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ABSTRACT

The estimation and tracking of the fractional carrier fre-
quency offset (CFO) is a crucial issue in the implementa-
tion of orthogonal frequency division multiplexing (OFDM)
systems. In this contribution, we present a novel code-aided
fractional CFO estimation algorithm based on the Expectation-
Maximization (EM) algorithm. The proposed algorithm ex-
changes soft information from the channel decoder, in the form
of a posteriori probabilities of the coded symbols, between the
demapper, the decoder, and the CFO estimator in an iterative
way. The proposed estimation scheme can work with any
detector as long as the detector is able to compute the a
posteriori probabilities (APPs) of the data symbols.

Index-Terms- Orthogonal Frequency Division Multiplex-
ing (OFDM), Carrier Frequency Offset (CFO), Coding,
Expectation-Maximization (EM) algorithm.

I. INTRODUCTION

The Orthogonal Frequency Division Multiplexing (OFDM)
transmission system has received great interest in wireless
communication due to its high spectral efficiency and ro-
bustness to multipath channels [1], [2]. It has been adopted
for several types of high data rate wireless communication
systems, including digital video/audio broadcasting [3] and
wireless local area networking (WLAN) [4]. In such systems,
the high rate data stream is split in many low-rate parallel
streams, each modulating an orthogonal sub-carrier. Since the
individual sub-carrier signal spectra are affected by frequency
flat fading rather than frequency selective fading, equalization
is drastically simplified.

Unfortunately, OFDM is known to be vulnerable to carrier
frequency offset (CFO) [5]. One main source of CFO is the
mismatch between the carrier frequencies at the transmitter
and the receiver. Another possible source is the Doppler shift
caused by relative motion between the transmitter and the
receiver. The CFO is usually divided into an integer part,
which is a multiple of the sub-carrier spacing, and a fractional
part, which is less than the sub-carrier spacing. The former
causes a circular shift of the transmitted symbols resulting in
a high BER [6], but does not cause inter-carrier interference
(ICI); i.e., the orthogonality of the subcarriers is maintained.
The latter leads to a reduction and rotation of the signal
amplitude and to a loss of sub-carrier orthogonality. This loss
introduces inter-carrier interference (ICI) which results in a
degradation of the global system performance. A frequency

offset as small as a few percent of the sub-carrier spacing is
sufficient to impair the performance of an OFDM receiver, as
pointed out in [5]. In order to operate correctly, an OFDM
receiver needs accurate compensation of the carrier frequency
offset in the input signal.

In this paper, we concentrate on the compensation of
a fractional CFO with respect to the carrier spacing. The
previously proposed methods for fractional carrier frequency
synchronization of OFDM systems can be classified into two
main categories, namely data aided methods [7], [8] and blind
methods [9]–[12]. In the data aided methods, the CFO estimate
is acquired through sending training symbols. Since training
symbols carry no information, these methods induce a loss of
bandwidth efficiency. On the other hand, blind methods are
able to avoid the need of training symbols by exploiting the
inherent structure of received data. Typical structures include
virtual sub-carrier [10], [13], cyclic data structure due to cyclic
prefix [9], [11] and cyclostationarity [12].

The proper action of the frequency synchronization can be
strongly disturbed by operating at very low signal to noise
ratios, which occurs in turbo or LDPC coded systems. This
motivates the design of a new fractional frequency offset
estimation algorithm in which the phase of the decoded data
is tracked; the algorithm is initialized by a conventional
data aided or blind frequency estimator. Starting from the
Maximum Likehood (ML) principle, we derive an estimator
that is based on the Expectation-Maximization (EM) algorithm
[14]. The proposed algorithm iterates between data detection
and estimation, improving the estimate of CFO. In the first
iteration, we decode the received data without having any
information about the residual CFO, or using a few pilots
to obtain a rough estimate of the residual CFO. Next, based
on a posteriori probabilities provided by the decoder, the
a posteriori expectations of the transmitted symbols can be
computed; they are used to estimate the CFO in an iterative
way. In [15], we exploited the same idea to estimate the
common phase error resulting from carrier phase noise (PN).
Instead of modeling ICI resulting from PN as a Gaussian noise
as in [15], ICI resulting from CFO can be mitigated by using
the estimated CFO and the decoder output.

