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ABSTRACT

In this paper, we derive the Cramer-Rao bound (CRB) for
data-aided channel estimation for OFDM with known symbol
padding (KSP-OFDM). The pilot symbols used to estimate the
channel are distributed over the guard interval and OFDM car-
riers, in order to keep the guard interval length as small as pos-
sible. An analytical expression for the CRB is obtained by per-
forming a proper linear transformation on the observed sam-
ples. At low SNR, the CRB corresponds to the low SNR limit
of the CRB obtained in [1], where it is assumed that the in-
fluence of the data symbols on the channel estimation can be
neglected. At high SNR, the CRB is determined by the obser-
vations that are independent of the data symbols; the observa-
tions that are affected by data symbols are neglected. The CRB
depends on the number of pilots and slightly increases with in-
creasing guard interval length, but is essentially independent
of the FFT size and the used pilot sequence. Further, a low
complexity ML channel estimation technique is derived based
on the linear transformation. Although in this estimation tech-
nique only a part of the observation is used, the mean squared
error (MSE) performance of this estimate reaches the CRB for
a large range of SNR, but a high SNR, the MSE reaches an er-
ror floor caused by the approximations made in the derivation.

I. INTRODUCTION

Multicarrier systems have received considerable attention for
high data rate communications [2] because of their robustness
to channel dispersion. To cope with channel dispersion, the
multicarrier system uses a guard interval, with a length larger
than the channel impulse response, between blocks of data.
The most commonly used types of guard interval are cyclic pre-
fix, zero padding and known symbol padding. In cyclic prefix
OFDM, the guard interval consists of a cyclic extension of the
data block whereas in zero-padding OFDM, no signal is trans-
mitted during the guard interval [3]. In OFDM with known
symbol padding (KSP-OFDM), the guard interval type that is
considered in this paper, the guard interval consists of a number
of known samples [4].

As in KSP-OFDM, the samples in the guard interval are
known, they can serve as pilot symbols to obtain a data-aided
estimate of the channel. However, as the length of the guard in-
terval is typically small as compared to the FFT length (to keep
the efficiency of the multicarrier system as high as possible) the
number of known samples is typically too small to obtain an
accurate estimate for the channel. To improve the channel es-
timation, the number of pilot symbols must be increased. This
can be done by increasing the guard interval length, which is
not favorable as this will reduce the OFDM system efficiency,
or by keeping the length of the guard interval constant and re-
placing in the data part of the signal some data carriers by pilot
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Figure 1: Time-domain signal of KSP-OFDM a) transmitted
signal b) received signal and observation interval for data de-
tection c) observation interval for channel estimation.

carriers [1].
In this paper, we derive the Cramer-Rao bound (CRB) for

channel estimation when the pilot symbols are distributed over
the guard interval and pilot carriers. The paper is organized as
follows. In section II., we describe the system and determine
the CRB. Further, we derive a low complexity ML estimate for
the channel. Numerical results are given in section III. and the
conclusions are drawn in section IV..

II. SYSTEM MODEL AND CRAMER-RAO BOUND

In KSP-OFDM, the data symbols to be transmitted are grouped
into blocks of N symbols: ai = (ai(0), . . . , ai(N − 1))T . The
data symbols are then modulated on the OFDM carriers us-
ing an N -point inverse FFT. The guard interval consisting of ν
known samples is inserted after each OFDM symbol (this cor-
responds to the dark gray area in figure 1(a)), resulting in the
time-domain samples si during block i:

si =

√

N

N + ν

(

F+ai

bg

)

(1)

where F is the N × N matrix corresponding to the FFT op-

eration, i.e. Fk,` = 1√
N

e−j2π k`

N , and bg = (bg(0), . . . ,

bg(ν − 1))T corresponds to the ν known samples of the guard
interval. We assume that the data symbols are statistically in-
dependent with E[ai(n)a∗

i′(n
′)] = Esδi,i′δn,n′ . Further, we

assume that the known samples bg have the same energy per
sample as the data symbols: E[|bg(n)|2] = Es.

