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Abstract— In this paper, we propose a new low-complexity
data-aided channel estimation algorithm for known symbol
padding (KSP) OFDM. Besides the pilot symbols in the guard
interval, additional pilots are put on some of the OFDM carriers.
The received time-domain samples are first converted to the
frequency domain, and the channel estimation is based on the
observation of the pilot carriers only. The proposed estimator is
compared to the subset estimator from [1]. Although performing
slightly worse than the subset estimator at low SNR, the proposed
estimator outperforms the subset estimator at high SNR, as the
former does not suffer from an error floor in the MSE. The MSE
resulting from the proposed estimator is inversely proportional
to the number of pilot carriers and is independent of the FFT
size, the pilot carrier positions and the used pilot sequence.

I. INTRODUCTION

Multicarrier communication (MC) [2] has become very
popular because of its ability to cope with channel dispersion,
making MC communication suitable for high data rate applica-
tions. To avoid intersymbol interference between successively
transmitted MC blocks, a guard interval is inserted between the
MC blocks. In the literature, several types of guard intervals
can be found.

The most popular guard interval type is the cyclic prefix
(CP) [3], where the last samples of each MC block are
copied and added in front of the MC block. Another guard
interval technique is zero-padding (ZP) [3], where during
the guard interval no signal is transmitted. In these two
guard interval techniques, maximum-likelihood (ML) channel
estimation from pilot carriers is trivial and equalization can be
performed in the frequency domain with low complexity. How-
ever, a disadvantage of these two guard interval techniques is
the ambiguity problem that occurs in low-complexity timing
synchronizers such as the Schmidl & Cox [4] algorithm.

In the third guard interval technique, i.e. known symbol
padding (KSP) [5], the guard interval consists of known pilot
samples. By properly selecting the pilot samples, the ambigu-
ity problem in timing synchronization as for CP-OFDM and
ZP-OFDM can be avoided [6]. As the samples of the guard
interval are known, they can be used for data-aided channel
estimation. However, the guard interval length is typically
selected to be only slightly larger than the channel impulse
response length. Hence, usually extra pilots must be inserted
in the transmitted MC signal in order to improve the channel
estimation accuracy. In this paper, we assume that the number

of pilot samples in the guard interval is not increased, but
rather the additional pilots are inserted on carriers.

In [1], [7], [8], it is shown that channel estimation in KSP-
OFDM is harder than in CP-OFDM and ZP-OFDM. ML chan-
nel estimation in KSP-OFDM is very complex and suboptimal
estimation techniques must be used. In [7], a suboptimal ML-
based channel estimation algorithm is proposed. However, [7]
assumes that the autocorrelation matrix of the disturbance
(containing contributions from the noise, the data symbols and
the channel) is known. Hence, before this channel estimator
can be used, first the autocorrelation matrix must be estimated
from the received signal. Further, even if the autocorrelation
matrix is perfectly known, the resulting mean squared error
(MSE) shows an error floor at high SNR, indicating that the
presence of the unknown data symbols disturbs the channel
estimation. In [1], the effect of the data symbols on the channel
estimation is reduced by applying a linear transform to the
observed time-domain samples; the resulting observations can
be split into a part that depends on the data symbols and a part
that is (nearly) independent of the data symbols. In the subset
estimator from [1], only the latter subset of observations is
used to estimate the channel. Although performing better than
the estimator from [7], the subset estimator also shows an error
floor at high SNR because of the residual interference from
the data symbols.

In this paper, we propose a new low-complexity estimator
operating in the frequency domain, which only exploits the
information from the pilot carriers; the information from the
guard interval pilots is discarded as they are disturbed by the
data symbols. Because of the orthogonality of the carriers, the
pilot carriers are not disturbed by the data symbols, so that
an error floor in the MSE performance is avoided. However,
as compared to the estimators from [1] and [7] the proposed
algorithm performs slightly worse performance at low and
intermediate SNR.

