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Abstract- Orthogonal Frequency Division Multi-
plexing (OFDM) systems suffer from severe perfor-
mance degradation in the presence of phase noise.
In particular, phase noise leads to a common phase
error (CPE) as well as intercarrier interference (ICI)
in the frequency domain. In this contribution, we
present a novel code aided CPE estimation algo-
rithm. The Expectation-Maximization (EM) algo-
rithm is used to approach the Maximum-Likelihood
(ML) estimate of the CPE. The estimator accepts
soft information from the decoder in the form of a
posteriori probabilities of the coded symbols, which
can be interpreted as performing joint data detection
and decoding. The performance of the proposed
algorithm is verified through computer simulations.
Impressive performance gains are obtained as com-
pared to conventional data-aided CPE correction.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing
(OFDM) is recognized to be one of the best trans-
mission techniques for wideband wireless commu-
nication systems. However, OFDM is known to
be vulnerable to synchronization errors due to the
narrow spacing between subcarriers [1]. One of these
synchronization errors is phase noise (PN) i.e. the
random fluctuation in the difference between the
phase of the carrier and the phase of the local
oscillator (LO). The influence of PN on the perfor-
mance of an OFDM system has been extensively
analyzed in the literature [2], [3], [4]. Generally,
the influence can be split into a multiplicative part,
which is common to all subcarriers and therefore
often referred to as common phase error (CPE),
and an additive part, which is often referred to as
intercarrier interference (ICI). It turns out that the
CPE dominates for slow PN (PN varies slowly in
comparison to the OFDM symbol duration), while
ICI is dominant for fast PN [5].

Most of the approaches estimate CPE by using pi-
lot symbols [6], [7], [8], [9] at the cost of decreased
throughput. Further, with the advent of powerful
error-correcting codes (including turbo and LDPC

codes), these conventional data-aided estimation al-
gorithms can not always be applied successfully.
Since such codes operate at low Eb/No values, many
pilot symbols may be necessary to acquire reliable
estimates, resulting in a significant loss in terms of
power and bandwidth efficiency. It is thus of interest
to develop schemes to estimate the PN by taking into
account the presence of the error correcting codes. In
this paper, we propose a code aided CPE estimation
algorithm. Starting from the Maximum Likehood
(ML) principle, we derive the estimator based on the
Expectation-Maximization (EM) algorithm [10]. The
proposed algorithm iterates between data detection
and estimation, improving the estimate of CPE.
In the first iteration, we decode the received data
without having any information about the CPE, or
using a few pilots to obtain a rough estimate of
the CPE. Next, based on a posteriori probabilities
provided by the decoder, the posteriori expectations
of the transmitted symbols can be computed; they
are used to estimate the CPE in an iterative way. It
is noteworthy that the designed estimation scheme
can work with any detector as long as the detector is
able to compute the a posteriori probabilities (APPs)
of the data symbols.

The paper is organized as follows: the system
model is described in section II. The CPE estimation
algorithm is derived in section III. Simulation results
are provided in section IV. Finally, we end with
conclusions in section V.

II. SYSTEM MODEL

The block diagram of the proposed system is
shown in Fig. 1. At the transmitter, the Xb infor-
mation bits are sent to the encoder, resulting in Xc

coded bits. After interleaving, these Xc coded bits
are mapped on Xd symbols {d(k)}Xd−1

k=0 belonging
to a 2q -point constellation, Xd = Xc/q. We further
assume that a total of Np pilot symbols {p(k)}

Np−1
k=0

are inserted at known locations in each OFDM
symbol. The set of subcarrier indices on which pilots
are transmitted will be denoted as Υ. The block of
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Fig. 1. The conceptual block diagram of the proposed system

length Xd + Np symbols is converted to the time
domain using an N -point inverse Fourier transform
(IFFT). A cyclic prefix of length Ng samples is
inserted to cope with channel multipath fading and
to enable simple channel equalization at the receiver.
We can write the n-th time-domain sample (n =
−Ng, . . . , N − 1) of the OFDM block as

s(n) =

√
1

N

N−1∑

k=0

a(k) e
j2πkn

N (1)

where

a(k) =

{
d(k) k /∈ Υ
p(k) k ∈ Υ

(2)

The data symbols are independently and identically
distributed random values with zero mean and vari-
ance E

[
|d(k)|2

]
= Es. The transmitted OFDM

block propagates to the receiver through an L- tap
channel with overall channel impulse response (CIR)
h = [h(0), . . . , h(L− 1)]. This CIR incorporates
the transmit filter, physical propagation channel and
receive filter. At the receiver, the signal is multiplied
by the PN disturbance φ(n) = exp(jθ(n)). The
received sample r(n) can be expressed as

r(n) = [s(n) ? h(n)] ej(θ(n)) + w(n) (3)

where the symbol ? stands for convolution, w(n)
represents white Gaussian noise with variance σ2

n,
and n = −Ng, . . . N + L − 2. After removing the
cyclic prefix and applying the Fast Fourier Trans-
form (FFT), the demodulated symbol R(k′) at carrier

k′ can be written as

R(k′) = a(k′)H(k′)I(0) (4)

+
N−1∑

k = 0,
k 6= k′

a(k)H(k)I(k − k′) + ξ(k′)

where ξ(k′) is the Gaussian noise contribution,
and I(i) is given by

I(i) =
1

N

N−1∑

n=0

e[j2πin/N+θ(n)] (5)

Equation (4) shows that the PN has two different
effects. First, each information symbol a(k′) is mul-
tiplied by I(0) (referred to as the common phase
error (CPE)) which depends on the phase noise, but
it is independent of the particular subcarrier index.
Secondly, the PN causes intercarrier interference
(ICI) depending on the data from all subcarriers.

