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Abstract—In this paper, we propose an iterative joint DA/DD
channel estimation algorithm for known symbol padding (KSP)
OFDM. The pilot symbols used to estimate the channel are not
only located in the guard interval, but also on some of the OFDM
carriers. Initially, the channel is estimated using the pilot symbols
only. Next, a decision is made with respect to the transmitted
data symbols. We consider both hard and soft decision of the
data symbols. The decisions on the data symbols are then used
to update the channel estimate in a joint DA/DD estimation
algorithm. The algorithm iterates between data detection and
channel estimation until convergence is reached. At high SNR,
the MSE performance of the iterative estimator converges to the
MSE performance of the case where all data symbols are prior
known at the receiver, i.e. the all pilot DA estimator. It turns out
that the MSE performance of hard decision of the data symbols
reaches the MSE of the all pilot DA estimator at lower SNR than
that of soft decision of the data symbols; this is caused by some
approximations needed to simplify the estimation algorithm.

I. INTRODUCTION

In multicarrier (MC) transmission [1], the effect of channel
dispersion is mitigated by inserting a guard interval between
successively transmitted MC symbols. Several types of guard
intervals are discussed in the literature. The most popular
type of guard interval is the cyclic prefix (CP) [2]-[3]. In
CP-OFDM, the guard interval consists of a cyclic extension
of the transmitted MC block: the last samples of each MC
block are copied and added as a prefix to the MC block.
Another guard interval type is zero-padding (ZP) [2]-[3]. In
ZP-OFDM, no signal is transmitted during the guard interval.
In these two guard interval techniques data-aided channel
estimation is typically obtained by replacing some of the data
carriers by pilot carriers and estimating the channel in the
frequency domain [2],[4]. A drawback of these two guard
interval techniques, however, is the ambiguity problem in tim-
ing synchronization. In low complexity timing synchronization
algorithms like Schmidl&Cox [5], the correct borders of a MC
block can only be determined with an ambiguity equal to the
guard interval length.

In the guard interval technique that is considered in this
paper, i.e. known symbol padding (KSP) [6]-[7], the guard
interval consists of known samples. By properly selecting
the known samples, the ambiguity problem in timing syn-
chronization as occurs in CP-OFDM and ZP-OFDM can be
avoided [8]. The known samples from the guard interval
can also be used for channel estimation. However, the guard
interval length is usually selected to be only slightly larger

than the channel impulse response length, which means that
the number of pilots in the guard interval is typically too
small to accurately estimate the channel. To solve this problem,
additional pilots can be inserted on some of the carriers, by
replacing data symbols by pilot symbols [9]-[10]. However,
channel estimation in KSP-OFDM is harder than in CP-OFDM
and ZP-OFDM, as optimal maximum likelihood (ML) chan-
nel estimation is very complex [10]. Therefore, suboptimal
channel estimation techniques are developed.

In this paper, we propose an iterative joint DA/DD (data
aided/decision directed) channel estimation algorithm for
KSP-OFDM. In the first step, the channel is estimated by
means of a DA algorithm. Using this channel estimate, a
decision is made about the transmitted data symbols. In this
paper, we will consider both hard and soft decision. The
decisions about the data symbols are then used to update
the channel estimate by means of a joint DA/DD channel
estimator. The algorithm iterates between the data decisions
and the channel estimation until convergence is reached. In the
literature, different DA channel estimation techniques for KSP-
OFDM can be found. In [10]-[11], two ML-based estimators
are proposed. However, at high SNR, the mean squared error
(MSE) performance of these estimators shows an error floor as
the presence of the unknown data symbols disturbs the channel
estimation. In [12], a frequency domain DA channel estimation
technique is used. Although this estimator has a slightly worse
MSE performance at low SNR than the estimators from [10]-
[11], it does not suffer from an error floor at high SNR.
Therefore, in this paper, we will use the frequency domain
estimator from [12] as the DA estimator in the first step of
our algorithm.

