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ABSTRACT

This paper compares parametric and nonparametric channel es-
timation methods in a multipath environment. For both meth-
ods, the MSE on the received symbol pulse is shown to con-
sist of a modeling error term and an estimation error term.
We lower bound the latter term by computing the associated
Cramer-Rao bounds. We point out that the MSE can be min-
imized by a proper selection of the number of parameters to
be estimated. In addition, we present simulation results from
practical estimators that confirm our theoretical analysis. Our
numerical results indicate that the parametric method outper-
forms the nonparametric approach.

I. INTRODUCTION

Multipath channels give rise to inter-symbol interference (ISI)
at the receiver. The traditional approach to counter the effects
of ISI is to equalize the received symbol pulse. In order to
successfully mitigate the ISI, an accurate knowledge of the re-
ceived signal pulse is paramount. Hence, channel estimation
is an important task of the receiver in digital communication
systems.

A parametric channel estimation method exploits the mul-
tipath structure by estimating the path gains and delays, and
computing from these estimates the corresponding received
symbol pulse. In a nonparametric channel estimation method
the samples of the received symbol pulse are estimated with-
out taking the multipath structure into account. Empirical re-
sults have indicated that the estimation accuracy improves by
exploiting the underlying channel structure [1, 2, 3].

In this contribution, we investigate the mean squared error
(MSE) on the received symbol pulse, resulting from the two
estimation methods. We present a lower bound on the MSE,
which is based on the Cramer-Rao lower bound (CRB), and
provide simulation results that confirm our theoretical deriva-
tions. Our numerical results illustrate that the parametric esti-
mation method yields the smaller MSE.

II. SYSTEM MODEL AND ESTIMATION STRATEGIES

A sequence of data symbols {a (k)} is modulated on a band
limited transmit pulse p (t) with bandwidth B and transmit-
ted over a channel with impulse response hchannel (t). The
received symbol pulse h (t) is defined as the convolution of the
transmit pulse and the channel impulse response

h (t) =
∫ +∞

−∞
p (t − τ) hchannel (τ) dτ

In order to estimate h (t), a sequence of K pilot symbols
{a (k) , k = 0, . . . , K − 1} is transmitted over the channel.
We define r (t) as the received signal that corresponds to this
data sequence

r (t) = s (t) + w (t)

=
K−1∑
k=0

a (k) h (t − kT ) + w (t) (1)

where s (t) represents the useful part of the received signal and
w (t) is zero-mean complex-valued white Gaussian noise with
spectral power density N0. The next subsections are devoted to
the estimation of the received pulse h(t).

A. Parametric channel estimation

In the parametric approach, the receiver assumes that h (t) cor-
responds to some parametric model h0 (t; x) characterized by
a set of real-valued parameters x = [x (1) , . . . , x (Npar)]

T ,
where [.]T denotes transposition. Here we consider the follow-
ing multipath model :

h0 (t; x) =
L−1∑
i=0

αip (t − τi) (2)

where L denotes the number of paths, {αi} and {τi} denote
the gains and the delays, and x contains the delays and the real
and imaginary parts of the gains (a total of Npar = 3L real
parameters).

We define s0 (t; x) as the received signal without noise in
the case that the received pulse h (t) is equal to the model
h0 (t; x)

s0 (t; x) =
K−1∑
k=0

a (k) h0 (t − kT ; x)

Note that the structure of s0 (t; x) is known to the receiver,
since we consider estimation based on a pilot sequence.

In practice, a modelling error usually occurs : there is no
value of x such that h (t) = h0 (t; x). We define x0 as the
value of the parameter vector x that results in the best fit for
h0 (t; x) according to the following criterion

x0 = arg min
x

∫
|h (t) − h0 (t; x)|2 dt (3)

As x0 is unknown to the receiver, it has to be estimated. The
maximum-likelihood (ML) estimator according to the observa-
tion model

r (t) = s0 (t; x) + w (t) (4)
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is given by

x̂ = arg min
x

∫
|r (t) − s0 (t; x)|2 dt (5)

We will consider the estimate from (5), but with r (t) given by
(1). This estimate is used to compute samples of the corre-
sponding symbol pulse according to

ĥ (mTs) = h0 (mTs; x̂) (6)

In (6), the sampling rate 1/Ts should satisfy 2BTs ≤ 1 in order
to avoid aliasing.

