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Abstract In this paper, we consider different types of guard intervals for OFDM
systems, i.e. cyclic prefix (CP), zero padding (ZP) and known symbol
padding (KSP). We compare the different OFDM systems with respect
to their SNR performance. We show that CP-OFDM and ZP-OFDM
have exactly the same performance, whereas KSP-OFDM has a slightly
worse performance. Further, we consider data aided channel estimation
for the three OFDM systems; the MSE of the estimators is compared
to the corresponding Cramer-Rao bound. It turns out that in practice,
channel estimation for CP-OFDM slightly outperforms the one for ZP-
OFDM. The practical channel estimation techniques for KSP-OFDM
perform worst.

Keywords: Guard intervals, ML channel estimation, Cramer-Rao bounds

1. Introduction

In multicarrier (MC) systems, where the data symbols are transmitted
in parallel on N different carriers, the length T of a symbol is extended
with a factor N [1]. This extension of the symbol length causes the MC
system to be less sensitive to channel dispersion than a single carrier
system transmitting data symbols at the same data rate. However, at
the edges of a MC symbol, the channel dispersion still causes distortion,
and hence introduces interference between successive MC symbols (i.e.
intersymbol interference, ISI) and interference between different carri-
ers within the same MC symbol (i.e. intercarrier interference, ICI). To
reduce the effect of the ISI, each MC symbol is extended with a guard
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Figure 1. Transmitted signal for CP-OFDM, ZP-OFDM and KSP-OFDM.

interval. When the length of the guard interval is longer than the du-
ration of the channel impulse response, ISI can completely be removed.
However, as the transmission efficiency reduces with the insertion of the
guard interval (during the guard interval, no new information can be
transmitted), the guard interval must be chosen sufficiently small.

The most commonly used guard interval is the cyclic prefix (CP) [1].
In CP-OFDM, the last ν samples of each OFDM symbol of N samples
are copied and added in front of the OFDM symbol, as shown in figure
1. At the receiver, the samples in the CP are discarded, as they are
affected by interference; the N samples outside the CP are kept for
further processing (see figure 2). Because during the guard interval signal
is transmitted, the CP-OFDM system suffers from a power efficiency loss
with a factor N

N+ν
. To avoid this power efficiency loss of CP-OFDM, the

zero-padding guard interval was introduced [2]. In ZP-OFDM, a guard
interval of ν samples is introduced after each OFDM symbol. During
this guard interval, no signal is transmitted, as shown in figure 1. At
the receiver, the ν samples of the guard interval are added to the first
ν samples of the data part of N samples (see figure 2); the resulting N
samples are then further processed by the receiver. Although the power
efficiency loss is avoided in ZP-OFDM, we will show in the next section
that the noise power will be enhanced with a factor N+ν

N
.

Another recently proposed guard interval is the known symbol padding
(KSP) [3]-[4]. In KSP-OFDM, a guard interval consisting of ν known
samples long is added after each OFDM symbol (corresponding to the
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Figure 2. Received signal for CP-OFDM, ZP-OFDM and KSP-OFDM.

dark gray area in figure 1). Assuming the energy per sample is the same
for the guard interval and the data part, KSP-OFDM will suffer, like
CP-OFDM, from a power efficiency loss of N

N+ν
. At the receiver, first

the signal corresponding to the known symbols is subtracted from the
received signal (i.e. the dark gray areas in figure 2 are removed). Then,
like in ZP-OFDM, the samples in the guard interval are added to the
first part of the OFDM symbol, and the resulting N samples are further
processed. Similarly to ZP-OFDM, KSP-OFDM will suffer from a noise
power enhancement with a factor N+ν

N
.

The paper is organized as follows. In section 2, we will compare
the SNR performance for the three OFDM systems. Then, in section
3, practical data-aided channel estimation techniques will be consid-
ered. The MSE performance of the estimators will be compared, and
the corresponding Cramer-Rao lower bounds (CRLB) are derived. The
conclusions will be drawn in section 4.

