
1

The Effect of Narrowband Interference on ML Fractional Frequency Offset Estimator

for OFDM

Mohamed Marey and Heidi Steendam
DIGCOM research group, TELIN Dept., Ghent University

Sint-Pietersnieuwstraat 41, 9000 Gent, BELGIUM
E-mail: {mohamed, hs}@telin.ugent.be

Abstract - In orthogonal frequency division multiplexing
(OFDM) systems affected by carrier frequency offsets, the
estimation of the frequency offset corresponding to a fractional
part of the carrier spacing is a crucial issue. The proper action
of the fractional frequency estimator can be strongly affected
by the presence of disturbances, like narrowband interfer-
ence (NBI) signals. In this paper, we derive the data-aided
maximum-likelihood (ML) fractional frequency estimator in
the presence of (NBI). Based on the ML algorithm which has
a high complexity, we propose a number of simplifications to
develop a lower complexity algorithm. The susceptibility of
the simplified fractional frequency estimator to NBI signals
is investigated in an analytical way. The analytical results
are verified by means of simulations. Although the simpli-
fied estimator turns out to be essentially independent of the
bandwidth and the location of interferers, the performance of
the estimator is very sensitive to the signal to interference
ratio and the number of interferers. In contrast with the
simplified estimator, simulation results indicate that the exact
ML estimator is essentially independent of the (NBI) signals.

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
been of major interest for both wire line and wireless ap-
plications due its high data rate transmission capability and
its robustness to multipath delay spread. The ease of im-
plementation and the fine granularity that OFDM provides
have led to its acceptance in many standards such as Di-
gital Audio Broadcasting (DAB), Digital Video Broadcasting
(DVB), IEEE 802.11a, IEEE 802.16a, and Multimedia Access
Communications (MMAC) [1]–[3]. However, OFDM is not
without drawbacks. One important drawback in OFDM is
its sensitivity to carrier frequency offset (CFO) arising from
Doppler shifts and/or oscillator instabilities [4]. A CFO results
in a shift of the received signal spectrum in the frequency
domain. The CFO can be divided into an integer and a
fractional part with respect to the OFDM sub-carrier spacing
δf . An integer part of the CFO yields a different bit error
rate from zero to 0.5 [5]. The fractional CFO leads to a
reduction of the signal amplitude and to a loss of sub-carrier
orthogonality. This loss introduces inter-carrier interference
(ICI) which results in a degradation of the global system
performance. To maintain a signal to inter-carrier interference
ratio of 20 dB or more, the fractional CFO is limited to 4%
or less of the sub-carrier spacing [6].

In some applications, the OFDM system must coexist with
narrow band interference signals. To illustrate, broad-band
OFDM system is now applied in some unlicensed frequency
band, e.g. Industrial-Scientific-Medical (ISM) band in 2.4
GHz and Unlicensed National Information Infrastructure band
(UNII) in 5.2 GHz [7], etc. However, since the frequency
bands are unlicensed, there may exist many different wireless
systems sharing the same frequency band. If a part of the spec-
trum of an OFDM system is overlapped by a relatively narrow
band transmission signal, the latter will introduce narrow band
interference to the OFDM system. Due to the spectral leakage
effect caused by the DFT demodulation at OFDM receiver,
many subcarriers near the interference frequency will suffer
serious interference. Moreover, the broadband very high fre-
quency (B-VHF) project [8], [9], which aims to develop a new
integrated broadband VHF system for aeronautical voice and
data link communications based on multi-carrier technology,
is a good example of an overlay system. In this project, the
multi-carrier (MC) system is intended to share the parts of the
VHF spectrum with are currently used by narrowband (NB)
systems such as voice DSB-AM signal and VHF digital links.
These NB systems are considered as interference to the MC
system which hampers coverage and capacity, and limits the
effectiveness of the multi-carrier system.