II. SYSTEM DESCRIPTION

We consider a KSP-OFDM system with N carriers and
a guard interval length ν, as shown in figure 1. The guard
interval (dark gray area in figure 1) consists of ν known pilot
samples. The N symbols transmitted on the carriers during the
i-th OFDM block are denoted ai = (ai(0), . . . , ai(N − 1))T .
These symbols consist of M−ν pilot symbols and N−M +ν
information-carrying data symbols. The N + ν time-domain
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Fig. 1. Time-domain signal of KSP-OFDM a) transmitted signal b) received
signal and observation interval.

samples during block i are then given by

si =

√
N

N + ν

(
F+ai

bg

)
. (1)

In (1), F is the N × N matrix corresponding to the FFT
operation, with Fk,� = 1√

N
e−j2π k�

N , and bg = (bg(0), . . . ,

bg(ν − 1))T are the ν known samples of the guard interval.
The KSP-OFDM signal is transmitted over a dispersive

channel with L taps; the channel impulse response is given by
the vector h = (h(0), . . . , h(L−1))T . We select ν ≥ L−1 in
order to avoid interference between successively transmitted
OFDM symbols. Further, the signal is disturbed by additive
white Gaussian noise w, of which the statistically independent
components w(k) have zero mean and variance N0. Without
loss of generality, we restrict our attention to the detection of
the OFDM block with index i = 0, and we drop the block
index for notational convenience. Considering the observation
interval shown in figure 1b, we can write the received N + ν
time-domain samples as

r = Hchs + w (2)

where (Hch)k,k′ = h(k−k′−i(N+ν)) is the (N+ν)×(N+ν)
channel matrix.

For data detection, the contribution from the guard interval
pilots must first be subtracted from the received signal. Then,
the last ν samples from the observation interval, which now
contain only a data component as the contribution from the
guard interval pilots is removed, are added to the first ν
samples of the OFDM symbol, and the resulting samples are
applied to an FFT. Note however that the guard interval pilots
are affected by the channel; hence, before their contribution
can be subtracted from from the received signal, the channel
has to be estimated first.

III. CHANNEL ESTIMATION

In this section, we consider data-aided channel estimation.
To estimate the channel, we assume M pilots are inserted in
the transmitted signal: ν of them are the pilot samples of the
guard interval, and the remaining pilots are put on M − ν
OFDM carriers. We denote the M − ν pilots transmitted on
the carriers as bc = (bc(0), . . . , bc(M − ν − 1))T . Hence, the

block of symbols a in (1) consists of M −ν pilot symbols bc

and N+ν−M data symbols ad. We define the sets Ip and Id as
the sets of carriers modulated by pilots and data, respectively,
where Ip ∪ Id = {0, . . . , N − 1}. We assume that the data
symbols are independent identically distributed (i.i.d.) and
have energy per symbol E[|ad(n)|2] = Es. Further, we assume
that E[|bc(n)|2] = E[|bg(m)|2] = Es. The normalization
factor

√
N/(N + ν) in (1) implies that E[|s(m)|2] = Es.

To estimate the channel, we consider the observation inter-
val shown in figure 1b. Taking into account the channel vector
h to be estimated, we rewrite (2) as

r = Bh + w̃. (3)

In (3), the (N + ν) × L matrix B contains the contributions
from the pilot symbols. It can be split into the contribution
from the guard interval pilots and the pilot carriers: B = Bg +
Bc. The matrix Bc contains the contributions from the pilot
carriers and is given by

(Bc)k,� =

√
N

N + ν
sp(k − �). (4)

In (4), the vector sp equals the N-point IFFT of the pilot
carriers only, i.e. sp = Fpbc, where the N × (M − ν) matrix
Fp consists of a subset of columns of the IFFT matrix F+

corresponding to the set Ip of pilot carriers. Note that sp(k) =
0 for k < 0 or k ≥ N . The contribution Bg from the guard
interval pilots is given by