2. System Performance

2.1 CP-OFDM

The data symbols to be transmitted during the ith CP-OFDM block
are defined as ai = {ai(n)|n = 0, . . . , N − 1}. The data symbols are as-
sumed to be statistically independent with E[ai(n)a∗i′(n

′)] = Esδi,i′δn,n′ .
The data symbols are modulated on the carriers using an inverse fast
Fourier transform (inverse FFT, IFFT), and the cyclic prefix is inserted.
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The resulting samples transmitted during block i are given by

si,CP =

√

N

N + ν
ΩF+ai (1)

where si,CP = {si,CP (k)|k = −ν, . . . , N − 1}, F is the N × N matrix

corresponding to the FFT operation, i.e. Fk,ℓ = 1√
N

e−j2π kℓ
N , and Ω is

the (N + ν) × N matrix operator that adds the CP, i.e.

Ω =

(

0ν×(N−ν) Iν

IN

)

(2)

where 0a×b is the a×b all-zero-matrix, IM is the M ×M identity matrix
and X+ is the Hermitian transpose of X.

The time-domain samples (1) are transmitted over a doubly selective
channel [5]. The channel is modeled as a tapped delay line with channel
coefficients hch(k; ℓ). We assume that the channel contains a line-of-sight
(LOS) component and a zero-mean multipath (MP) fading component,
i.e. hch(k; ℓ) = hLOS(k; ℓ) + hMP (k; ℓ). The LOS component is modeled
as hLOS(k; ℓ) = αejφ(ℓ)δ(k), where the phase φ(ℓ) depends on the time-
selectivity of the channel, and the quasi-static amplitude α is assumed to
be constant over a number of OFDM symbols. The channel taps of the
multipath component are assumed to be WSSUS zero-mean Gaussian
distributed [6] with autocorrelation function RMP (k; ℓ)

E[hMP (k1; ℓ1)h
∗
MP (k2; ℓ2)] = δ(k1 − k2)RMP (k1; ℓ1 − ℓ2). (3)

At the receiver, the CP is removed, and the remaining N samples are
fed to the FFT. Without loss of generality, we consider the detection
of the OFDM block with index i = 0. The N outputs of the FFT
yCP (n) are given by yCP =

∑+∞
i=−∞ F∆H(i)si,CP + F∆w, where the

(N + ν) × (N + ν) channel matrix H
(i)
k,k′ = hch(k − k′ − i(N + ν); k),

the operator ∆ = (0N×ν IN ) removes the prefix and w = {w(k)|k =
−ν, . . . , N − 1} is the vector of time-domain noise samples. The noise
components w(k) are assumed to be statistically independent zero-mean
Gaussian distributed with variance N0. The nth FFT output can be
rewritten as

yCP (n) =

√

N

N + ν

+∞
∑

i=−∞

N−1
∑

n′=0

ai(n
′)γi,CP (n, n′) + W (n) (4)

where W (n) = (F∆w)n and

γi,CP (n, n′) =
1

N

N−1
∑

k=0

N−1
∑

k′=−ν

h(k − k′ − i(N + ν); k)e−j2π kn−k′n′

N (5)
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In [5] it is shown that the signal to interference and noise ratio (SINR)
at the output of the FFT is independent of the carrier index n and is
given by

SINR =
N

N+ν
EsPU

N
N+ν

EsPI + PN

(6)

where the contributions of the useful component, the interference and
noise are given by

PU = |α|2|Φ(0)|2 +
1

N

+∞
∑

k=−∞

+∞
∑

ℓ=−∞

w̃(k; ℓ)RMP (k; ℓ) (7)

PI = |α|2 +

+∞
∑

k=−∞

RMP (k; 0) − PU (8)

PN = N0. (9)

where Φ(n) is the nth output of the N -point FFT of the phase φ(ℓ) and
the weight function w̃(k; ℓ) is defined in [7, eq. A2].