III. CPE ESTIMATION ALGORITHM

In this section, we give a brief outline of the EM
algorithm, and apply it to the observation vector
R = [R(0), · · · , R(N − 1)] from (4).

A. EM algorithm-principle

The EM algorithm is an iterative approach to
acquire the ML estimates when evaluation of the
likelihood is difficult due to some unknown data
[10]. The original ML problem involves the estima-
tion of a parameter (set) λ from an observation r, by
maximizing the likelihood function p (r |λ). In the
presence of unknown data (e.g. unknown transmitted
symbols), finding the ML solution can be very
difficult. The main idea behind the EM algorithm is
to define the so-called missing (or unobserved) data



a, such that, if the missing data were known, esti-
mating λ would be easy, i.e. maximizing p (r |a, λ)
is feasible. However, since we do not know the
missing data, an iterative approach starting from an
initial estimate λ (say, λ̂ (0)) is used. Consider r

as the “incomplete“ observation and z
.
= [r, a] as

the “complete” observation. At iteration ζ, the EM
algorithm consists of two steps :

1) E-step: given the current estimate λ̂ (ζ) and
“incomplete“ observation r, we first take the
expectation of the log-likelihood of the com-
plete data z

.
= [r,a] with respect to the un-

known data a:

Q
(
λ
∣∣∣λ̂ (ζ)

)
= Ea

[
log p (z |λ)

∣∣∣r, λ̂ (ζ)
]
.

(6)
2) M-step: we maximize Q

(
λ
∣∣∣λ̂ (ζ)

)
with re-

spect to λ to find a new estimate:

λ̂ (ζ + 1) = arg max
λ

{
Q
(
λ
∣∣∣λ̂ (ζ)

)}
. (7)

The EM algorithm terminates when the estimate has
converged or a certain stopping criterion has been
met. For continuous parameters, the final estimate
converges to the ML estimate as long as the initial
estimate is sufficiently accurate.

B. Soft Information CPE Estimation Algorithm

Let us consider the received vector R =
[R(0), · · · , R(N − 1)], the pilot vector P =
[p(0), · · · , p(Np − 1)], and the transmitted data vec-
tor a = [a(0), · · · a(N − 1)]. Based on the observa-
tion model (4), we can write:

log p (R,a |I (0)) ∝ log p (R |a, I (0)) (8)

Assuming the ICI plus noise in (4) can be modeled
as a Gaussian random variable, we can write

log P (R |a, I (0)) ∝
N−1∑

i=0

|R(i) − a(i)H(i)I(0)|2

(9)
Using (8) and (9) in (6) yields

Q
(
I (0)

∣∣∣Î (0) (ζ)
)

=
∑

i/∈Υ

(
|R(i)|2 + |I (0)H(i)|2 ψ(i)

−2Re {R(i)I∗(0)H∗(i)µ∗(i)}
).

+
∑

i∈Υ

(
|R(i)|2 + |I (0)H(i)|2 |p(i)|2

−2Re {R(i)I∗(0)H∗(i)p∗(i)}
).

(10)

where µ(i) = E
[
a(i)

∣∣∣R, Î (0) (ζ)
]

and ψ(i) =

E
[
|a(i)|2

∣∣∣R, Î (0) (ζ)
]
. The a posteriori expecta-

tions µ(i) and ψ(i) are obtained by using the a poste-
riori probabilities (APPs) computed by the decoder:

µ(i) =
∑

ω∈Ω

ω · p
(
a(i) = ω

∣∣∣R,Î (0) (ζ)
)
. (11)

ψ(i) =
∑

ω∈Ω

|ω|2 · p
(
a(i) = ω

∣∣∣R,Î (0) (ζ)
)

(12)

Using (10), it follows that the updated estimate for
the CPE is given as

Î (0) (ζ + 1) = arg max
I (0 )

∂Q
(
I (0)

∣∣∣Î (0) (ζ)
)

∂I(0)
(13)

After some mathematical manipulations, the closed
form for the updated estimate is given by:

Î (0) (ζ + 1) =

∑N−1
i=0 R(i)H∗(i)χ(i)
∑N−1

i=0 |H(i)|2 ξ(i)
(14)

where χ(i) = p∗(i), ξ(i) = |p(i)|2 ∀ i ∈ Υ, χ(i) =
µ∗(i), ξ(i) = ψ(i) ∀ i /∈ Υ. In the sequel, (14) is
denoted as the pilot assisted estimator (PAE), where
the initial value of Î (0) (the first iteration) is given
as