The rest of the paper is organized as follows. In section II,
we consider the system model, where the proposed transmitter
and receiver are described. The CFO estimation algorithm
is derived in section III. Simulation results are provided in
section IV. Finally, we end with conclusions in section V.
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Fig. 1. The conceptual block diagram of the proposed system.

II. SYSTEM MODEL

Fig. 1 depicts the discrete time baseband equival-
ent block diagram for the proposed OFDM system. At
the transmitter, a binary information sequence b =
{b(0), b(1), · · · , b (Nb − 1)} is passed through a channel
encoder with coding rate Rc. The resulting binary code-
word c = {c(0), c(1), · · · , c(Nc − 1)}, Nc = Nb/Rc,
is then interleaved and mapped onto Nd symbols d =
{d(0), d(1), · · · , d(Nd − 1)} where d(i) belongs to a 2q -
point constellation, Nd = Nc/q. We further assume that a
total of Np pilot symbols p = {p(0), p(1), · · · , p (Np)} are
inserted at known sub-carriers in each OFDM symbol. The
set of sub-carrier indices on which pilots are transmitted is
denoted as Γ. The block of N = Nd+Np symbols is converted
to the time domain using an N -point inverse Fourier transform
(IFFT). The OFDM symbol is extended using a cyclic prefix
of ν samples. We can write the n-th time-domain sample
(n = −ν, . . . , N − 1) of the OFDM block as

s(n) =

√
1

N + ν

N−1∑
k=0

z(k) e
j2πkn

N (1)

where

z(k) =
{

d(k) k /∈ Γ
p(k) k ∈ Γ . (2)

The data symbols are independently and identically distributed
random values with zero mean and variance E

[
|d(k)|2

]
=

Es. The transmitted OFDM block propagates to the receiver
through an L- tap channel with overall channel impulse
response (CIR) h = [h(0), . . . , h(L − 1)]. This CIR incor-
porates the transmit filter, physical propagation channel and
receiver filter.

Assuming perfect time synchronization, the nth time do-
main received sample r(n) can be written as:

r(n) = [s(n) ? h(n)] ej(2πεn/N) + w(n) (3)

where the symbol ? stands for convolution, ε represents the
carrier frequency offset normalized to the carrier spacing,
w(n) is the white Gaussian noise with variance σ2

n, and

n = −ν, . . . N + L − 2. After removing the cyclic prefix and
applying the Fast Fourier Transform (FFT), the demodulated
symbol Y (k′) at carrier k′ can be written as [5]

Y (k′) = z(k′)H(k′)ϑ(ε) (4)

+
N−1∑

k = 0,
k 6= k′

z(k)H(k)η(k − k′, ε) + ξ(k′)

where ξ(k′) is the Gaussian noise contribution, η(m, ε) is
given by

η(m, ε) =
1√

N(N + ν)
sin (π (m + ε))

sin (π ((m + ε) /N))
ejπ(m+ε)(N−1)/N

(5)
and ϑ(ε) = η(0, ε). Equation (4) shows that the CFO has two
detrimental effects; one is the reduction and rotation of each
FFT output and the second is the introduction of ICI from
other carriers, as the CFO destroys the orthogonality between
subcarriers.

III. CPE ESTIMATION ALGORITHM

In this section, we give a brief outline of the EM al-
gorithm, and apply it to the observation vector Y =
[Y (0), · · · , Y (N − 1)] from (4) to estimate the CFO ε.