2.2 ZP-OFDM

In ZP-OFDM, the data symbols ai are applied to the inverse FFT
and zero padded, resulting in the time-domain samples

si,ZP = ΞF+ai (10)

where the (N + ν) × N matrix Ξ = (IN 0N×ν)
T is the zero-padding

operator and si,ZP = {si,ZP (k)|k = 0, . . . , N + ν − 1}. At the receiver,
the guard interval samples are added to the first ν samples of the data
part, and the resulting N samples are applied to the FFT. The N outputs
yZP (n) of the FFT can be written as yZP =

∑+∞
i=−∞ FΛH(i)si,ZP +FΛw

where the N × (N + ν) matrix Λ performs the addition of the guard
interval to the data part

Λ =

(

IN
Iν

0(N−ν)×ν

)

(11)

The nth FFT output can be rewritten as

yZP (n) =
+∞
∑

i=−∞

N−1
∑

n′=0

ai(n
′)γi,ZP (n, n′) + W (n) (12)
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where

γi,ZP (n, n′) =
1

N

N+ν−1
∑

k=0

N−1
∑

k′=0

h(k − k′ − i(N + ν); k)e−j2π kn−k′n′

N (13)

Using a similar analysis as for CP-OFDM in [5], it can be shown
that the SINR at the FFT outputs for ZP-OFDM is independent of the
carrier index n and yields

SINR =
EsPU

EsPI + PN

(14)

Although the summation ranges in (13) and (5) differ, it turns out that
for ZP-OFDM PU and PI are the same as in CP-OFDM and are given
by (7)-(8). The noise component PN = N+ν

N
N0, i.e. the noise power

is enhanced with a factor N+ν
N

as compared to CP-OFDM. Taking into
account the effect of the power efficiency loss in CP-OFDM and the noise
enhancement in ZP-OFDM, it follows that ZP-OFDM and CP-OFDM
yield the same value of SINR.

2.3 KSP-OFDM

In KSP-OFDM, the time-domain samples to be transmitted are given
by

si,KSP =

√

N

N + ν

(

F+ai

bg

)

(15)

where it is assumed that the known symbols bg have the same energy per
sample as the data samples, i.e. E[|bg(n)|2] = Es. At the receiver, the
signal corresponding to the known symbols bg is first subtracted from
the received signal. After adding the ν samples of the guard interval
to the data part of the OFDM symbol and applying the resulting N
samples to the FFT, the FFT outputs are given by

yKSP =

√

N

N + ν

+∞
∑

i=−∞

FΛH(i)ΞF+ai + FΛw (16)

where it is assumed that the channel taps are perfectly known, i.e. the
contribution of the known symbols can completely be removed from the
signal. Hence the outputs of the FFT for KSP-OFDM are the same as

for ZP-OFDM, except for the power efficiency loss factor
√

N
N+ν

. The

SINR at the outputs of the FFT is defined as (6), where the contributions
PU and PI are given by (7)-(8), similarly as for CP-OFDM and ZP-
OFDM, and the noise component PN = N+ν

N
N0 is the same as for ZP-

OFDM. Comparing KSP-OFDM with CP-OFDM and ZP-OFDM, it
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can be observed that KSP-OFDM will have worse performance than
the two other systems, as it suffers from both power efficiency loss and
noise enhancement, whereas CP-OFDM and ZP-OFDM suffer only from
one of these effects. However, if the guard interval length is small as
compared to the FFT length, as in most practical cases, the difference
in performance will be very small. Further, in practical situations, the
channel taps have to be estimated and are thus not perfectly known. In
KSP-OFDM, the channel estimation error will cause interference from
the known symbols, resulting in extra performance loss.