The sequence (1) is transmitted over the dispersive channel
and disturbed by additive white Gaussian noise w. The zero-
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mean noise components w(k) have variance N0. Without loss
of generality, we consider the detection of the OFDM block
with index i = 0. The received time-domain samples can be
written as

r =

√

N

N + ν

+∞
∑

i=−∞

H(i)si + w (2)

where H
(i)
k,k′ = hi(k − k′) is the (N + ν) × (N + ν) channel

matrix and hi = (hi(0), . . . , hi(L − 1))T is the vector of L
channel taps corresponding to OFDM block i, i.e. we assume
the channel changes slowly as compared to the duration of an
OFDM block. To avoid intersymbol interference, we assume
that the duration of the guard interval exceeds the duration of
the channel impulse response, i.e. ν ≥ L − 1. For data detec-
tion, the known samples are first subtracted from the received
signal. Then, the ν samples of the guard interval are added to
the first ν samples of the data part of the block, as shown in fig-
ure 1(b), and the resulting N samples are applied to an FFT. As
the known samples are disturbed by the channel (as can be seen
in figure 1(b)), the channel needs to be known in order to re-
move the contribution of the known samples from the received
signal.

To estimate the channel, we assume M pilot symbols are
available. As we select the length of the guard interval in func-
tion of the channel impulse length and not in function of the
precision of the estimation, only ν of the M pilot symbols
can be placed in the guard interval. This implies that M − ν
data carriers in (1) are replaced by pilot carriers. The ν pi-
lot symbols located in the guard interval are denoted bg =
(bg(0), . . . , bg(ν−1))T and the M−ν pilots transmitted on the
carriers bc = (bc(0), . . . , bc(M − ν − 1))T . We define Ip and
Id as the sets of carriers modulated by the pilot symbols and
the data symbols, respectively, with Ip ∪ Id = {0, . . . , N − 1}.
We assume that the pilot symbols bc have the same energy per
symbol as the data symbols. It can easily be verified that the
observation of the N + ν time-domain samples corresponding
to the ith OFDM block (as shown in figure 1(c)) contains suf-
ficient information to estimate hi. Rewriting (2), we obtain

r = Bh0 + w̃ (3)

where B = Bg + Bc is a (N + ν)× L matrix. The matrix Bg

contains the contributions from the pilot symbols in the guard
interval, and is given by

(Bg)k,` = bg(|k − ` + ν|N+ν) (4)

where |x|K is the modulo-K operation of x yielding a result in
the interval [0,K[, and bg(k) = 0 for k ≥ ν. The matrix Bc

consists of the contributions from the pilots transmitted on the
carriers, where

(Bc)k,` = sp(k − `). (5)

The vector sp equals the N -point IFFT of the pilot carriers only,
i.e. sp = Fpbc. The N × (M − ν) matrix Fp consists of a
subset of columns of the IFFT matrix F+ corresponding to the
set Ip of pilot carriers. Note that sp(k) = 0 for k < 0 or
k ≥ N . The disturbance in (3) can be written as

w̃ = HFda + w (6)

where Hk,` = h0(k − `) is a (N + ν) × N matrix. The N ×
(N + ν −M) matrix Fd consists of a subset of columns of F+

corresponding to the set Id of data carriers, and a is the vector
of N + ν − M data symbols transmitted during the observed
OFDM block. Hence, the contribution sd = Fda equals the
N -point IFFT of the data carriers only.

First note that the number N + ν − M of data symbols a is
smaller than the number N + ν of observed samples r. There-
fore, it is possible to find an invertible linear transformation T

that maps r to an (N + ν) × 1 vector r′ = [rT
1 rT

2 ]T where
r1 depends on the transmitted data symbols and r2 is indepen-
dent of a. This transform can be found by performing the QR-
decomposition of the matrix HFd, i.e. HFd = QR, where Q

is a unitary matrix Q+ = Q−1 and

R =

(

Ru

0

)

(7)

where Ru is an upper triangular matrix. Taking into account
the dimensions of HFd, it follows that HFd (and thus R) has
rank ≤ N + ν − M . Assuming the rank of HFd equals N +
ν − M − x, then R contains M + x zero rows, i.e. Ru is a
(N +ν−M −x)×(N +ν−M) matrix and the all zero matrix
0 in (7) is a (M +x)× (N + ν −M) matrix. The transform T

is then given by T = Q+, and the resulting observations yield

r′ = Tr =

(

r1

r2

)

=

(

B1

B2

)

h +

(

Ru

0

)

a +

(

w1

w2

)

.