II. SYSTEM DESCRIPTION

The KSP-OFDM system under consideration consists of N
carriers, and a guard interval of ν samples is included in each
OFDM block. During each block M − ν pilot symbols and
N + ν − M data symbols are transmitted on the carriers. We
denote the M−ν pilots transmitted on the carriers during block
i as b

(i)
c = (b

(i)
c (0), . . . , b

(i)
c (M−ν−1))T and the N +ν−M

data symbols a
(i)
d = {a

(i)
d (0), . . . , a

(i)
d (N + ν −M − 1)}. The

sets Ip and Id are the sets of carriers modulated by pilots and
data, respectively, where Ip ∪ Id = {0, . . . , N − 1}. The pilot
and data symbols are mapped on a vector a(i) of length N .
The data and pilot symbols are then modulated on the different
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Fig. 1. Time-domain signal of KSP-OFDM a) transmitted signal b) received
signal and observation interval.

carriers of the multicarrier system, by applying the vector a(i)

to an N -point inverse fast Fourier transform (IFFT). We insert
a guard interval of ν known samples after each OFDM symbol
to avoid interference between successive OFDM blocks, as
shown in figure 1; the dark gray area in this figure corresponds
to the guard interval. The time-domain samples during block
i are then given by

s(i) =

√
N

N + ν

(
F+a(i)

b
(i)
g

)
. (1)

The N ×N matrix F in (1) corresponds to the FFT operation,
with Fk,� = 1√

N
e−j2π k�

N , F+ is the Hermitian transpose of

F, and b
(i)
g = (b

(i)
g (0), . . . , b

(i)
g (ν − 1))T are the ν known

samples of the guard interval. We assume that the data symbols
are independent identically distributed (i.i.d.) and have energy
per symbol E[|a

(i)
d (n)|2] = Es. Further, we assume that

E[|b
(i)
c (n)|2] = E[|b

(i)
g (m)|2] = Es. The normalization factor√

N/(N + ν) in (1) implies that E[|s(i)(m)|2] = Es.
The KSP-OFDM signal is transmitted over a dispersive

channel with channel impulse response h = (h(0), . . . , h(L−
1))T . We assume the guard interval length ν is chosen
longer than the length L of the channel impulse response, i.e.
ν ≥ L−1, in order to avoid intersymbol interference between
successively transmitted OFDM symbols. Further, the signal is
disturbed by additive white Gaussian noise w; the components
w(k) of w are statistically independent and have zero mean
and variance N0. Without loss of generality, we restrict our
attention to the detection of the OFDM block with index
i = 0, and we drop the block index for notational simplicity.
At the receiver, we consider the N + ν time-domain samples
corresponding to the observation interval shown in figure 1b:

r = Hchs + w (2)

where the (N + ν) × (N + ν) channel matrix is given by
(Hch)k,k′ = h(k − k′).

III. ITERATIVE CHANNEL ESTIMATION

The channel is estimated using the N + ν time-domain
samples from the observation interval shown in figure 1b. The
observation vector (2) can be rewritten as

r = Bh + Ah + w. (3)

In (3), the (N + ν) × L matrix A contains the contributions
from the data symbols ad transmitted during the observed
OFDM block:

(A)k,� =

√
N

N + ν
sd(k − �) (4)

where sd = Fdad and Fd is a N × (N + ν −M) matrix that
consists of the subset of columns of F+ corresponding to the
set Id of data carriers, i.e. sd equals the N -point IFFT of the
data carriers only. The matrix B has dimension (N + ν) × L
and contains the contributions from the pilot symbols from
both the guard interval and the pilot carriers: B = Bg + Bc.
The contribution from the pilot carriers is contained in the
matrix Bc and is given by

(Bc)k,� =

√
N

N + ν
sp(k − �). (5)

The vector sp corresponds to the N -point IFFT of the pilot
carriers only, i.e. sp = Fpbc, where Fp is a N × (M − ν)
matrix consisting of a subset of columns of the IFFT matrix
F+ corresponding to the set Ip of pilot carriers. Note that
sp(k) = 0 for k < 0 or k ≥ N . The matrix Bg contains the
contributions from the guard interval pilots and is given by

(Bg)k,� =

√
N

N + ν
bg(|k − � + ν|N+ν) (6)

where |x|K is the modulo-K operation of x yielding a result
in the interval [0,K[, and bg(k) = 0 for k ≥ ν.