Î (0) (1) =

∑
i∈ΥR(i)H∗(i)p∗(i)

∑
i∈Υ |H(i)|2 |p(i)|2

(15)

In the absence of pilot symbols, i.e. if Υ is empty,
we assume that the initial value of Î (0) equals one,
i.e. in the first iteration, we decode the received data
without having any information about the CPE. This
is referred to as the blind estimator (BE).
To obtain a lower bound on the mean squared error
of the estimate, we assume all the data symbols are
known, i.e. the number of pilots Np equals N . Then,

Î (0)lower =

∑N−1
i=0 R(i)H∗(i)p∗(i)

∑N−1
i=0 |H(i)|2 |p(i)|2

(16)

IV. SIMULATION RESULTS

To validate the proposed algorithm, we have car-
ried out Monte Carlo simulations over a frequency
selective channel. We consider an OFDM system,
using a convolutional code with constraint length 5,
rate 1/2 and polynomial generators (23)8 and (35)8.
The BCJR algorithm is used for decoding. A block
length of Xb = 128 information and pilot bits was
chosen, leading to Xc = 256 coded bits. The coded
bits are Gray-mapped on a 16-QAM constellation,
resulting in Xd+Np = 64 symbols. We take Np = 4
for the pilot estimator while Np = 0 for the blind



estimator. The channel consists of L = 4 statistically
independent taps, each being a zero-mean complex
Gaussian random variable with an exponential power
delay profile [11]:

E
[
|h (l)|2

]
= Eh exp (−l/5) , l = 0, . . . , L− 1

(17)
where Eh is chosen such that the average energy
per subcarrier is normalized to unity. To avoid ISI,
a cyclic prefix of length Ng = L− 1 is employed.

Figure 2 shows the mean squared estimation
error of the CPE for both estimators, MSE =

E

[∣∣∣I(0) − Î (0)
∣∣∣
2
]

with Wiener phase noise rate

βT = 0.008 as a function Eb/N0, for a frequency
selective channel. As can be observed, since we
assume that the estimated value of I(0) for the
blind estimator is 1 at the first iteration, the MSE
is independent of Eb/N0. On the other hand, at
the first iteration, the MSE for the pilot estimator
decreases with Eb/N0. At low PN rate I(0) is
almost one, therefore our approximation for the
blind estimator (Î (0)(1) = 1) is good enough.
However, for the pilot estimator, a few pilot symbols
is not enough to obtain a reliable estimate at low or
even at intermediate Eb/N0. This explains why the
performance of the blind estimator is better than the
pilot estimator at the first iteration over a wide range
of Eb/N0. The pilot estimator slightly outperforms
the blind estimator after the first iteration. A strong
improvement of the MSE for both estimators is
achieved after only two iterations. Further, we notice
that no improvement in the MSE is visible after 3
EM iterations for both estimators for any Eb/N0.
Moreover, the MSE for both estimators converges
to the lower bound obtained with (16) for a wide
range of Eb/N0.

Figure 3 shows the corresponding bit error rate
(BER) performance for both estimators as function
of Eb/N0 for a frequency selective channel. We ob-
serve a large improvement of the BER performance
with the proposed algorithms as compared to the
case of no CPE correction. In the figure, we also
show the BER when the CPE could perfectly be
corrected and the case with no PN. The difference
between these curves is caused by the presence of
the ICI. The proposed pilot and blind schemes have a
BER that reaches the BER of perfect CPE correction
for a large range of Eb/N0. At high Eb/N0, the
influence of the ICI however becomes dominant,
such that the decoder can not deliver reliable APP’s.
This results in a slight increase of the BER as

compared to perfect CPE correction especially for
the blind estimator.

Figures 4 and 5 show the MSE and BER per-
formance of the proposed schemes as function of
the phase noise rate βT for a frequency selective
channel at Eb/No= 25 dB, respectively. In Fig. 5,
the BER is added for the cases where no phase noise
is present and perfect CPE estimation. We note that
at the first iteration, the performance of the pilot
estimator is worse than that of the blind estimator
for small values of the PN rate βT . As we explained
earlier, I(0) is almost one for small PN rates.
Therefore, the approximation of I(0) by 1 gives a
better performance as compared to the estimation
of I(0) with a few pilots. However, both estimators
give approximately the same performance after the
first iteration. Moreover, both estimators reach lower
bound for a wide range of the PN rate. Further, it
can be observed that for the large values of the PN
rate, βT > 0.05, the performance of the estimators
strongly degrades with an increasing number of
iterations. At high rates, the ICI component becomes
dominant over the useful component [3], disturbing
the proper action of the decoder. However in many
practical applications βT is smaller than 10−2, in
which case the proposed schemes work properly.

V. CONCLUSIONS

In this paper, we have proposed a novel soft
code-aided estimation algorithm for common phase
error correction in an OFDM system. Based on the
EM algorithm, the receiver iterates between data
detection and estimation, with the exchange of the
soft information. The results indicate that the pro-
posed algorithm achieves a significant improvement
in MSE and BER performance after 2 iterations as
compared to the case of no CPE correction.
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