B. Nonparametric channel estimation

The nonparametric estimation method involves the estimation
of the samples h (mTs), with 2BTs ≤ 1, ignoring the under-
lying model. The received pulse has an infinite duration so in
theory this would result in an infinite number of samples to be
estimated. In practice this is not possible, so only the samples
of h (t) that belong to a predefined range [−L1Ts, L2Ts] are
estimated. The number of samples that have to be estimated is
equal to N = L1 + L2 + 1. The samples of the received signal
r (t) and of h (t) can be arranged in Ns = T/Ts independent
vectors ri and hi respectively (i = 1, . . . , Ns)

ri = [r (−L1Ts + (i − 1) Ts) ,

r (−L1Ts + T + (i − 1) Ts) . . .]T

hi = [h (−L1Ts + (i − 1) Ts) ,

h (−L1Ts + T + (i − 1) Ts) . . .]T

where hi has Ni entries so that N =
∑Ns

i=1 Ni. Assuming h (t)
is limited to N samples, each vector ri can be written as

ri = Aihi + wi (7)

where Ai is a (K + Ni − 1) × Ni Toeplitz matrix with first
column [a0 . . . aK−1 01×Ni−1]

T and wi is the noise vector.
The ML estimate ĥi corresponding to the observation model
(7) is given by [4]

ĥi =
(
AH

i Ai

)−1
AH

i ri (8)

where [.]H denotes the Hermitian operator. We will consider
the estimate (8), but with ri corresponding to the observation
model (1), with h (t) not necessarily limited to N samples.

III. LOWER BOUNDS ON THE MSE ON THE RECEIVED

PULSE h (t)

The performance of both estimation methods is compared in
terms of the MSE on the received pulse. This MSE is defined
as

MSE = E

[∫ +∞

−∞

∣∣∣h (t) − ĥ (t)
∣∣∣2 dt

]
(9)

= TsE

[
+∞∑

l=−∞

∣∣∣h (lTs) − ĥ (lTs)
∣∣∣2 dt

]
(10)

with E [.] denoting expectation over the noise and over all pos-
sible pilot sequences1. In this section we are going to derive
some theoretic lower bounds for the MSE.

A. Parametric channel estimation

The MSE (9) for the parametric channel estimation method is
defined as

MSE = E

[∫ +∞

−∞
|h (t) − h0 (t; x̂)|2 dt

]
(11)

It can be shown that h0 (t; x̂) is an asymptotically unbiased
estimate of h0 (t; x0), so this MSE can be written as

MSE =
∫ +∞

−∞
|h (t) − h0 (t; x0)|2 dt+

E

[∫ +∞

−∞
|h0 (t; x̂) − h0 (t; x0)|2 dt

]
(12)

We see that the MSE (12) consists of a term caused by the
modelling error and a term caused by the estimation error x̂ −
x0.

We introduce the CRB corresponding to the observation
model (4) to lower bound the second term in (12). This yields
(see appendix A)

MSE ≥
∫ +∞

−∞
|h (t) − h0 (t; x0)|2 dt +

N0Npar

2KEs
(13)

We see that this MSE bound consists of two parts: a part caused
by the modeling error and a part caused by additive noise. Ap-
parently, the second term is proportional to the number Npar

of estimated parameters.