A. Step 1: Data-Aided Channel Estimation

To initialize the iterative algorithm, the channel is first esti-
mated using the pilot symbols only. The data-aided estimation
algorithm that is used in this paper, is the frequency-domain
estimator from [12]. In this algorithm, first the ν samples from
the guard interval are added to the first ν samples of the data
part of the OFDM block as shown in figure 1b, and then the
first N samples of the OFDM block are applied to the N -point
FFT, i.e. we convert the received samples to the frequency
domain. Because of the orthogonality of the carriers, data
carriers and pilot carriers will not interfere. Hence, if we use
as observations the M − ν pilot carriers only, ML estimation
of the channel is simple.

The M − ν observations corresponding to the pilot carrier
positions can be written as

r′ = B′h + w′. (7)

The autocorrelation matrix R′ of the zero-mean Gaussian
distributed noise component w′ equals

(R′)k,k′ = N0

(
δk,k′ +

1

N

ν−1∑
�=0

e−j2π
(nk−n

k′ )�

N

)
. (8)

with nk, nk′ ∈ Ip. The (M − ν) × L matrix B′ consists of
the contributions from the pilot carriers and the guard interval
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pilots: B′ = B′
p + B′

g. The matrix B′
p corresponds to the

contributions from the pilot carriers, i.e.

(B′
p)k,� =

√
N

N + ν
bc(k)e−j2π

nk�

N (9)

with nk ∈ Ip, � = 0, . . . , L − 1 and B′
g to the contributions

from the pilots in the guard interval, i.e.

B′
g =

√
N

N + ν
Fν,pBg,ν (10)

where (Fν,p)k,� = 1√
N

e−j2π
nk�

N , nk ∈ Ip, � = 0, . . . , ν − 1

and (Bg,ν)k,� = bg(|k−�|ν). In [12], the ML channel estimate
of h based on the observation of the M − ν FFT outputs that
correspond to the pilot carrier positions is derived:

ĥDA = (B′+R′−1
B′)−1B′+R′−1

r′ (11)

and its MSE yields

MSEDA = trace
(
(B′+R′−1

B′)−1
)

. (12)

Note that the estimate (11) is a minimum variance unbiased
(MVU) estimate, i.e. the MSE (12) of this estimate coincides
with the Cramer Rao bound (CRB) [13] assuming only the
M − ν pilot carrier positions are used for estimation.

B. Step 2: Detection of the Data Symbols

To estimate the data symbols, we need to compute the
posterior distribution p(ad|r,h,b) where b = (bc,bg). It can
easily be verified that

p(ad|r,h,b) ∝ p(r|ad,h,b)p(ad). (13)

Taking into account (3), the observation r given ad, h and b is
Gaussian distributed with mean Bh+Ah and autocorrelation
matrix N0IN+ν :

p(r|ad,h,b) ∝ p(ad)e
− 1

N0
(r−Bh−Ah)+(r−Bh−Ah). (14)

To obtain the distribution p(ad|r,h,b), we first rewrite the
contribution from the data symbols in (3): Ah = Hdad, where
Hd = HFd and the (N + ν) × N matrix H has components
Hk,k′ =

√
N/(N + ν)h(k−k′). Substituting (14) in (13), and

assuming all data sequences are equiprobable, the distribution
p(ad|r,h,b) can be rewritten as

p(ad|r,h,b) ∝ e−(ad−ma)+Q−1
a (ad−ma) (15)

where
ma = (H+

d Hd)
−1H+

d (r − Bh) (16)

and

Qa =
1

N0
H+

d Hd. (17)

In the previous equations, it is assumed that the channel vector
h is known at the receiver. As the channel vector is not prior
known at the receiver, we use the DA channel estimate (11)
instead, i.e. we replace in all expressions h by ĥDA.

