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Abstract—This paper proposes a new iterative channel esti-
mation algorithm for known symbol padding (KSP) Orthogonal
Frequency Division Multiplexing (OFDM) based on the Expec-
tation Maximization (EM) algorithm . The guard interval is
filled with pilot symbols and the remaining part of the pilot
symbols is put on some of the OFDM carriers. To start up the
EM algorithm an initial channel estimate is obtained by using
only the pilot symbols. Then the EM algorithm is applied until
convergence is reached. The performance of this estimator is
compared with the performance of the iterative joint data-aided
(DA) / decision-directed (DD) estimator proposed in [1]. The EM
algorithm converges to the performance of the all pilot estimator
for lower SNR than the iterative joint DA/DD estimator, but the
gain in performance results in a higher computational complexity.

I. INTRODUCTION

OFDM is a promising technique to cope with frequency se-
lective channels [2]. The different OFDM blocks are separated
by a guard interval to avoid intersymbol interference caused
by the channel. There exist different types guard intervals in
literature. Among the most popular guard interval techniques
we find the cyclic prefix (CP) and zero padding (ZP) [3].
In CP-OFDM the last samples of each OFDM block are put
in front of the OFDM block, while in ZP-OFDM the guard
interval consists of zeros, i.e. no signal is transmitted during
the guard interval.

In this contribution we consider another type of guard
interval called known symbol padding (KSP) [4], where the
guard interval consists of pilot symbols. This guard interval
technique can be useful to solve the ambiguity in timing syn-
chronization which occurs with other guard interval techniques
[5]. Usually the length of the guard interval is not much larger
than the duration of the channel impulse response, so the
number of pilot symbols in the guard interval is not sufficient
to perform channel estimation. Extra pilot symbols are inserted
on some carriers of the OFDM system in order to increase
the accuracy of the channel estimate. In the literature several
estimators have been proposed. In [6], [7] suboptimal ML-
based estimation methods are proposed. For both methods,
the mean squared error (MSE) exhibits an error floor at high
signal to noise ratios (SNR). This error floor is caused by
the presence of the unknown data symbols. In [8], a data
aided (DA) channel estimator is proposed that operates in the
frequency domain. Only the pilot carriers are used to estimate
the channel. Because of the orthogonality of the carriers, the
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Figure 1. Time-domain signal of KSP-OFDM a) transmitted signal b)
received signal and observation interval

pilot carriers can easily be separated from the data carriers. At
low SNR the performance is slightly worse than the estimators
from [6], [9], but at high SNR there exists no error floor. In
[1], an iterative joint DA/DD estimator is proposed based on
the frequency domain estimator from [8]. At high SNR the
MSE performance of this estimator converges to the case of
the all pilots estimator.

Another way to deal with the unknown data symbols is by
applying the Expectation Maximization (EM) algorithm [10],
which is an iterative algorithm that converges to the maxi-
mum likelihood (ML) estimate. In [11], EM based channel
estimation algorithms operating in the frequency domain, are
proposed for CP-OFDM. In this paper, we propose an iterative
channel estimator for KSP-OFDM based on the EM algorithm,
operating in the time domain . In the first step, an initial
estimate of the channel is obtained by means of the data-aided
estimator proposed in [8]. The performance of the proposed
algorithm is compared with the iterative estimator from [1]
and with the all pilots estimator.

II. SYSTEM MODEL

Let us consider a KSP-OFDM system with N carri-
ers and a guard interval of length ν. The guard interval
is filled with ν known pilot symbols denoted as bg =
(bg (0) , . . . , bg (ν−1))T . The i-th block of transmitted sym-
bols is denoted ai = (ai (0) , . . . , ai (N −1))T and consists
of M − ν pilot symbols and N − M + ν data symbols, de-

noted as b(i)
c =

(
b(i)

c (0) , . . . , b(i)
c (M−ν−1)

)T
and a(i)

d =
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(
a(i)

d (0) , . . . , a(i)
d (N −M +ν−1)

