aEXTaH

EXT

]

= EsI, E
[

∆∆H

]

= LNT σ2
ε

1+σ2
ε

I and E
[

wEXTwH

EXT

]

=

N0I. The SNR for perfect channel knowledge SNRperf (H) is easily obtained by substi-
tuting in (11) Ĥ by H and replacing σ2

ε by zero.

SNRperf (H) =
Estr

[

GH

(

HHH

)

−1
G

]

N0

∥

∥

∥GH (HHH)−1
∥

∥

∥

2 (12)

3



The bit error rate (BER) given Ĥ or H is a function of the SNR: BER(X) = f(SNR(X)),
where X = H, Ĥ. To obtain the degradation we compare the BER for perfect chan-
nel knowledge EH[BERperf (H)] with the BER in the presence of channel estimation
errors E

Ĥ
[BERest(Ĥ)]. Taking into account that Ĥ and H are zero-mean Gaussian

distributed with variances 1 + σ2
ε and 1 respectively, we can define the variable H̃ as

Ĥ(l) =
√

1 + σ2
ε H̃(l). As the distributions of H and H̃ are the same, it can easily be

shown that the degradation caused by imperfect channel knowledge is obtained by divid-
ing SNRperf (H) by SNRest(Ĥ), yielding

degradation =
N0(1 + σ2

ε ) + NT LEsσ
2
ε

N0

= 1 + σ2
ε + NT Lσ2

ε

Es

N0

(13)

When the channel estimates are obtained by pilot-aided ML-channel estimation, the
variance σ2

ε is given by [6]

σ2
ε =

N0

LNT

tr

[

(

AAH
)

−1
]

=
N0

EsK
(14)

where K is the length of the pilot sequence and A is defined as

A =









a(1) . . . a(K) . . . 0
...

. . . . . .
...

0 . . . a(1) . . . a(K)









(15)

where a(k) denotes the k-th pilot vector. For random pilot sequences it can be shown that
(14) is only valid if K is sufficiently large such that AAH is close to a diagonal matrix.
However for small K, it is possible to find pilot sequences such that AAH is also close to
a diagonal matrix; in which case our analysis is still valid. Substituting (14) in (13) yields
the degradation as function of K

degradation = 1 +
N0

EsK
+

NT L

K
(16)

4 Simulation Results

For all simulations the transmitted symbols were BPSK modulated. Fig. 1 (left) shows
the BER performance for different values of σ2

ε . We see that at low Es

N0

, the noise wn(k)
added by the channel dominates the overall error-rate and the channel estimation error
does not significantly degrade the performance. For higher Es

N0

(≥ 20dB) however, the
influence of the channel estimation error becomes apparent. The error floor, which is in-
herent to MMSE FIR filters, grows as the channel estimation error increases. Secondly,
we consider the performance when the channel estimate is obtained with a pilot-based
Maximum Likelihood (ML) algorithm. Fig. 1 (right) illustrates the impact of the pilot
sequence length on the BER performance of our receiver. We observe that the BER de-
gradation corresponding to a given pilot sequence length remains approximately constant
for all Es

N0

for sufficiently large K; this was expected from (16).
Fig. 2 shows the degradation as function of the pilot sequence length K, for a target

BER of 10−3. The simulation results are given for two cases: for the case of a random
pilot sequence and for the case of an optimized pilot sequence. As expected, for short
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Figure 1: BER of a FIR MMSE receiver ( q = 4) with Gaussian channel estimation errors
(NT = 2 transmitting antennas, NR = 2 receiving antennas and L = 3 channel taps).
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Figure 2: Influence of the length of the number of pilotsymbols on the BER degradation
of a FIR MMSE receiver(q = 4, NT = 1, NR = 1, L = 3 (left) and q = 4, NT = 2,
NR = 2, L = 3 (right))

pilot sequences the theoretical curve does not match the simulation results. For small K

the approximations in (14) are not valid as AAH is not close to a diagonal matrix, even
in the case of optimized pilot sequences. For larger K the theoretical curve matches the
simulation results. The curve for the optimized pilot sequences converges faster to the
theoretic curve than for the random pilot sequences. This is explained as for optimized
pilot sequences, AAH can be better approximated by a diagonal matrix than for the case
of random pilot sequences.

5 Conclusions

We have computed the BER degradation for a linear MMSE FIR equalizer as function
of a channel estimation error. For a channel estimate obtained with a ML algorithm we
have shown that this BER degradation can be written as function of the length of the pilot
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sequence. This theoretic result was verified with simulation results.
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