A. EM Algorithm-Principle

The EM algorithm is an iterative technique to approach the
ML estimate of a parameter (set) ρ from an observation r
[14]. It is based on the concept of the so-called missing data
a, such that, if the missing1 data were known, the estimation
of ρ would be easy. We denote the iteration index by ι.
Starting from a first estimate ρ̂ (ι = 1), we iteratively apply
the following two steps:

• E-step:

Q (ρ |ρ̂ (ι) ) =
∫

log (p (r |a, ρ )) p (a |r, ρ̂ (ι) ) da (6)

1In this paper, missing data refers to transmitted data.

924



• M-step:

ρ̂ (ι + 1) = arg max
ι

{Q (ρ |ρ̂ (ι) )} . (7)

The EM algorithm terminates when the estimate has converged
or a certain stopping criterion has been met. For continuous
parameters, the final estimate converges to the ML estimate as
long as the initial estimate is sufficiently accurate [16], [17].

B. Soft Decision-Directed CFO Estimation

Let us consider the received vector Y =
[Y (0), · · · , Y (N − 1)] and the transmitted data vector
z = [z(0), · · · z(N − 1)]. We represent the estimated
ICI term in (4) at iteration (ι) by the vector
I(ι) =

[
I(ι)(0), · · · , I(ι)(N − 1)

]
where I(ι)(k′) is given by

I(ι)(k′) =
N−1∑

k = 0,
k 6= k′

ẑ(ι)(k′)H(k′)η
(
k − k′, ε̂(ι)

)
(8)

where q̂(ι)is the estimated value of q at iteration ι. Let us
define the vector R(ι) = Y − I(ι) and assume that R(ι) is
jointly Gaussian distributed. Accordingly, we can write:

log p
(
R(ι), z |ϑ(ε)

)
∝ log p

(
R(ι) |z, ϑ(ε)

)
(9)

and

log P
(
R(ι) |z, ϑ(ε)

)
∝

N−1∑
k=0

∣∣∣R(ι)(k) − z(k)H(k)ϑ(ε)
∣∣∣2 .

(10)
Using (10) in (6) yields

Q
(
ϑ(ε)

∣∣∣ϑ̂(ε) (ι)
)

=∑
k/∈Γ

(∣∣R(ι)(k)
∣∣2 + |ϑ(ε)H(k)|2 ψ(k)

−2Re
{
R(ι)(k)ϑ∗(ε)H∗(k)µ∗(k)

} )
+

∑
k∈Γ

(∣∣R(ι)(k)
∣∣2 + |ϑ(ε)H(k)|2 |p(k)|2

−2Re
{
R(ι)(k)ϑ∗(ε)H∗(k)p∗(k)

} )
.

(11)

The a posteriori expectations µ(k) and ψ(k) are obtained by
exploiting the a posteriori probabilities (APPs) computed by
the decoder:

µ(k) =
∑
ω∈Ω

ω · P
(
z(k) = ω

∣∣∣R(ι), ϑ̂(ε) (ι)
)

(12)

ψ(k) =
∑
ω∈Ω

|ω|2 · P
(
z(k) = ω

∣∣∣R(ι), ϑ̂(ε) (ι)
)

. (13)

Using (11), it follows that the updated estimate for the CPE
is given as

ϑ̂(ε) (ι + 1) = arg max
ϑ(ε)

∂Q
(
ϑ(ε)

∣∣∣ϑ̂(ε) (ι)
)

∂ϑ(ε)
(14)

After some mathematical manipulations, the closed form for
the updated estimate of ϑ(ε) is given by:

ϑ̂(ε) (ι + 1) =
∑N−1

k=0 R(ι)(k)H∗(k)g∗(k)∑N−1
k=0 |H(k)|2 q(k)

(15)

where
g(k) =

{
p(k) if k ∈ Γ
µ(k) if k /∈ Γ (16)

and

q(k) =
{

|p(k)|2 if k ∈ Γ
ψ(k) if k /∈ Γ

. (17)

In the following, (15) is denoted as the pilot assisted estimator,
where the initial value of ϑ̂(ε) (the first iteration) is given as

ϑ̂(ε) (1) =
∑

k∈Γ R(ι)(k)H∗(k)p∗(k)∑
k∈Γ |H(k)|2 |p(k)|2

. (18)

In the absence of pilot symbols, i.e. if Γ is empty, we assume
that the initial value of ϑ̂(ε) equals one: in the first iteration,
we decode the received data without having any information
about the CFO. This is referred to as the blind estimator.