The presence of the NBI signals can hamper the proper
action of the synchronization algorithms used to synchronize
the OFDM system. For example, in [10], [11], we have
investigated the effect of NBI signals on timing and integer
CFO synchronization of the OFDM system. The result of
indicates that the performance of the estimators are strongly
affected by the NBI.

In this paper, the effect of narrowband interference on
the performance of data aided maximum likehood fractional
CFO estimator for OFDM system is investigated. The paper
is organized as follows. The system model is addressed in
section 2. In section 3, we derive the ML fractional CFO
estimator for OFDM system in the presence of NBI. Also,
the susceptibility of the simplified ML fractional frequency
estimator is investigated in an analytical way. The simulation
and analytical results are discussed in section 4. Finally,
conclusions are given in section 5.

II. SYSTEM DESCRIPTION

The model of the OFDM system including narrowband
interference signals (NBI) is depicted in fig. 1. In the OFDM
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Fig. 1. block diagram of OFDM system including interfering signals

transmitter, frames consisting ofMs OFDM symbols are trans-
mitted. Each frame is generated as follows (see fig. 1) : a block
zi= [z0,i, . . . , zNz−1,i]

T of Nz information-bits is mapped to
a sequence ofNd symbols, belonging to a unit-energy2q-
point constellationΩ (with Nd = Nz/q). We will denote this
sequencedi= [d0,i, . . . , dNd−1,i]

T . Now, di is broken down
into Ms blocks of lengthNu. TheMs blocks are buffered and
converted, one at a time, to OFDM symbols by usingN -point
inverse fast Fourier transform (IFFT). Aν-point cyclic prefix
(CP) is pre-appended, resulting inN +ν time-domain samples
[s−v,i, . . . , s−1,i, s0,i, . . . , sN−1,i]

T where sl,i = sl+N,i for
l = −v, . . . ,−1 andi = 0, . . . ,Ms− 1. Thekth time domain
sample of theith OFDM data block can be written as

sD
k,i =

√
1

N + ν

∑

n∈Iu

dn,i e
j2πkn

N − ν ≤ k ≤ N − 1 (1)

where Iu is a set ofNu carrier indices anddn,i is the nth
data symbol of theith OFDM block; the data symbols are i.i.d1

random values with zero mean and varianceE
[
|dn,i|2

]
= Es.

Each data frame is preceded by one OFDM pilot block, to
be able to synchronize the receiver. The pilot symbol has two
identical halves in time domain, which will remain identical
after passing though the channel, except that there will be a
phase difference between them caused by the carrier frequency
offset. The symmetry of the pilot symbol in the time domain is
easily generated by transmitting a pseudonoise (PN) sequence
on the even frequencies, while zeros are used on the odd
frequencies. In order to maintain an approximately constant
energy for each OFDM symbol, the frequency components of
this training symbol are multiplied by

√
2 at the transmitter.

Finally, the time domain signal of the baseband OFDM
signal su(t) consists of the concatenation of all time domain
data and pilot blocks :

su(t)=
∑N−1

k=−ν sP
k,i p0(t− kT0)+∑Ms−1

i=0

∑N−1
k=−ν sD

k,i p0(t− kT0 − (i + 1)(N + ν)T0)
(2)

wherep0(t) is the unit-energy transmit pulse of the OFDM
system and1/T0 is the sample rate. The baseband signal (2)
is up-converted to the radio frequencyf0. At the receiver,

1i.i.d = independently and identically distributed

the signal is first down-converted to− (f0 −∆f), where
∆f represents the frequency difference between transmitter
and receiver oscillator, then fed to the matched filter and
finally sampled at rate1/T0. The OFDM signal is disturbed
by additive white Gaussian noise with uncorrelated real and
imaginary parts, each having varianceσ2

n. The signal to noise
ratio (SNR) at the output of the matched filter is defined as
σ2

s

σ2
n

, whereσ2
s is the variance of the real/imaginary part ofsD

k,i.
Further, the signal is disturbed by narrowband interference

residing within the same frequency band as the wideband
OFDM signal as shown in Fig. 2. The interfering signalsI(t)
may be described as

sI(t) =
NI∑

l=1

sl(t)ej2π(f0+fc,l)t (3)

wheresl(t) is a baseband narrowband signal andfc,l is the
carrier frequency deviation fromf0 for the lth interferer. The
baseband interferencesl(t) is modeled as digitally modulated
signal

sl(t) =
∞∑

h=−∞
bh,lpl(t− hTl − τl) (4)