(Bg)k,� =

√
N

N + ν
bg(|k − � + ν|N+ν) (5)

where |x|K is the modulo-K operation of x yielding a result
in the interval [0,K[, and bg(k) = 0 for k ≥ ν. Further,
the disturbance in (3) contains the contributions from the data
symbols and the additive white Gaussian noise and is given
by

w̃ = HFdad + w (6)

where Hk,� = h(k − �) is a (N + ν) × N matrix, Fd is a
N×(N +ν−M) matrix that consists of the subset of columns
of F+ corresponding to the set Id of data carriers, and ad is
the vector of N + ν −M data symbols transmitted during the
observed OFDM block. Hence, the contribution sd = Fdad

equals the N -point IFFT of the data carriers only.

A. The Subset Estimator

First, we briefly describe the subset estimator derived in [1].
In the derivation of the subset estimator, the Toeplitz matrix H

in (6) is approximated by a circulant matrix, i.e. the transients
at the edges of the observed block in the contribution from
the data symbols ad to the observation r are neglected; this
approximation is valid for long blocks, i.e. N � ν. This
approximation yields HFd = F̃H̃ where F̃k,� = 1√

N
ej2π

kn�
N ,

H̃ = diag(Hn�
), n� ∈ Id and

Hm =
N−1∑
k=0

h(k)e−j2π km
N . (7)



The QR-decomposition of the matrix F̃, i.e. F̃ = QV where
Q is a (N + ν) × (N + ν) unitary matrix (Q+ = Q−1) and

V =

(
U

0

)
(8)

with U an upper triangular matrix and 0 the all-zero matrix,
yields an invertible transform matrix Q+ that is independent
of the channel vector to be estimated. The transform matrix
converts the observation r into the vector r′ = (rT

1 rT
2 )T =

Q+r, where r2 is a vector of length M that is (nearly)
independent of the data symbols ad. In the subset estimator,
only r2 is considered, i.e. r2 = B2h+w2, where B2 and w2

are respectively the parts of Q+B and Q+w corresponding
to r2. The subset estimator is defined as

ĥsubset = (B+
2 B2)

−1B+
2 r2 (9)

As for finite N , the equality HFd = F̃H̃ holds only approxi-
mately, the observation r2 is affected by a residual contribution
from the data symbols ad, resulting in an error floor of the
mean squared error (MSE) at high Es/N0 [1].

B. The Frequency Domain Estimator

In this section, we derive a new channel estimator following
a similar reasoning as in [1]: we consider an invertible
transform independent of the parameter to be estimated that
results in a part of the observation to be data-free. However,
in contrast with [1], we do not make any approximations.
As it is impossible to find a linear transform independent
of the channel vector h that makes the last ν samples of
the observation interval data-free, a truly data-free observation
consists of M − ν samples only.

Let us consider the following invertible transform:

r′ =

(
F 0

0 Iν

)(
IN

Iν

0

0 Iν

)
r

Δ
= Tr (10)

where IK is the K × K identity matrix. According to this
transform, the last ν samples from the observation interval
are added to the first ν samples (as indicated in figure 1b);
this restores the orthogonality (over the first N samples)
between the carriers of the OFDM system. Then an N -point
FFT is applied to the first N samples (i.e. we convert these
samples to the frequency domain) while the last ν samples
are not transformed. As the carriers are orthogonal, data
carriers do not interfere with pilot carriers. Hence, if we use
as observation subset the M − ν FFT outputs at the pilot
carrier positions only, these observations are data-free and ML
estimation of the channel is simple.

The M − ν observations corresponding to the pilot carrier
positions are given by

r′2 = B′
2h + w′

2 (11)

where the noise component w′
2 is zero-mean Gaussian distrib-

uted with autocorrelation matrix R′
2 given by

(R′
2)k,k′ = N0

(
δk,k′ +

1

N

ν−1∑
�=0

e−j2π
(nk−n

k′ )�

N

)
(12)

and B′
2 = B′

p +B′
g is a (M − ν)×L matrix . The matrix B′

p

corresponds to the contributions from the pilot carriers, i.e.