(8)
In (8), B1 and B2 correspond to the first (N +ν−M −x) and
last (M + x) rows of TB, respectively. Because of the unitary
nature of the matrix Q, the noise contributions w1 and w2 are
statistically independent and have the same mean and variance
as the noise w.

Assuming the data symbols a are zero-mean Gaussian dis-
tributed, r′ given h0 is Gaussian distributed, i.e. r′|h0 ∼
N(Q+Bh0,Rw′) where Rw′ is the autocorrelation matrix of
the noise term w′ = Tw̃ and is given by

Rw′ =

(

R1 0

0 R2

)

(9)

where R1 = Es
N

N+ν
RuR

+
u +N0IN+ν−M−x, R2 = N0IM+x

and IK is the K × K identity matrix.
The Cramer-Rao bound is defined by R

h−ĥ
− J−1 ≥ 0 [5],

where R
h−ĥ

is the autocorrelation matrix of the estimation er-

ror h0 − ĥ0, ĥ0 is an estimate of h0 and the Fisher information
matrix J is defined as

J = Er′

[

(

∂

∂h0
ln p(r′|h0)

)+ (

∂

∂h0
ln p(r′|h0)

)

]

. (10)

Hence, the MSE of an estimator is lower bounded by E[||h0 −

ĥ0||
2] = trace(R

h−ĥ
) ≥ trace(J−1). As r1 and r2 given h0

are statistically independent, it can easily be verified that the
Fisher information matrix is given by J = J1 + J2, where

Ji = Eri

[

(

∂

∂h0
ln p(ri|h0)

)+ (

∂

∂h0
ln p(ri|h0)

)

]

(11)
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with i = 1, 2. Taking into account (8), it follows that

ln p(ri|h0) = C −
1

2
lnJRiK− (ri −Bih0)

+R−1
i (ri −Bih0)

(12)
where C is an irrelevant constant and JRiK is the determinant
of Ri. Note that as the transform T depends on the channel
taps h0 to be estimated, we need the derivates of Bi, JRiK and
R−1

i with respect to h0 to obtain the Fisher information matrix,
and hence the CRB.

To simplify the analysis, we approximate the data contribu-
tion HFda in (6) by F̃H̃a where the (N+ν)×(N+ν−M−x)

matrix F̃k,` = 1√
N

ej2π
kn`

N , H̃ is a (N +ν−M−x)×(N +ν−

M − x) diagonal matrix with diagonal elements Hn`
, n` ∈ Id

and

Hm =

N−1
∑

k=0

h0(k)e−j2π km

N . (13)

In this approximation, we have neglected the distortion of the
data samples at the edges of the observed block of samples. In
that case, the transform T = Q+ can be obtained from the
QR-decomposition of F̃, and therefore is independent of the
channel to be estimated.

First, we determine J2. As the observation r2 = B2h0 +
w2 is independent of the data symbols, and p(r2|h0) ∼
N(B2h0, N0IM+x), where B2 is independent of h0, it can
easily be found that

J2 =
1

N0
B+

2 B2. (14)

Note that the CRB of an estimation can not increase by using
more observations. Hence, the CRB obtained from the obser-
vation r2 only is an upper bound for the CRB obtained from
the whole observation r′.

Based on the observation r2, we can easily obtain the ML
estimate of h0 [1]:

ĥ0,ML = (B+
2 B2)

−1B+
2 r2. (15)

The mean squared error of this estimate is given by

MSE = E[||h0 − ĥ0,ML||
2] = trace

(

N0(B
+
2 B2)

−1
)

. (16)

Hence, the MSE of this estimate reaches the CRB=trace(J−1
2 ),

i.e. the estimate is a minimum variance unbiased (MVU) es-
timate. However, when the approximation HFd ≈ F̃H̃ no
longer holds, the observation r2 will be affected by a residual
contribution of the data symbols. In that case, the MSE of the
estimate (15) yields

MSE = trace
(

DRw̃D+
)

(17)

where Rw̃ = N0IN+ν + N
N+ν

EsHFdF
+
d H+ is the autocorre-

lation matrix of the noise term w̃ (6), D = (B+
2 B2)

−1B+
2 T2

and T2 consists of the last M + x rows of T. As the transform
T is obtained by the QR-decomposition of F̃, and F̃ is known
when the positions of the data symbols are known, B2 only de-
pends on the known pilot symbols and the known positions of
the data carriers and the pilot carriers. Hence, B2 is known at

the receiver and can be precomputed. Therefore, the estimate
(15) can be obtained with low complexity. Note that the esti-
mate (15) is only an ML estimate as long as the approximation
HFd ≈ F̃H̃ is valid.