3. Channel Estimation

Reliable channel estimation is necessary in the above mentioned OFDM
systems as data detection algorithms for these systems require the knowl-
edge of the channel. Most common channel estimation techniques are
data aided: pilot symbols are inserted in the OFDM signal to enable reli-
able detection of the channel. In this section, we will consider maximum-
likelihood (ML) based data-aided channel estimation techniques for the
three different OFDM systems, and compare the MSE of the channel
estimation techniques. Further, we compare the performance of the es-
timators with the corresponding Cramer-Rao lower bounds.

In the following, we will assume that the channel changes slowly as
compared to the duration of the length of an OFDM symbol, i.e. during
the observed OFDM symbol, hch(k; ℓ) = h(k). We assume that the du-
ration of the channel impulse response is L taps, and define the vector of
channel taps h = (h(0) . . . h(L−1))T . To avoid intersymbol interference
the duration of the guard interval exceeds the duration of the channel
impulse response, i.e. ν ≥ L − 1.

In the following, we will show that for all cases, the observation can
be written as z = Dh+ ω, where the matrix D depends on the inserted
pilots and the noise ω is zero-mean Gaussian distributed with autocor-
relation function Rω, i.e. ω ∼ N(0,Rω). Hence, the observation z given
h is Gaussian distributed: z|h ∼ N(Dh,Rω). The ML estimate of the
vector h is defined as [8]:

ĥML = arg max
h

p(z|h) (17)

If Rω is independent of h and D+R−1
ω D is invertible, the ML estimate

of the channel is given by

ĥML = (D+R−1
ω D)−1D+R−1

ω z (18)

and the MSE of the estimation yields

MSE = E[||h − ĥML||
2] = trace

(

(D+R−1
ω D)−1

)

(19)
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The Cramer-Rao lower bound (CRLB) of the estimation is given by
R

h−ĥ
− J−1 ≥ 0 [8] where R

h−ĥ
is the autocorrelation matrix of the

estimation error h− ĥ and the Fisher information matrix J is defined as

J = Ez

[

(

∂

∂h
ln p(z|h)

)+ (

∂

∂h
ln p(z|h)

)

]

(20)

Hence, the MSE is lower bounded by E[||h − ĥML||
2] = trace(R

h−ĥ
) ≥

trace(J−1). When equality occurs, i.e. when the MSE equals the CRLB,
the estimate is a minimum variance unbiased (MVU) estimate. In the
case that Rω is independent of h, it can be shown that J = D+R−1

ω D,
i.e. the channel estimate is a MVU estimate.

3.1 CP-OFDM

In CP-OFDM, data-aided channel estimation is performed by replac-
ing some data carriers by pilot carriers. In this paper, without loss of
generality, we consider the comb-type pilot arrangement [9], where in
every OFDM symbol, M ≥ L data carriers are replaced by pilot carri-
ers. The analysis however can easily be extended to other types of pilot
arrangements.

Assuming that the pilot symbols bc(p) are located on carriers np,
p = 1, . . . , M , it can be shown that the FFT outputs at positions np

contain sufficient information for the ML estimation of the channel vec-

tor h. Defining z(p) = yCP (np)/(
√

N
N+ν

bc(p)), the M × 1 vector z of

observations can be written as z = Ah + W, where the M × L ma-

trix A has entries Ak,ℓ = e−j2π
nkℓ

N , and the noise components W are
zero-mean Gaussian distributed with autocorrelation matrix RCP =
N+ν

N
N0

Es
IM . Hence, the observation z given h is Gaussian distributed:

z|h ∼ N(Ah,R) . Taking into account that A+A is invertible when

M ≥ L, it follows from (18) and (19) that ĥML = (A+A)−1A+z and
MSECP = N+ν

N
N0

Es
trace((A+A)−1). When M divides N and the pilots

are equally spaced over the carriers, i.e. nm = n0 + (m− 1) N
M

, it follows

that trace((A+A)−1) = L
M

, i.e. the MSE is proportional to the num-
ber of channel taps to be estimated, and inversely proportional to the
number of pilots. As RCP is independent of h, it follows that the ML
estimate is MVU.