Hard decisions about the transmitted data symbols are ob-
tained by optimizing the posterior distribution p(ad|r, ĥDA,b)
over all possible sequences:

âd = arg max
ad

p(ad|r, ĥDA,b). (18)

Soft decisions about the data symbols are obtained by averag-
ing the data symbols over all possible data sequences:

E[ad] =
∑
ad

adp(ad|r, ĥDA,b). (19)

As the number N + ν − M of data symbols is large, the
complexity of (18) and (19) is very high. Note however
that for large N , the matrix Qa can be approximated by a
diagonal matrix. This implies that the components of ad given
r, ĥDA and b can be considered as essentially statistically
independent. In that case, the decisions about the data symbols
can be done componentwise, i.e. for hard decision

âd(i) = arg max
ad(i)

p(ad(i)|r, ĥDA,b) (20)

and for soft decision

E[ad(i)] =
∑
ad(i)

ad(i)p(ad(i)|r, ĥDA,b) (21)

where

p(ad(i)|r,h,b) ∝ e
− 1

(Qa)i,i
|ad(i)−ma(i)|2

. (22)

Note from (22) and (20) that the hard decision is the constel-
lation point that is closest to ma(i).

C. Step 3: Joint DA/DD Channel Estimation

Let us consider the all pilots case, i.e. all data symbols are
prior known at the receiver. Hence, the matrix A from (3) is
known at the receiver. The ML estimate of h, based on the
observation r (3) can easily found to be

ĥall pilots = (C+C)−1C+r (23)

and its MSE yields

MSEall pilots = trace
(
(C+C)−1

)
(24)

where C = A+B. The estimate (23) is a MVU estimate, i.e.
the MSE (24) corresponds to the CRB on the estimation of h

based on the observation of r (3) in the all pilots case.
In the considered system, the data symbols are not prior

known at the receiver. Instead, we use the hard or soft
estimates on the data symbols. To use the estimates of the
data symbols in a decision directed way, we replace all data
symbols that are included in (23) by their hard (20) or soft
(21) estimates to update the channel estimate. In the iterative
joint DA/DD algorithm, steps 2 and 3 are repeated until
convergence is reached.
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IV. NUMERICAL RESULTS

In this section, the performance of the iterative joint DA/DD
estimator is investigated. Without loss of generality, we con-
sider the comb-type pilot arrangement [14]-[15] for the pilots
transmitted on the carriers. We assume the channel has L = 8
channel taps that are linearly decreasing: h(k) = h(0)(L−k),
k = 0, . . . , L − 1, and h(0) is selected such that the channel
impulse response is normalized:

∑L−1
�=0 |h(�)|2 = 1. The

pilot symbols are randomly generated and BPSK modulated.
Simulations show that the MSE performance only slightly
depends on the pilot carrier positions. Therefore, the MSE
performance in this section is averaged out over a large number
of randomly generated pilot carrier positions. Unless men-
tioned otherwise, all MSE results for the iterative joint DA/DD
estimator are given after 10 iterations, i.e. after convergence
of the algorithm.

In figure 2, the MSE of the iterative joint DA/DD estimator
for hard and soft data decisions is shown as function of the
Es/N0 for different number of iterations. In addition, the MSE
of the DA (12) and the all pilot estimator (24) are shown. It
can be observed that the MSE of the DA estimator essentially
coincides with the curve L