'
q∑

h=0

bh,lpl(t− hTl − τl)

wherepl(t) is the time domain response of the transmit filter
of the lth interferer,bh,l is the hth interfering data symbol
of the lth interferer, τl is its delay, and1/Tl its sample
rate. Becausepl(t) degrades rapidly in the time axis, symbol
{bh,l ∀h < 0 or h > q} have little effect on the signalsl(t)
(0 ≤ t ≤ TFFT ). Therefore, the approximation in (4) is valid.
Let Bl be the bandwidth ofpl(t) andB0 is the bandwidth of
OFDM signal. In an OFDM symbol durationTFFT , there are
q symbols ofsl(t), whereq is an integer equal to or lessBl

B0
.

The total NBI signal may be seen at the output of the matched
filter of the OFDM receiver as

rI(t) '
NI∑

l=1

q∑

h=0

bh,l e
j2πfc,lhTl gl(t− hTl) (5)

where gl(t) is the convolution of p0(−t) and pl(t −
τl) exp (j2π (fc,l + ∆f) t). The normalized location of the
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interferer within the OFDM spectrum may be defined as
f ′c,l =

(
fc,l+∆f

B0

)
. It is assumed that the interfering symbols

are uncorrelated with each other, i.e.E[bh,lb
∗
h′,l′ ] = E′

lδll′δhh′ ,
whereE′

l is the energy per symbol of thelth interferer. Further,
the interfering data symbolsbh,l are statistically independent
of the OFDM data symbolsan,i. The signal to interference
ratio (SIR) at the input of the receiver is defined as [10], [11]

SIR =
2σ2

s/T0∑NI

l=1

E′
l

Tl

(6)

III. ML F RACTIONAL CFO ESTIMATOR

As the frequency offset∆f is generally larger than the sub-
carrier spacing, it is useful to split it into an integer partm and
fractional partε whereε ∈ [−.5, .5[ with respect to the carrier
spacingδf = 1

NT0
, i.e. ∆f = m

NT0
+ ε

NTo
. We assume that

the parameterm has already been estimated and is corrected.
The received time domain samples outside the CP are given
by

y(k) = ej(2πεk/N)x(k)+w(k)+rI(k) ∀k = 0, ..., N−1 (7)

wherex(k) is the training signal contribution from the channel,
w(k) ∼ N(0, 2σ2

n) 2 and rI(k) is the interference contri-
bution at sample timekT0 as given in (5). We introduce
two vectors of lengthN/2: Y1 = [y(0), ..., y (N/2− 1)]T

consists of the first half of the pilot symbol. Similarly,Y2 =
[y (N/2) , ..., y (N − 1)]T consists of the second half of the
pilot symbol. Taking into account thatx(k) = x(k + N/2),
we find

Y2(k) = Y1(k) ejπε + w (k + N/2)− w(k)ejπε

+rI (k + N/2)− rI (k) ejπε
(8)

wherek = 0, ..., N/2−1. Assuming that noise and interference
components are Gaussian random variables, distribution ofy2

given y1 and ε yields

P
(
Y2

∣∣Y1, ε̃
)
= 1

πN/2|Cx| ·
exp

{
− (

Y2 − Y1e
jπε̃

)H
C−1

x

(
Y2 − Y1e

jπε̃
)}

(9)
whereε̃ is the trial value ofε andCx is the covariance matrix
given by

[Cx]k,k′ = E
[(

Y2(k)− Y1(k) ejπε
)·(Y2(k′)− Y1(k′) ejπε

)∗]