3.2 ZP-OFDM

Similarly as in CP-OFDM, data-aided channel estimation is performed
by replacing some data carriers by pilot carriers. We consider the
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same pilot arrangement as for CP-OFDM. As in CP-OFDM, it can
be shown that the FFT outputs at the positions of the M pilots bc(p)
contain sufficient information to perform the ML estimation. Defining
z(p) = yZP (np)/bc(p), the observations can be written as z = Ah +

W̃, where A is the same as for CP-OFDM and the noise contribu-
tion W̃ is zero-mean Gaussian distributed with autocorrelation function
RZP = N0

Es
FΛΛ+F+, thus z|h ∼ N(Ah,RZP ). Hence, in the case

that A+R−1
ZPA is invertible, the ML estimate of the channel is given by

ĥML = (A+R−1
ZPA)−1A+R−1

ZP z and the MSE of the estimation yields

MSEZP = N0

Es
trace((A+R−1

ZPA)−1). Further, the ML estimate of the
channel taps for ZP-OFDM is a MVU estimate, as RZP is independent
of h.

3.3 KSP-OFDM

In the two previous techniques, we have assumed that there are M
pilot symbols to estimate the L channel taps, M ≥ L. In KSP-OFDM,
the known symbols in the guard interval can be used as pilot symbols
to estimate the channel. However, the guard interval contains only ν
samples, with typically ν ≈ L. To increase the number of pilot symbols
to M , we can consider two approaches: in the first approach, the guard
interval length is kept to ν samples, and M−ν data carriers are replaced
by pilot carriers. In the second approach, we increase the length of the
guard interval to M samples, i.e. ν = M .

Approach 1. As in the previous techniques, the comb-type pilot
arrangement for the M − ν pilot carriers in the data part is considered.
It can be shown that an observation interval corresponding to the N +ν
time-domain samples of the ith OFDM block (as shown in figure 3)
contains sufficient information for the estimation. Defining z as the
vector of N + ν observed samples, the observation can be written as
z = Bh+ ǫ where B = Bg +Bc is a (N +ν)×L matrix. The matrix Bg

corresponds to the contributions of the pilot symbols bg(p) in the guard
interval with (Bg)i,j = bg(|i−j+ν|N+ν), |x|K is the modulo-K operation
on x and bc(i) = 0 for i ≥ ν and i < 0. The matrix Bc corresponds to
the contributions of the pilot symbols bc(p) transmitted on the carriers
with (Bc)i,j = sc(i − j); sc = Xbc where the N × (M − ν) matrix X

consists of the subset of columns of the IFFT matrix F+ corresponding
to the positions of the pilot carriers, bc is the vector of the pilot symbols
transmitted on the carriers, and sc(i) = 0 for i ≥ N and i < 0, i.e.
sc corresponds to the N -point IFFT of the pilot carriers only. Further,
ǫ = Hsd+w, where (H)i,j = h(i−j) is a (N +ν)×N matrix, sd = X̄a, a
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Figure 3. Observation interval for channel estimation in KSP-OFDM.

is the data vector, the N × (N −M + ν) matrix X̄ consists of the subset
of columns of the IFFT matrix F+ corresponding to the positions of
the data carriers, i.e. sd corresponds to the N -point IFFT of the data
carriers only, and w is the additive Gaussian noise component. When
N −M +ν is large, the data contribution Hsd to ǫ can, according to the
central limit theorem, be modeled as zero-mean Gaussian distributed.
Hence, ǫ is zero-mean Gaussian distributed with autocorrelation matrix
Rǫ = Es