At iteration ι, the estimated CFO ε̂(ι) can be obtained using
(5):

ε̂(ι) =
N

π(N − 1)
arg

(
ϑ̂(ε)(ι)

)
. (19)

Based on ε̂(ι) and the decoder output, the ICI term in (4)
can be calculated and subtracted from the received signal to
improve the estimation accuracy in the next iteration. However,
in the first iteration, we assume I(1) is zero as we do not
have any information about the CFO value nor the transmitted
information.

IV. SIMULATION RESULTS

To validate the proposed algorithm, we have carried out
Monte Carlo simulations. We consider an OFDM system,
using a convolutional code with constraint length 5, rate
1/2 and polynomial generators (23)8 and (35)8. The BCJR
algorithm is used for decoding. A block length of Nb = 128
information and pilot bits was chosen, leading to Nc = 256
coded bits. The coded bits are Gray-mapped on a 8-PSK
constellation, resulting in Nd + Np = 64 symbols. We take
Np = 4 for the pilot estimator while Np = 0 for the
blind estimator. The channel consists of L = 4 statistically
independent taps, each being a zero-mean complex Gaussian
random variable with an exponential power delay profile [18]:

E
[
|h (l)|2

]
= Eh exp (−l/5) , l = 0, . . . , L − 1 (20)

where Eh is chosen such that the average energy per sub-
carrier is normalized to unity. To avoid ISI, a cyclic prefix of
length ν = L − 1 is employed. We assume perfect channel
knowledge to isolate the effect of the CFO error.

Figures 2 and 3 show the mean squared estimation error
(MSE) of the CFO, (MSE)CFO = E

[
(ε − ε̂)2

]
, and the bit

error error rate (BER) performance of the proposed schemes
as a function of Eb/No for a normalized CFO ε = 0.1,
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Fig. 2. Mean squared error (MSE) with normalized CFO, ε = 0.1.

respectively. Since we assume that at the first iteration the
estimated CFO equals zero for the blind estimator, this curve
illustrates the effect of the CFO on the OFDM system. Further,
the performance of the pilot estimator at the first iteration
represents the performance of the conventional data aided
estimator. For all iterations, the pilot estimator outperforms the
blind estimator. For both estimators, a strong improvement of
the performance is achieved after only three EM iterations.

Figures 4 and 5 show the MSE and the BER performance of
the proposed schemes as a function of the normalized CFO ε at
Eb/No= 15 dB, respectively. We note that for small values of
ε, the blind estimator is better than the pilot estimator because
the initial estimate for the blind estimator (i.e. ε̂ = 0) is
typically closer to the true CFO ε than the initial estimate for
the pilot estimator, which is based on a few pilots. However,
when ε increases, the pilot estimator outperforms the blind
estimator: the initial estimate for the blind estimator is no
longer close the true CFO. For larger ε, it follows from the
figures that the MSE and BER increase: the ICI component
is the dominating effect and disturbs the estimator. It can
be observed from the figures that the increase in MSE and
BER for the blind estimator starts at lower CFO than the pilot
estimator: the pilot estimator is able to track larger CFO than
the blind estimator.

V. CONCLUSIONS

In this paper, we have proposed a novel soft code-aided
fractional carrier frequency offset (CFO) estimation algorithm
for OFDM systems. Based on the EM algorithm, the re-
ceiver iterates between data detection and estimation, with
the exchange of soft information. The results indicate that the
proposed algorithm achieves a significant improvement in the
MSE and the BER performance after 3 iterations as compared
to the case of no fractional CFO correction.
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