= 4σ2
nδkk′ + A(k, k′) + A(k + N/2, k′ + N/2) (10)

= −{A(k′, k + N/2) + A∗(k, k′ + N/2)} ejπε

whereE [x] is the expectation ofx, andA(k, k′) is defined
as

A(k, k′) =
NI∑

l=1

El

∞∑

h=−∞
gl(kTo − hTl)g∗l (k′To − hTl) (11)

2w(k) ∼ N(0, 2σ2
n) means thatw(k) is Gaussian distributed with average

0 and variance2σ2
n.

Dropping irrelevant terms from (9), we get the likelihood
function Λ(ε̃) :

Λ(ε̃) = Re
{
Y H

1 C−1
x Y2e

−jπε̃
}

(12)

The estimated valuêε of ε maximizes Λ(ε̃). Taking the
derivative of (12) with respect tõε and setting the result to
zero yields

ε̂ =
1
π

tan−1 Im
{
Y H

1 C−1
x Y2

}

Re
{
Y H

1 C−1
x Y2

} (13)

This estimator (13) requires the knowledge about the second
order statistics of (NBI) to compute the matrixCx. Further,
it requires the inversion ofCx. Therefore, the complexity of
this estimator might be to high. To simplify the estimator
(13), we take a closer look to the matrixCx. The function
A(k, k′) represents the sum of the product of the interference
transmit pulse with its delayed version over an integer number
of sample intervalsT0. In fig. 3, Cx matrix is shown as
an image forN = 1024, one interferer withf ′c,1 = 0,
E1 = 1, normalized interference bandwidthNBW = 0.024,
and SNR = ∞. Lighter color corresponds to larger values
of Cx elements and black color corresponds to small values
(nearly zero) ofCx elements. It is clear from the figure that the
largerCx elements occur at diagonals around main diagonal.
Hence, the elements ofCx (10) that are not close to the main
diagonal will be much smaller than the diagonal elements and
the further the element is located from the main diagonal, the
smaller the element will be. Therefore, we suggest two types
of approximations to simplify the inversion of the matrixCx

to simplify the implementation of exact ML estimator (13).
In the first approximation, we can consider most of theCx

elements are zeros except the sub-diagonal elements around
the main diagonal. In the second approximation, we neglect
the interference components in the covariance matrix. In this
case,Cx becomes diagonal matrix with diagonal value4∗σ2

n.
Therefore, the estimator (13) can be simplified as

ε̂ =
1
π

tan−1
Im

{∑N/2−1
k=0 Y ∗

1 (k)Y2(k)
}

Re
{∑N/2−1

k=0 Y ∗
1 (k)Y2(k)

} (14)

It is worth to state that the estimator (14) looks like the ML
fractional frequency estimator derived by [6]. However, the
ML estimator in [6] is based on two pilot symbols, while the
ML estimator given (14) is based on only one pilot OFDM
symbol.
Implementation Aspects:
• From fig. 3, we notice that[Cx]k,k′ sharply drops when

k 6= k′. Therefore,A(k, k′) + A(k + N/2, k′ + N/2) is
larger than{A(k′, k + N/2) + A∗(k, k′ + N/2)} ejπε.
Then, we can say that[Cx]k,k′ is essentially independent
of the fractional frequency offsetε, see (10). Therefore,
if the statistics of the narrow band interference signals is
know, the matrixC−1

x can be precomputed and stored at
the receiver. Accordingly, we do not need to reestimate
C−1

x every frame.
• The inversion of theCx matrix can be simplified by

neglecting allCx elements except the2M sub-diagonal
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elements around the main diagonal, i.e. the elements
[Cx]k,k′ 6= 0 if k′ = k ± m, m = 0, ..., M and
[Cx]k,k′ = 0 otherwise.

• If the statistical of narrow band interference signals is not
known, we can use estimator (14).