(B′
p)k,� =

√
N

N + ν
bc(k)e−j2π k�

N k ∈ Ip, � = 0, . . . , L−1

(13)
and B′

g to the contributions from the guard interval pilots, i.e.

B′
g =

√
N

N + ν
Fν,pBg,ν (14)

where (Fν,p)k,� = 1√
N

e−j2π k�
N , k ∈ Ip, � = 0, . . . , ν − 1 and

(Bg,ν)k,� = bg(|k − �|ν).
The ML estimate of h based on the observation r′2 is defined

as [9]

ĥML = arg max
h

p(r′2|h). (15)

The ML estimate of h is easily found to be

ĥML = (B′+
2 R′−1

2 B′
2)

−1B′+
2 R′−1

2 r′2 (16)

and its MSE is given by

MSE = trace
(
(B′+

2 R′−1

2 B′
2)

−1
)

. (17)

To evaluate the behavior of the MSE (17), we approximate
B′+

2 R′−1

2 B′
2 by its average over all possible pilot sequences,

i.e. B′+
2 R′−1

2 B′
2 = E[B′+

2 R′−1

2 B′
2]. We assume that the

pilot symbols are selected in a pseudorandom way. Further, we
neglect in (12) the second term. In that case, E[B′+

2 R′−1

2 B′
2]

is essentially equal to

(E[B′+
2 R′−1

2 B′
2])�,�′ =

N

N + ν

Es

N0

∑
k∈Ip

ej2π
k(�−�′)

N (18)

+
N

N + ν

1

N0

1

N

L−1∑
m,m′=0

ej2π
k(m−m′)

N ·

E[b∗g(|m − �|ν)bg(|m
′ − �′|ν)]

When the pilot symbols are evenly distributed over the carriers
and M − ν divides N , the first term in (18) reduces to

N
N+ν

Es

N0
(M − ν)δ�,�′ . The second term in (18) is of the order

L/N � M − ν, and therefore can be neglected as compared
to the first term. Hence, B′+

2 R′−1

2 B′
2 can be approximated

by N
N+ν

Es

N0
(M − ν)IL, from which it follows that the MSE

(17) can be approximated by

MSE =
N + ν

N

N0

Es

L

M − ν
, (19)

i.e. the MSE is inversely proportional to the number of pilot
carriers.

The matrices B′
2 and R′

2 depend only on the known pilot
symbols and the known positions of the data carriers and the
pilot carriers. Hence, B′

2 and R′
2 are known at the receiver and

(B′+
2 R′−1

2 B′
2)

−1B′+
2 R′−1

2 can be precomputed. Therefore,
the estimate (16) can be obtained with low complexity.
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Fig. 2. MSE performance and CRB, ν = 7, N = 1024, M = 40.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the frequency
domain estimator and compare it to the performance of
the subset estimator. Without loss of generality, we assume
the comb-type pilot arrangement [10] is used for the pilots
transmitted on the carriers. Further, we assume L = 8 and
h(�) = h(0)(L−�), for � = 0, . . . , L−1. The channel impulse
response is normalized:

∑L−1

�=0
|h(�)|2 = 1. The pilot symbols

are randomly generated and BPSK modulated. We assume that
the pilots are equally spaced over the carriers, i.e. the positions
of the pilot carriers are Ip = {n0+mδ|m = 0, . . . , M−ν−1},
where δ = floor(N/(M − ν)), n0 ∈ {0, . . . , ρ} and ρ =
N − 1 − (M − ν − 1)δ.