N
N+ν

N+ν−M
N

HH+ + N0IN+ν . As the autocorrelation matrix
Rǫ depends on the parameters to be optimized, the ML estimator is
very complex. In [4], a suboptimal ML-based solution is suggested: the
autocorrelation matrix Rǫ is first estimated from the received signal,
and the estimate R̂ǫ is then used to find the estimate for h:

ĥKSP,1a = (B+R̂−1
ǫ B)−1B+R̂−1

ǫ z (21)

where it is assumed that B+R̂−1
ǫ B is invertible. To evaluate the per-

formance of this estimate, we assume a genie-aided estimator for Rǫ,
i.e. Rǫ is perfectly known. In this case, the MSE of the estimation of h

yields
MSEKSP,1a = trace

(

(B+R−1
ǫ B)−1

)

(22)

When Rǫ is not perfectly known, the MSE will be increased as compared
to (22).

A disadvantage of the estimator (21) is that the autocorrelation ma-
trix Rǫ needs to be known or estimated to be able to estimate the chan-
nel. As this autocorrelation matrix depends on the unknown channel,
the estimation of this matrix from the received signal is not obvious.
Therefore, a simplification of (21) can be made by ignoring the statistics
of the interfering data, yielding the estimate

ĥKSP,1b = (B+B)−1B+z (23)

and the corresponding MSE is given by

MSEKSP,1b = trace
(

(B+B)−1B+RǫB(B+B)−1
)

(24)
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As Rǫ depends on h, also the CRLB is very complex. Therefore, we
consider the low SNR limit of the CRLB. When Es/N0 is low, it can
easily be verified that Rǫ ≈ N0IN+ν . In that case, the CRLB reduces to

E[||h − ĥML||
2] ≥ N0trace((B+B)−1) i.e. for low SNR, the MSE’s (22)

and (24) of the estimates (21) and (23) reach the CRLB.

Approach 2. It can easily be verified that the observation interval
shown in figure 3 contains sufficient information for the estimation in the
second approach, where the pilot symbols are all located in the guard
interval. The vector of ν + L − 1 observed samples equals z = Th + ǫ

′

where (T)i,j = bg(i−j) with bg(i) denoting the pilot symbols in the guard
interval; note that bg(i) = 0 for i < 0 or i ≥ ν. The noise component

can be written as ǫ
′ = H(0)s0 +H(1)s1 +w, where s0 = (s0,KSP (N −L+

1) . . . s0,KSP (N − 1))T and s1 = (s1,KSP (0) . . . s0,KSP (L − 2))T are the
contributions from the data parts of previous and next OFDM symbol,
respectively, (H(0))i,j = h(L − 1 − (i − j)) and (H(1))i,j = h(i − j − ν)
with h(i) = 0 for i < 0 and i > L − 1. When N is large, s0 and s1 can
be modeled as zero-mean Gaussian distributed. Hence, ǫ

′ ∼ N(0,Rǫ′)
with R

ǫ
′ = Es(H

(0)(H(0))+ +H(1)(H(1))+)+N0Iν+L−1. Similarly as for
the first approach, the autocorrelation matrix Rǫ′ depends on the para-
meters h to be estimated. As in the previous method, a suboptimal ML
based solution can be proposed [4] by assuming that the autocorrelation
is first estimated from the received signal, and then used to estimate h.
The estimate ĥKSP,2a and the MSEKSP,2a (assuming Rǫ′ is perfectly
known) are then given by (21) and (22), where B and Rǫ are replaced
by T and Rǫ′ , respectively.

As for the previous approach, the knowledge of R
ǫ
′ is needed to esti-

mate h. To simplify the estimator, the statistics of the interfering data
can be ignored. The resulting estimate ĥKSP,2b and the MSEKSP,2b are
given by (23) and (24) by replacing B and Rǫ by T and Rǫ′ .

Further, similarly as for the first method, a low SNR limit for the
CRLB can be found: E[||h − ĥML||

2] ≥ N0trace((T+T)−1). At low
SNR, the MSE of the two estimates reach the CRLB.