Now, we evaluate analytically the effect ofNBI on the
simplified estimator (14). Due to the presence of the inverse
of the tangent function, it is difficult to compute the mean
and the variance of̂ε directly. To simplify, we assume that
|ε̂− ε| ¿ 1/π as in [6]. Therefore, the tangent can be
approximated by its argument. Further, consider the complex
productsY2(k)Y ∗

1 (k) from which we estimateε from (14). For
a given ε, subtract the corresponding phase,2πε, from each
product to obtain the tangent of the phase error

tan [π (ε̂− ε)] ' ε̂− ε =
Im

{
Y H

1 Y2e
−jπε

}

Re
{
Y H

1 Y2e−jπε
} (15)

At high SNR and SIR values, Re
[
Y2(k)Y ∗

1 (k) e−jπε
]

can be approximated by|x(k)|2 as the noise and interference
components are much smaller than the signal component.
Also, it is easily to prove thatE

[
Im

{
Y H

1 Y2e
−jπε

}]
= 0.

Then,E [ε̂] = ε ,i.e. the estimator is unbiased. The variance
of the estimate is easily determined from (15) as

E
[
(ε̂− ε)2

]
=

4
π2 N2

(
N

2
(
2σ2

sσ2
n + σ4

n

)
+

(
σ2

s + σ2
n

)
Υ + Γ

)

(16)
whereΥ andΓ are given as

Υ =
N/2−1∑

k=0

{A(k, k) + A(k + N/2, k + N/2)} (17)

Γ =
N/2−1∑

k,k′=0

A(k, k)A(k′ + N/2, k′ + N/2) (18)

In the next section, we evaluate the performance of the
exact (13) and simplified ML estimator (14) by means of
simulations.

IV. N UMERICAL RESULTS

The numerical results in this paper are obtained with the
following OFDM and interference parameters:

• Transmit filters are square-root raised-cosine filters with
roll off factors α0 = 0.25 and αl = 0.5 for OFDM and
interfering signals, respectively.

• The total number of subcarriers isN = 1024.
• The number of active subcarriers isNu = 1000.
• The guard interval is set to about 10 % of the useful part,

ν = 102.
• The bandwidth of the OFDM spectrum equalsB0 =

1
T0

= 1024 kHz.
• We use QPSK modulation for the data symbols of the

OFDM and the interferer signals.
• The time delay of the interferers equalsτl = 0.

Fig. 4 compares the analytical results (16) with the simulation
of the variance of the simplified ML estimator (14), as function

of the SIR. As can be observed, for a large range ofSIR,
the theoretical results and the simulation results agree well. At
largeSIR, the variance of the simplified ML estimator reaches
an asymptote, corresponding to the case where no interference
is present. This asymptote only depends on theSNR and is
given by 2

π2N SNR . At low SIR, the variance of the simplified
estimator becomes independent of theSNR. The theoretical
results are smaller than for the simulations when theSIR
is small. Hence, the theoretical results can be considered as a
lower bound on the performance for smallSIR. Also, we note
that the variance of the simplified ML estimator decreases for
increasingSIR. Further, the variance at largeSIR decreases
with increasingSNR. This can easily be explained as at high
SIR and SNR, the effect of the noise and interference is
small.

Furthermore, the simulated variance of the exact ML es-
timator (13) is indicated in Fig. 4 as function ofSIR at
different values ofSNR, curves (1, 2 , 3), where we assume
that the characteristics ofNBI signals, i.eSIR, BW, f ′c,l...,
etc, are perfectly known. We note that the variance of exact
ML estimator is independent ofSIR. This is because the
covariance matrixCx is recalculated at each value ofSIR.
Also, we consider another case where there is an uncertainty
in the estimation of theNBI parameters. Let us assume that
the covariance matrixCx is calculated atf ′c,l = 0, while the
actual value off ′c,l is .01B1. In this case, we observe that the
simulated variance of the exact ML estimator is changed with
SIR values as shown in curves (5, 6, 7). Hence, the exact
estimator is very sensitive to uncertainties in the estimation of
the NBI parameters.