B. Nonparametric channel estimation

For the nonparametric channel estimation method, the MSE (9)
on the received pulse can be expressed as

MSE = TsE

[
+∞∑

m=−∞

∣∣∣h (mTs) − ĥ (mTs)
∣∣∣2

]
(14)

Taking into account that ĥ (mTs) = 0 for m < −L1 and m >
L2, (14) reduces to

MSE = Ts

∑
m/∈[−L1, L2]

|h (mTs)|2 +

TsE

[
+L2∑

m=−L1

∣∣∣h (mTs) − ĥ (mTs)
∣∣∣2

]
(15)

The first part of this expression can be considered as a modeling
error (when the duration of the actual pulse h (t) exceeds NTs).
The second term of the MSE can again be lower bounded by

1This MSE also holds for a fixed pseudo-random pilot sequence of suffi-
cient length



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’07)

the CRB, corresponding to the observation model (7) (see ap-
pendix B). This yields for the MSE (14)

MSE ≥ Ts

∑
m/∈[−L1, L2]

|h (mTs)|2 +
N02N

2KEs
(16)

The second term of (16) is proportional to the number of esti-
mated real-valued parameters 2N . Compared to (13), we ob-
serve that both expressions (13) and (16) have the same struc-
ture: they both consist of a term caused by a modeling error and
a part caused by the additive noise. For the parametric method
the modeling error is caused by the difference between h (t)
and h0 (t; x0) while for the nonparametric method the model-
ing error is caused by the duration of h (t) exceeding NTs.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate the
obtained MSE lower bounds and to compare the two estimation
methods.

The transmit pulse is a square root raised cosine pulse with
25% roll-off. The pilot sequence consists of 20 BPSK symbols,
that are randomly changed from one block to the next. We
consider a 3-path channel with delays [0T, 0.55T, 1.65T ] and

complex path gains
[
0.8085ej π

8 , 0.5659ej 2π
8 , 0.1617e−j 3π

8

]
.

The sample period Ts is set to T/2 so that no aliasing occurs.
Figs. 1 and 2 are related to parametric and nonparamet-

ric estimation, respectively. They show the theoretical lower
bound on the MSE (solid lines), along with simulation results
(dashed lines) obtained from an actual channel estimator. The
simulation results confirm the trend observed in the MSE lower
bound.

For parametric estimation method, results in Fig. 1 are
shown for different values of L in the channel model (2), with
the true number of paths equal to 3; the corresponding values
of x0 from (3) are given in Table 1. The simulation results hold
for the estimator introduced in [3] based on the iterative SAGE
algorithm [5].

For nonparametric estimation, results in Fig. 2 are shown
for different values of the number N of estimated coefficients
{h (mTs)}. The simulation results correspond to the estimator
(8).

For both methods, we observe from Figs. 1 and 2 that the
modelling error gives rise to an MSE floor at large Es/N0. This
floor can be reduced by increasing the number of real-valued
parameters (3L or 2N ) to be estimated, at the expense of an
increase of the noise-dependent term of the MSE. Hence, for
each value of Es/N0 an optimum value of 3L or 2N exists,
that minimizes the MSE.

Fig. 3 shows the MSE lower bound for nonparametric es-
timation at Es/N0 = 10 dB as a function of the number of
estimated coefficients {h (mTs)}, along with the contributions
caused by the modeling error and the estimation error. Also
shown is the MSE lower bound for parametric estimation with
L = 3. We observe that for the given setup the MSE lower
bound for nonparametric estimation is minimum for N = 8,
but still exceeds the MSE lower bound for parametric estima-
tion with L = 3.
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Figure 1: Influence of the number of estimated paths on the
MSE for parametric channel estimation
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Figure 2: Influence of the number of estimated taps on the MSE
for nonparametric channel estimation
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Table 1: Values for the parameters x0 for the different numbers of estimated paths
Number of estimated paths delays amplitudes

3 [0T, 0.55T, 1.65T ]
[
0.8085ej π

8 , 0.5659ej 2π
8 , 0.1617e−j 3π

8

]
2 [0T, 0.481T ] [0.8425 + j0.33, 0.5343 + j0.5488]
1 [ 0.216T ] [1.2439 + j0.7949]
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Figure 3: Influence of the number of estimated taps on the CRB
for Es/N0 = 10 dB.