M−ν
SNR−1 and the MSE of the all

pilots estimator with L
N+ν

SNR−1 where SNR = Es

N0

N
N+ν

,
indicating that the MSE of the DA and all pilots estimator
are inversely proportional to the number of known symbols
that are used for the estimation. At high Es/N0, the MSE of
the iterative joint DA/DD estimator converges to the MSE of
the all pilot estimator, whereas at low Es/N0, the decisions
on the data symbols are not reliable and disturb the channel
estimation; at low Es/N0, the unreliable data decisions may
even increase the MSE as compared to the DA only case. For
both hard and soft data decisions, the MSE converges after 2-4
iterations. It can be observed that the MSE for hard decisions
converges at lower Es/N0 to the all pilots curve than the MSE
for soft decisions. This effect is caused by the approximations
made in the algorithm, i.e. the componentwise data decisions
and the fact that the algorithm proposed in section III-C is a
suboptimal algorithm.

The effect of the number of pilots on the iterative joint
DA/DD estimator is shown in figure 3. Evidently, the MSE
corresponding to the all pilot case does not depend on M :
according to figure 2, this MSE behaves like L

N+ν
SNR−1,

which is not a function of M . As expected, the MSE of
the DA algorithm, which according to figure 2 behaves like

L
M−ν

SNR−1, approaches the MSE of the all pilots case when
M gets close to N + ν and ν � N . Similarly, the MSE
resulting from the iterative DA/DD algorithm also converges to
the MSE of the all pilot case when M approaches N+ν: when
the number of data symbols is much smaller than the number
of pilot symbols, the quality of the data symbol decisions
has a negligible effect on the MSE. Finally, we observe that
the MSE of the iterative joint DA/DD estimator is essentially
independent of M for a large range of M : for sufficiently
large SNR, the reliability of the data decisions is high and the
data symbols can be considered as known, i.e. the proposed
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Fig. 2. MSE performance, ν = 7, N = 1024, M = 40.
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Fig. 3. Influence of M on the MSE, ν = 7, N = 1024, Es/N0 = 10 dB.

estimator converges to the all pilot estimator.
In figure 4, the influence of N on the MSE of the iterative

joint DA/DD estimator is shown. At low Es/N0, the MSE of
the proposed estimator is essentially independent of the FFT
size N , whereas the MSE decreases with increasing N at high
Es/N0. The dependency on N at high Es/N0 is also shown
in figure 5. It can be observed that for sufficiently large N , the
MSE is inversely proportional to N . This can be explained by
noting that at high Es/N0, the MSE of the proposed estimator
converges to the all pilots estimator and the behavior of the
MSE of this latter case: the MSE of the all pilots case behaves
like L

N+ν
SNR−1 which can be approximated by L

N
SNR−1

for N � ν.
In figure 6, the effect of the guard interval length ν on the

performance of the iterative joint DA/DD estimator is shown.
From the figure, it follows that the MSE of the proposed
estimator is essentially independent of ν. Indeed, at sufficiently
high SNR, the MSE behaves like L

N+ν
SNR−1, which, taking

into account that ν � N , is essentially independent of ν.

V. CONCLUSIONS AND REMARKS

In this paper, we have proposed an iterative joint DA/DD al-
gorithm for channel estimation in KSP-OFDM. The algorithm
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is initialized by means of the DA channel estimate from [12].
Using this DA channel estimate, we make a decision about
the transmitted data symbols. In this paper, we consider both
hard and soft decisions on the data symbols. The decisions on
the data symbols are then used to update the channel estimate
in a joint DA/DD way. The algorithm iterates between data
decision and DA/DD channel estimation until convergence is
reached. When the decisions on the data symbols are reliable,
i.e. at high SNR, the MSE performance of the proposed
estimator converges to the case of the all pilots estimator.

At high SNR, the MSE of the proposed estimator behaves
like L

N+ν
SNR−1, which for N � ν is approximated by

L
N

SNR−1. Hence, the MSE is essentially inversely propor-
tional to the SNR and to the number N of carriers, and
independent of the guard interval length ν .

Note that in this paper, the data symbols were uncoded.
However, the algorithm can easily be extended to coded trans-
mission: in that case, the posterior probability p(ad|r,h,b) of
the data symbols is then delivered by the (turbo) decoder.
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