Taking into account that most elements of theCx matrix
are zeros except the2M sub-diagonals elements around main
diagonal, fig. 5 shows the simulated variance of the exact
ML estimators whoseCx have different number of sub-
diagonals as function ofSIR. It is clear from the figure
that the exact ML estimator whoseCx is approximated as
a diagonal matrix gives worse perfomance than the simplified
estimator where the interference signal is neglected completely
in Cx (14). As expected, when we increase the number of
non-zero sub-diagonals in the matrixCx, the performance
improves. Moreover, depending on the operatingSIR value,
we can determine the necessary number of sub-diagonals. For
example, atSIR = 15 dB, 200 sub-diagonals around main
diagonal is acceptable.

Fig. 6 displays the analytical and simulation results for
the variance of the simplified ML estimator as function of
the interference bandwidth for different values ofSIR. The
results indicate that the dependency of the variance on the in-
terference bandwidth increases whenSIR decreases although
the dependency is small. This is explained as at highSIR,
the effect of interference diminishes and the variance mainly
depends on noise. Furthermore, the variance of the exact ML
estimator is indicated as function ofNBW at differentSIR.
Results indicate that the variance of the exact ML estimator
does not depend onNBI as we stated in the above section.

Fig. 7 illustrates the analytical and simulation results of
the variance of the simplified ML estimator as function of
the normalized interference carrier frequency deviationf ′c,l.
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The shape of the variance may be explained with the aid of
Fig. 2. As long as the interfering signal is located in the flat
region of the OFDM spectrum, i.e

∣∣∣f ′c,l + (1+αl)
(1+α0)

T0
Tl

∣∣∣ < 1−α0
1+α0

,
the variance of the simplified ML estimator is constant and
does not depend on the location of the interferer. When the
interfering signal located outside OFDM bandwidth i.e. (
f ′c,l +

(1+αl)
(1+α0)

T0
Tl

> 1 or f ′c,l− (1+αl)
(1+α0)

T0
Tl

< −1), the interfering
signal does not affect the OFDM signal anymore: in this
region the variance is constant and its value depends on the
SNR value only. Furthermore, the variance of the exact ML
estimator is indicated as function off ′c,l at different SIR.
Results indicate that the variance of the exact ML estimator
does not depend onNBI as we stated above.

Fig 8. shows the variance of the estimator the simplified ML
estimator as function of the number of interfering signals,NI ,
in two cases. In case ’A’, we consider that theSIR is fixed per
interferer, so the totalSIR decreases inversely proportional
to NI . In case ’B’, we consider a fixed totalSIR, i.e. the
SIR per interferer decreases linearly asNI increases. As the
variance mainly depends on the totalSIR, it follows that the
variance will be an increasing function of the numberNI of
interferers in case ’A’, whereas it is independent ofNI in case
’B’. Furthermore, the variance of the exact ML estimator is
indicated as function ofNI at differentSIR. Results indicate
that the variance of the exact ML estimator does not depend
on NBI as we stated in above.

V. CONCLUSIONS

This paper evaluates the performance of ML fractional
frequency estimator for OFDM system in the presence of
narrowband interference for different interference parameters.
We investigate the ML estimator based on a training symbol
with two identical halves in time domain based on narrowband
interfering(NBI) signal characteristic. The simplified estim-
ator is also derived. Further, the statistical properties of the
simplified estimator are evaluated analytically and by means of
simulation in the presence of(NBI). The agreement between
the theoretical and simulation results proves the validity of
our analysis. Generally, the bandwidth of the interference and
location of interferers do not have a large influence on the
performance of the simplified estimator. However, it turns out
that the signal to interference ratio has a large influence on
the performance of the simplified estimator. However, results
indicate that the performance of the exact estimator does not
depend on the characteristics of (NBI).
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