)T
respectively. We define

M as the total number of pilot symbols transmitted in the guard
interval and on the carriers. The symbols ai are modulated
on the different carriers using the N-point inverse FFT and
the guard interval is inserted. The transmitted time domain
samples si are given by

si =

√
N

N +ν

(
FHai

bg

)
(1)

where F is the N×N FFT matrix with Fk,l = 1√
N

e− j2π kl
N ; k, l =

0, . . . , N −1. The time-domain signal is shown in figure 1.
The sequence si is transmitted over a block fading frequency

selective channel with an impulse response consisting of L
taps h = (h(0) , . . . , h(L−1))T . The length of the guard
interval ν is chosen so that the duration of the guard interval
exceeds the duration of the channel impulse response in order
to avoid interblock interference. The transmitted sequence is
disturbed by additive white Gaussian noise (AWGN) w. The
noise components w(k) are zero-mean and have variance N0.
Without loss of generality we focus on the detection of the
OFDM block with index i = 0 and we drop the block index to
simplify the notation. The N +ν received time-domain samples
corresponding to the considered transmitted OFDM block can
be written as

r = Hchs+w (2)

where Hch is the (N +ν) × (N +ν) channel matrix with
(Hch)k,k′ given by

(Hch)k,k′ = h
(∣∣k− k′

∣∣
N+ν

)
(3)

where |x|K is the modulo-K operation of x yielding a result in
the interval [0, K[. For data detection, the contribution from
the ν pilot samples is subtracted from the received signal and
the last ν samples from the observation interval are added
to the first ν samples of the OFDM symbol. The resulting
block of N samples is applied to the FFT. However as the
pilot samples are affected by the unknown channel and their
contribution to the received signal is unknown, the channel
impulse response needs to be estimated.

III. CHANNEL ESTIMATION

For channel estimation, we rewrite the observation model
(2) as

r = Bh+Ah+w (4)

where B is a (N +ν)×L matrix which depends on the pilot
symbols. The matrix B can be written as a sum of a matrix Bg

which depends on the pilot symbols from the guard interval
and a matrix Bc which depends on the pilots symbols from
the pilot carriers: B = Bg +Bc. The matrix Bg is defined as

(Bg)k,l =

√
N

N +ν
bg

(|k− l +ν|N+ν
)

(5)

where bg (k) = 0 for k ≥ ν. The contribution from the pilot
carriers Bc is given by

(Bc)k,l =

√
N

N +ν
sp (k− l) (6)

where sp is the N-point IFFT of the pilot carriers only:
sp = Fpbc, Fp consists of the M − ν columns of FH which
correspond to the pilot carriers. Note that sp (k) = 0 for k < 0
or k ≥ N. In (4), the contributions from the unknown data
symbols ad are collected in the (N +ν)×L matrix A:

(A)k,l =

√
N

N +ν
sd (k− l) . (7)

where sd = Fdad and Fd consists of the N + ν−M columns
of FH which correspond to the data carriers. We introduce the
matrix C to write (4) in a more compact form

r = Ch+w

where C = B+A.

A. EM Estimation

The EM algorithm is an iterative method to obtain an ML
estimate of a parameter vector θ based on an observation r
[10], where r depends on unobserved data y. Each iteration
consists of an expectation (E) step, and a maximization (M)
step. In the E-step the log likelihood log p(r |y,θ ) is averaged
over the unobserved data, given the observation r and the last
estimate of θ

Q
(
θ
∣∣θ̂k−1

)
=

∫
log p(r |y,θ ) p

(
y
∣∣r, θ̂k−1

)
dy (8)

where k is the iteration index and θ̂k−1denotes the estimate of
θ obtained in the previous iteration. The M-step comprises the
maximization of (8) with respect to θ:

θ̂k+1 = argmax
θ

Q
(
θ
∣∣θ̂k

)
. (9)

The EM algorithm starts from an initial estimate denoted θ̂0.

B. Step 1: Data-Aided Channel Estimation

An initial estimate is needed to start the iterative EM
algorithm. In this paper, we consider the data-aided estimation
method described in [8]. This estimator adds first the ν samples
of the guard interval to the first ν samples of the OFDM block.
The resulting N samples are transformed to the frequency
domain by applying an N-point FFT.

r′ =
(

F 0
0 Iν

)⎛
⎝ IN

Iν
0

0 Iν

⎞
⎠r

where IK is the K ×K identity matrix. The data carriers can
be separated from the pilot carriers because the carriers are
orthogonal. ML estimation of the channel can be performed
by using the observations from the M−ν pilot carriers only.
The M − ν observations from the pilot carriers are collected
in the vector r2 which can be written as

r2 = B2h+w2



where w2 is Gaussian noise with zero mean and an autocorre-
lationmatrix R2 defined in [8] and B2 contains the rows from
FB corresponding to the pilot carriers. The ML estimate of h
based on the observation r2 is given by [8]