In figure 2, the MSE of the frequency-domain estimator is
shown as function of Es/N0. In addition, the MSE of the
subset estimator and the MSE from the estimator from [7] are
shown. As can be observed, the proposed frequency-domain
estimator does not suffer from an error floor at high Es/N0, in
contrast with the subset estimator and the estimator from [7].
Further, the CRB for data-aided channel estimation, derived in
[1], is shown. It can be observed that the MSE of the proposed
estimator is close to the CRB, and is inversely proportional to
Es/N0.

To further evaluate the MSE’s and the CRB from figure 2,
we consider the normalized MSE (NMSE) and the normalized
CRB (NCRB), defined as NMSE = SNR · MSE and
NCRB = SNR·CRB, where SNR = N

N+ν
Es

N0
. From figure

3 it follows that at low Es/N0, the subset estimator slightly
outperforms the frequency-domain estimator. The NMSE of
the frequency domain estimator is constant with Es/N0,
whereas the NMSE of the subset estimator strongly increases
for high Es/N0. From the figure, it can be observed that the
MSE resulting from the frequency-domain estimator is close
to the CRB. Further, it follows from the figure that the NMSE
of the frequency-domain estimator is close to L/(M − ν), as
was shown in section III-B.

Figure 4 shows the influence of the number of pilots on the
MSE of the frequency-domain estimator, assuming the pilots
carriers are equally spaced. As expected (see (19)) the MSE
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is essentially equal to L
M−ν

SNR−1 for a wide range of M ,
i.e. the MSE is inversely proportional to the number of pilot
carriers. For large M , the pilot spacing becomes ε = 2 (for
N/4 < M−ν < N/2 = 512) and ε = 1 (for M−ν > N/2 =
512); in that case pilots are not evenly spread over the carriers
but grouped in one part of the spectrum, such that the first term
in (18) can no longer be approximated by SNR(M − ν)δ�,�′ .
This causes the peaks in the figure.

The influence of random pilot carrier positions on the
frequency domain estimator performance is shown in figure 5.
In this figure, the MSE is shown for 50 randomly generated
pilot carrier positions, along with the average over the sim-
ulations. Further, the MSE is shown for equally spaced pilot
positions. For small M , we observe that the performance of
the frequency domain estimator strongly depends on the pilot
positions, whereas for large M , the frequency domain esti-
mator becomes essentially independent of the pilot positions.
Hence, for small M , fixed, equally spaced pilot positions are
preferred. For large M , equally spaced pilot positions are not
suitable because of the peak in the MSE. Therefore, at large
M , random pilot positions are advised.

In figure 6, the effect of the FFT length N on the per-
formance of the frequency domain estimator and the subset
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estimator is shown, for both fixed and random pilot positions.
In the figure, the MSE corresponding to the best random pilot
positioning, i.e. with the lowest MSE, out of 50 randomly
generated pilot positionings is shown. At low N , equally
spaced pilot positions perform worse than randomly spaced
pilot positions, for both estimators. For larger N , both kinds
of pilot symbol positions yield essentially the same MSE,
especially for moderate to large SNR. Further, it can be
observed that the MSE is essentially independent of the FFT
length, especially for the random pilot positions.

V. CONCLUSIONS

In this paper, we have proposed a low-complexity data-
aided channel estimator for KSP-OFDM, that operates in the
frequency domain. This estimator exploits only the M − ν
FFT outputs at the pilot carrier positions. In contrast with the
subset estimator from [1], the proposed estimator does not
suffer from an error floor in the MSE performance at high
SNR, because the pilot carriers are not affected by the data
carriers. At low SNR, the proposed estimator performs only
slightly worse than the subset estimator.

The MSE of the proposed estimator is inversely proportional
to the SNR. Further, the MSE is inversely proportional to

the number of pilot carriers; it is essentially proportional to
L/(M − ν). At low M , the MSE strongly depends on the
pilot carrier positions, whereas at high M , the performance
is essentially independent of the pilot positions. Further, the
MSE is essentially independent of the FFT size.
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