Next, we determine J1, based on the observation r1 =
B1h0+Rua+w1 only. Note that, although B1 is independent
of h0, the autocorrelation matrix R1 is not. Let us consider the
special case that the rank of F̃ is N + ν − M , i.e. x = 01.
When M − ν � N , R1 can be approximated by

R1 = T1F̃∆F̃+T+
1 (18)

where ∆ is a diagonal matrix with elements N0 +
N

N+ν
Es|Hn`

|2 and T1 consists of the N + ν − M first rows

of T. Because F̃ has rank N + ν − M , T1F̃ is a full rank
square matrix. When A and B are square matrices, it follows
that JABK = JAKJBK. Hence, lnJR1K reduces to

lnJR1K=lnJT1F̃F̃+T+
1 K+

∑

n`∈Id

ln

(

N0 +
N

N + ν
Es|Hn`

|2
)

.

(19)
Further, as T1F̃ has full rank, the inverse of R1 (18) can easily
be computed:

(R1)
−1 = (F̃+T+

1 )−1∆−1(T1F̃)−1. (20)

Using (19) and (20), the derivates of lnJR1K and (R1)
−1 with

respect to h0 can easily be computed. Defining

α` = N0 +
N

N + ν
Es|Hn`

|2 (21)

γk,` =
N

N + ν
EsH

∗
n`

e−j2π
kn`

N (22)

βk = −
1

2

∑

n`∈Id

γk,`

α`

, (23)

it follows after tedious computations that the Fisher informa-
tion matrix J1 is given by

(J1)k,k′ = (B+
1 R−1

1 B1)k,k′ +β∗
kβk′ +

∑

n`∈Id

γ∗
k,`γk′,`

|α`|2
. (24)

Combining (14) and (24), the total Fisher information ma-
trix, based on the observation of both r1 and r2, is given by

(J)k,k′ = (B+R−1
w̃

B)k,k′ + β∗
kβk′ +

∑

n`∈Id

γ∗
k,`γk′,`

|α`|2
(25)

III. NUMERICAL RESULTS

In this section, we evaluate the CRB’s obtained from the whole
observation r1 and r2 (25) and the data-free observation r2

only (14). Without loss of generality, we assume the comb-
type pilot arrangement [6] is used for the pilots transmitted
on the carriers. We assume that the pilots are equally spaced
over the carriers, i.e. the positions of the pilot carriers are

1This assumption is valid in most practical cases, especially when N � 1.
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Figure 2: Normalized CRB, ν = 7, N = 1024, M = 40.
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Figure 3: Influence of the number of pilots M on the CRB,
ν = 7, N = 1024.

Ip = {n0 + mδ|m = 0, . . . ,M − ν − 1}, where δ =
⌊

N
M−ν

⌋

.

Note however that the results can easily be extended for other
types of pilot arrangements. Further, we assume L = 8 and
the channel impulse response linearly decreases and is normal-

ized:
∑L−1

`=0 |h0(`)|
2 = 1. The pilot symbols are randomly

generated and BPSK modulated.

In figure 2, we show the normalized CRB
(NCRB=N+ν

N
N0

Es
CRB) as function of the SNR= Es/N0

for the total observation and the subset r2 of observations
only. Further, the low SNR limit of the CRB is shown. As
expected, for low SNR (< −10 dB), the CRB of the total
observation coincides with the low SNR limit of the CRB. At
high SNR, the CRB reaches the CRB for the subset observa-
tion, indicating that at high SNR, only the observations that
are independent of the data symbols are taken into account,
whereas the observations affected by the data symbols are
neglected. Further, it can be observed that the low SNR limit
of the CRB is essentially equal to L/M . This indicates that the
CRB is inversely proportional to the number of pilots M .