V. CONCLUSION

We have compared a parametric and a nonparametric chan-
nel estimation method for multipath channels in terms of the
MSE on the received symbol pulse. We have shown that the
MSE consist of a modeling error term and an estimation error
term. We derived the respective Cramer-Rao lower bound on
the estimation error term for both methods. We investigated
the influence of number of estimated paths for the parametric
estimation method and the number of estimated channel taps
for the nonparametric estimation method. We noticed that for
every Es/N0 there exists an optimal number of parameters to
be estimated, which minimizes the MSE. Finally, our analysis
showed that the parametric method yields the lower MSE.

APPENDIX A

The second term of (12) can be lower bounded by the corre-
sponding Cramer Rao Lower bound (CRB) [6]

E

[∫ +∞

−∞
|h0 (t; x̂) − h0 (t; x0)|2 dt

]
≥

E

[∫ +∞

−∞
�

{
v (t)H

CRB (x0)v (t)
}

dt

]
(17)

where CRB (x0) is the inverse of the Fischer information ma-
trix Jp corresponding to x0 and where

v (t) =
[
∂h0 (t; x̂)

∂x̂

]
x̂=x0

Jp is defined as [7]

Jp =
2

N0

∫
�

{[
∂s0 (t; x)

∂x

]
x=x0

[
∂s0 (t; x)

∂x

]H

x=x0

}
dt

By averaging over the pilot symbols, (17) can be further sim-
plified

Ea(k)

[∫ +∞

−∞
�

{
v (t)H J−1

p v (t)
}

dt

]
=

tr

(∫ +∞

−∞
�

{
v (t)v (t)H

}
dt Ea(k)

[
J−1

p

])
(18)

where tr (.) denotes the trace
Since the inverse of a matrix is a matrix convex function,

Jensen’s inequality for matrices [8] can be applied

Ea(k)

[
J−1

p

] ≥ (
Ea(k) [ Jp]

)−1

The averaging of Jp over the pilot symbols yields

Ea(k) [ Jp] =
2KEs

N0

∫
�

{
v (t)v (t)H

}
dt (19)

so expression (18) is lower bounded by

N0

2KEs
tr

(∫ +∞

−∞
�

{
v (t)v (t)H

}
dt

[∫
�

{
v (t)v (t)H

}
dt

]−1
)

(20)

This yields for (20)

N0

2KEs
tr

(
INpar

)
=

N0Npar

2KEs

where Im is the m × m identity matrix.

APPENDIX B

The second term of (15) can be rewritten as

TsE

[
+L2∑

m=−L1

∣∣∣h (mTs) − ĥ (mTs)
∣∣∣2

]
= Ts

Ns∑
i=1

E

[∣∣∣hi − ĥi

∣∣∣2]
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Every term of the summation can be lower bounded by the cor-
responding CRB

Ts

Ns∑
i=1

E

[∣∣∣hi − ĥi

∣∣∣2] ≥ Tstr
(
J−1

npi

)

where Jnpi is the corresponding Fischer information matrix.
For a model like (7) the expression for the Fischer information
matrix is a well known result [7] and given by

Jnpi =
2Ts

N0

[ � (
AH

i Ai

) −� (
AH

i Ai

)
� (

AH
i Ai

) � (
AH

i Ai

) ]

This results in

Ts

Ns∑
i=1

E

[∣∣∣hi − ĥi

∣∣∣2] ≥ N0

Ns∑
i=1

tr
((� [

AH
i Ai

])−1
)

Averaging this result over the pilot symbols yields

Ts

Ns∑
i=1

E

[∣∣∣hi − ĥi

∣∣∣2] ≥ N0

Ns∑
i=1

tr
(

Ea(k)

[(� [
AH

i Ai

])−1
])

We can apply Jensen’s inequality for matrices [8] which results
in

Ts

Ns∑
i=1

E

[∣∣∣hi − ĥi

∣∣∣2] ≥ N0

Ns∑
i=1

Ni

KEs

which can be further simplified using the fact that N =∑Ns

i=1 Ni

Ts

Ns∑
i=1

E

[∣∣∣hi − ĥi

∣∣∣2] ≥ N02N

2KEs
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