ĥML =
(
BH

2 R−1
2 B2

)−1
BH

2 R−1
2 r2. (10)

C. Step 2: Decision-Directed Channel Estimation

The obtained channel estimate (10) can be used to start up
the EM algorithm. In our case, the E-step (8) can be rewritten
as

Ead

[
log p(r |ad ,bc,bg,h )

∣∣r,bc,bg, ĥk−1
]
=

− 1
N0

(
rHr− rHC̃h−hHC̃Hr+hHR̃Ch

)
(11)

where

C̃ = Ead

[
C

∣∣r,bc,bg, ĥk−1
]

(12)

R̃C = Ead

[
CHC

∣∣r,bc,bg, ĥk−1
]
. (13)

See the appendix for the computation of C̃ and R̃C. In (11)
Ead [.] is the average over the data symbols.

The new estimate ĥk obtained in the M-step can be written
as a closed form expression

ĥk =
(
R̃C

)−1
C̃r.

The algorithm terminates once the estimate has reached con-
vergence.

IV. SIMULATION RESULTS

In this section some simulation results are shown to il-
lustrate the performance of the proposed channel estimator.
For the pilot symbols transmitted on the carriers, the comb-
type pilot arrangement [12], [13] can be assumed without
loss of generality. We consider a channel with L = 8 taps
and an impulse response given by h(l) = h(0)(L− l), for
l = 0, . . . , L − 1, with ∑L−1

l=0 |h(l)|2 = 1. A random BPSK
sequence is used as pilot sequence. The shown MSE results
are the results obtained after convergence of the algorithm
unless mentioned otherwise.

Figure 2 shows the MSE of the EM algorithm as a function
of Es/N0 for different numbers of iterations. Also shown are
the MSE of the DA estimator and the all pilot estimator. As
mentioned in [1] the MSE of the DA estimator coincides
with L

M−ν SNR−1 and the MSE of the all pilot estimator
with L

N+ν SNR−1 where SNR = Es
N0

N
N+ν . The MSE of the EM

algorithm converges to the MSE of the all pilot estimator for
high Es/N0 while for low Es/N0 this is not the case, but still
there is an improvement in performance if we compare with
the MSE of the DA estimator. The MSE results for the iterative
joint DA/DD estimator from [1] are also shown. For low Es/N0

it can be observed that the EM algorithm results in a lower
MSE. The EM algorithm reaches the performance of the all
pilot estimator at lower Es/N0 than the iterative joint DA/DD
estimator from [1].
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Figure 2. MSE results, ν = 7, N = 1024, M = 40
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Figure 3. Influence of M on the MSE, ν = 7, N = 1024, Es/N0 = 10 dB

Figure 3 shows the influence of the number of pilot symbols
M on the performance of the EM algorithm. Again, the
performances of the DA estimator, the all pilot estimator and
the iterative joint DA/DD estimator from [1] are added to the
figure. As mentioned above, the MSE of the all pilot estimator
coincides with L

N+ν SNR−1 and does not depend on the number
of pilot symbols M. We observe that the MSE of the EM
algorithm is very close to the MSE of the all pilot estimator
and is almost independent of M for a large range of M. The
EM algorithm gives a small performance gain compared with
the iterative joint DA/DD estimator from [1].

Figure 4 shows the BER performance when using the EM
algorithm, the iterative joint DA/DD estimator from [1] and
the DA channel estimator [8] respectively. The transmitted
data symbols consist of BPSK symbols. The performance
of a receiver with perfect channel knowledge is also added.
The BER of a receiver with perfect channel knowledge was
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Figure 4. Influence of channel estimation errors on the BER, BPSK, N =
1024, ν = 7, M = 40

computed analytically and is given by

BER =
N−1

∑
n=0

1
N

Q

⎛
⎝

√
2

(
N

N +ν

)2

|H (n)|2 Es

N0

⎞
⎠

with H (n) = ∑L−1
l=0 h(l)e− j2π nl

N . The BER curves correspond-
ing to the EM algorithm and the iterative joint DA/DD
estimator [1] are close to the BER of the receiver with perfect
channel knowledge for the considered range of Es/N0. Both
iterative channel estimation algorithms result in a significantly
lower BER compared to the DA channel estimator [8]. Only
for high Es/N0, the EM algorithm performs slightly better than
the iterative joint DA/DD estimator [1].