In figure 3, the NCRB is shown as function of M for differ-
ent values of the SNR. The (N)CRB is inversely proportional
to M for a wide range of M . At low and high values of M ,
the NCRB is increased as compared to L/M . This can be
explained by figure 4. In figure 4, the influence of the pilot
sequence is shown on the CRB. In this figure, the CRB is com-
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1.E+00
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10 100 1000

M

C
R

B

simulation

average

Es/No=0 dB

Es/No=10 dB

Figure 4: Influence of the pilot sequence on the CRB, ν = 7,
N = 1024.

puted for 50 randomly generated pilot sequences. Further, the
average of the CRB over the random pilot sequences is shown.
Note that the CRB is only related to the values of the pilots
through the first term in (25). At high values of M , the pilot
spacing δ = 1, such that the pilots on the carriers are no longer
evenly spread over the carriers. This effect causes the peak in
the curve at high M . The CRB in this case clearly depends on
the values of the pilots: we observe an increase of the variance.
The effect disappears when M is further growing: the spread-
ing of the pilots over the carriers becomes again more uniform.
Also at low values of M , the average value of and the variance
of the CRB are increased. At low M , the contribution of the
guard interval pilots is dominant. From simulations, it follows
that this contribution strongly depends on the values of the pi-
lots in the guard interval, and has large outliers when the guard
interval pilots are badly chosen. The effect disappears when
the number of guard interval pilots is smaller than the number
of pilot carriers. However, the variation is in most cases rather
small, so that we can conclude that the CRB is essentially in-
dependent of the pilot sequence.

Figure 5 shows the dependency of the NCRB on the guard
interval length. It is observed that the NCRB slightly increases
for increasing guard interval length. This can be explained as
when ν increases, the number of guard interval pilots increases
while the number of pilot carriers decreases. Hence, when ν in-
creases, the relative importance of the contribution of the guard
interval pilots will increase. As in figure 4, this will cause an
increase of the CRB.

The dependency of the CRB on the FFT size N is shown in
figure 6. The CRB is constant over a wide range of N . Only
at low values of N , the CRB slightly increases: the assump-
tion M − ν � N does not hold, so the approximation (18)
is no longer valid. However, for the range of N for which the
approximation (18) holds, we can conclude that the CRB is in-
dependent of N .

In figure 7, we show the CRB for both the total observation
and the subset observation, along with the low SNR limit of the
CRB. Although it follows from figure 2 that the CRB and the
subset CRB are larger than the low SNR limit of the CRB, the
difference is small: the curves in figure 7 essentially coincide.
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In figure 7, we also show the MSE (17) of the proposed subset
based estimator. As can be observed, the MSE coincides with
the CRB for a large range of SNR. Only for large SNR (>20
dB), the MSE shows an error floor, indicating that the approx-
imation HFd ≈ F̃H̃ is no longer valid. Further, we show in
figure 7 the MSE of a suboptimal ML based estimator for the
channel, derived in [1] and based on the estimator given in [7].
It is clear that the estimator proposed in this paper outperforms
the estimator from [1]. Further, in the latter estimator it is as-
sumed that the autocorrelation matrix Rw̃ is known (e.g. by
estimating it from the received signal). Therefore, the com-
plexity of the estimator from [1] is much higher than that of the
proposed estimator.

IV. CONCLUSIONS

In this paper, we have derived the Cramer Rao bound for data-
aided channel estimation in KSP-OFDM, when the pilot sym-
bols are distributed over the guard interval and pilot carriers.
An analytical expression for the CRB is found by applying a
proper linear transformation to the received samples. It turns
out that the CRB is essentially independent of the FFT length,
the guard interval and the pilot sequence, but is inversely pro-
portional to the number of pilots. At low SNR, the CRB ob-
tained in this paper coincides with the low SNR limit of the
CRB, derived in [1]. At high SNR, the CRB reaches the CRB
corresponding to the data-independent subset of the observa-
tion, indicating that at high SNR, observations affected by data
symbols are neglected. Further, we have compared the MSE of
the ML subset estimator with the obtained CRB and with the
MSE of the ML-based channel estimator from [1]. The pro-
posed estimator coincides with the CRB for a large range of
SNR. Only at large SNR, the MSE shows an error floor. How-
ever, the proposed estimator outperforms the estimator from
[1], both on complexity and performance.
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