3.4 Performance Comparison

In table 1, the energy per information data symbol Es,i and the band-
width efficiency ηBW are given for the different guard interval techniques
and pilot positions. When N is large, it is clear that the differences in
Es,i and ηBW are small for the different techniques.

In figure 4, the normalized MSE, i.e. NMSE = Es

N0
MSE, is shown as

function of M for N = 1024, L = 8 and ν = 7 (except for KSP2, where
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Es,i ηBW

CP-OFDM N+ν

N−M
Es

N−M

N+ν

1

T

ZP-OFDM N

N−M
Es

N−M

N+ν

1

T

KSP1-OFDM N+ν

N+ν−M
Es

N+ν−M

N+ν

1

T

KSP2-OFDM N+M

N
Es

N

N+M

1

T

Table 1. Energy per information data symbol Es,i and bandwidth efficiency ηBW for
the different guard interval techniques and pilot positions

Figure 4. NMSE for N = 1024, L = 8, ν = 7.

ν = M). As can be observed, the MSE for CP-OFDM outperforms all
other techniques. The MSE for ZP-OFDM however is very close to that
of CP-OFDM: when ν ≪ N , the difference between channel estimation
for CP-OFDM and ZP-OFDM will be very small. Further, it can be
observed that the first method to estimate the channel in KSP-OFDM
(KSP1), by adding pilots in the guard interval and on the carriers, has
a much worse MSE performance than CP and ZP-OFDM, especially
when the SNR = Es

N0
is increasing. Indeed, when SNR increases, the

interference of the data symbols on the pilot symbols becomes more
important, affecting the estimation of the channel. Also, the MSE for
the second method for KSP-OFDM (KSP2) is shown. It follows from
the figure that for increasing M , the MSE for KSP2 comes close to the
ones for CP and ZP-OFDM, and is independent of the SNR. This can
be explained as when the guard interval length increases, the relative
importance of the interfering data symbols reduces.
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Figure 5. MSE and CRLB for N = 1024, L = 8, ν = 7, M = 40.

In figure 5, the MSE and the CRLB are shown as function of the SNR
for N = 1024, L = 8, M = 40 and ν = 7 (except for KSP2, where
ν = M). It can be observed that the MSE for CP, OFDM and KSP2
almost coincide. The KSP1a technique performs worse than the three
former techniques, especially at high SNR where the interference from
the data symbols dominates: the MSE shows an error floor. Also in the
KSP1b and KSP2b techniques, an error floor is present at high SNR:
the estimates ignore the presence of the data symbols and at high SNR
the data symbols are the dominant disturbance. The low SNR limit
Cramer-Rao bounds for KSP1 and KSP2 are very close to each other
and to the CRLBs of CP-OFDM and ZP-OFDM (which coincide with
the MSE for these techniques).

4. Conclusions

In this paper, we have considered three guard interval techniques for
OFDM systems, i.e. CP, ZP and KSP. First, we have compared the
three techniques with respect to their SNR performance. It is shown
that CP-OFDM and ZP-OFDM have the same SNR performance. The
KSP-OFDM technique has a slightly worse performance, as it suffers
from both power efficiency loss and noise enhancement, whereas the
other two techniques suffer from only one of these effects.

Further, we have considered ML based channel estimation techniques
for the three systems. We compared the MSE of the estimates with
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the corresponding Cramer-Rao bounds. It turns out that CP-OFDM
channel estimation outperforms the other techniques. However, the dif-
ference between the MSE performance of the ZP-OFDM technique and
that of CP-OFDM is marginally small when N ≫ ν: i.e. ZP-OFDM and
CP-OFDM have virtually the same MSE performance. KSP-OFDM has
worse MSE performance than the other two techniques; the proposed
KSP2 technique, where the guard interval length is extended, outper-
forms the KSP1 technique, where pilot symbols are placed in the guard
interval and on carriers.
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