Finally we compare the EM algorithm and the iterative
joint DA/DD estimator from [1] in terms of computational
complexity. The initial estimate is the same for both estimation
methods. Every iteration, the EM algorithm has to compute
(15) and (16) while the iterative joint DA/DD estimator only
has to compute an estimate of the matrix C by making hard
decisions on the unknown data symbols ad . In other words the
iterative joint DA/DD estimator has to compute only the first
order statistics of the unknown data symbols ad while the EM
algorithm needs to estimate both the first and the second order
statistics. This results in a higher computational complexity for
the EM algorithm.

V. CONCLUSIONS

In this paper we have proposed an iterative channel estima-
tion algorithm for KSP-OFDM based on the EM algorithm.
The initial estimate needed to start up the EM algorithm is
obtained by means of the DA channel estimator from [8].
Then the EM algorithm is applied. Every step the received
signal is averaged over the unknown data symbols by using
the channel estimate from the previous step and a new estimate
of the channel is obtained. This process is repeated until the
EM algorithm has reached convergence. At high SNR, the

MSE of the proposed algorithm coincides with the MSE of
the all pilot estimator. Simulation results also show that the
performance of algorithm is almost independent of the number
of pilot symbols for sufficiently high SNR. The EM algorithm
outperforms the iterative joint DA/DD estimator from [1] in
terms of MSE but has a higher computational complexity.

APPENDIX

COMPUTATION OF THE E-STEP

We have to average the log likelihood log p(r |ad ,bc,bg,h )
over the unknown data vector ad given the observation r,
the pilot vectors bc and bg and last obtained estimate of the
channel vector ĥk−1. The vector of received samples r (4)
given the channel vector h, the pilot symbol vectors bc and bg,
and the data symbols ad , has a Gaussian distribution with mean
Ch and autocorrelation matrix N0IN+ν so the log likelihood
log p(r |ad ,bc,bg,h ) is given by

log p(r |ad ,bc,bg,h ) = − 1
N0

(r−Ch)H (r−Ch) . (14)

The averaging of (14) over the unknown data vector requires
the computation of the expected value of C

C̃ = Ead

[
C

∣∣r,bc,bg, ĥk−1
]

= B+Ead

[
A

∣∣r,bc,bg, ĥk−1
]

(15)

and of CHC

R̃C = Ead

[
CHC

∣∣r,bc,bg, ĥk−1
]

(16)

= BHB+Ead

[
BHA+AHB+AHA

∣∣r,bc,bg, ĥk−1
]
.

The posterior distribution of the data symbols ad given the
observation r, the pilot vectors bc and bg and the last obtained
estimate of the channel vector ĥk−1, is given by

p
(
ad

∣∣r,bc,bg, ĥk−1
) ∼ p

(
r
∣∣ad ,bc,bg, ĥk−1

)
p(ad) . (17)

We assume that all data sequences are equiprobable. Using
(14) where we substitute h by its estimate ĥk−1, the posterior
distribution of the data symbols (17) can be rewritten as

p
(
ad

∣∣r,bc,bg, ĥk−1
) ∼ e(ad−ma)H R−1

a (ad−ma) (18)

where

Ra =
N

N +ν
N0

(
FH

d ĤH
k−1Ĥk−1Fd

)
(19)

ma =
(
RH

a Ra
)−1

RH
a

(
r−Bĥk−1

)
. (20)

The (N +ν)×N matrix Ĥk−1 mentioned in (19), is defined as(
Ĥk−1

)
l,m = ĥk−1 (l −m) . (21)

Note that ĥk−1 (l) = 0 for l < 0 or l ≥ L. For large N, the matrix
Ra can be approximated by a diagonal matrix. This means that
the data symbols ad (m) , m = 0, . . . , N + ν−M − 1, given r,
ĥk−1, bc and bg can be considered as statistically independent.



To obtain C̃ and R̃C we need to compute

E
[
ad (m)

∣∣r,bc,bg, ĥk−1
]

= ∑
ad(m)

ad (m) p
(
ad (m)

∣∣r,bc,bg, ĥk−1
)

(22)

and

E
[
ad (m)a∗d

(
m′)∣∣r,bc,bg, ĥk−1

]
={

∑ad(m) |ad (m)|2 p
(
ad (m)

∣∣r,bc,bg, ĥk−1
)

m = m′

E
[
ad (m)

∣∣r,bc,bg, ĥk−1
]

E
[
ad (m′)

∣∣r,bc,bg, ĥk−1
]

m �= m′

(23)

for m,m′ = 0, . . . , N + ν−M − 1. Finally, substituting ad (m)
and ad (m)a∗d (m′) by their respective expected values (22) and
(23) in C and CHC yields C̃ and R̃C.
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