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Abstract— In multicarrier systems, the transmitted time-
domain signal exhibits large amplitude peaks. This peak-to-
average power ratio (PAPR) problem complicates the practical
use of multicarrier systems: the amplifier used to transmit the
signal saturates because of the large peaks and causes non-linear
distortion. As this non-linear distortion frustrates severely the
detection of the multicarrier signal, the average power of the
multicarrier signal must be reduced such that the system operates
in the linear part of the amplifier. However, this power reduction
comes at the cost of a reduced capacity of the multicarrier
system. Hence, several techniques were investigated to reducethe
PAPR. In this paper, we compare two PAPR reduction techniques
for coded OFDM using an iterative decoder, i.e. clipping and
symbol switching. Clipping outperforms the symbol switching
technique as for given PAPR reduction, a lower BER degradation
is obtained. However, the clipping technique causes out-of-band
radiation whereas the spectrum is not changed when using the
symbol switching technique.

I. I NTRODUCTION

The last decade has witnessed an immense increase of
wireless communications services, to keep pace with the ever
increasing demand for higher data rates combined with higher
mobility. To satisfy this demand for higher data rates, the
throughput over the existing transmission media had to be
increased. One of the techniques that was investigated in
this context is the multicarrier transmission technique [1]. In
multicarrier transmission, the data sequence to be transmitted
is split into a number of lower rate data streams, each of which
is modulated on a different carrier. Because the time-domain
multicarrier signal consists of the sum of the contributions of
the different carriers, the amplitude of the time-domain signal
can exhibit large peaks. This peak-to-average power ratio
(PAPR) problem hampers the proper action of the multicarrier
system: if no action is taken, the amplifier used to transmit
the multicarrier signal will saturate because of the large peaks
in the signal, and will cause non-linear distortion. To avoid
the non-linear distortion, which disturbs the detection ofthe
multicarrier signal, one can reduce the transmit power of the
multicarrier signal, such that the amplifier can work in its
linear area. However, by reducing the transmit power, the
capacity of the multicarrier system is reduced. Hence, the
research has focused on techniques to reduce the PAPR.

In the literature, several techniques to reduce the PAPR can
be found [2]-[3]. Among all techniques available, clipping
is the technique with the lowest complexity [4]-[7]. In this
technique, the amplitude of the time-domain signal is cut off
when it exceeds a predetermined threshold. The clipping can

be performed on the in-phase and quadrature component sep-
arately, causing the phase content of the signal to be changed,
or on the modulus in order to maintain the phase content of
the signal; the latter results in better performance results than
the former. Clipping causes non-linear distortion of the mul-
ticarrier signal, resulting in out-of-band radiation. Hence, by
clipping the signal, the spectral efficiency of the multicarrier
signal is reduced. To avoid this out-of-band radiation problem,
the clipped multicarrier signal is filtered. However, filtering
then again causes a peak regrowth. Therefore, the clipping-
filtering operation is repeated several times to reach the desired
amplitude level and to limit the out-of-band radiation. The
difficulty to reconstruct the signal at the receiver limits the
practical use of this technique.

In a second class of techniques, the data sequence to be
transmitted is selected from a set of possible sequences such
that the PAPR is minimized [8]-[11]. In the partial transmitse-
quences (PTS) technique [8]-[9], the data symbols are grouped
in subblocks, and each of the subblocks is weighted with its
own phase which is selected such that the PAPR is minimal.
The PAPR reduction improves by increasing the number of
subblocks. However, the search for the optimal phases is very
complex especially when the number of subblocks is large,
and side information about the used phases is required to
reconstruct the data sequence at the receiver. In the selective
mapping (SLM) technique [10], each data sequence can be
represented by a number of possible sequences by selecting
one phase vector out of a predetermined set of phase vectors;
the phase vector that minimizes the PAPR is selected. The
complexity of this technique is lower than the PTS technique,
as the set of possible phase vectors is smaller, although the
PAPR reduction that can be obtained is smaller. Similarly
as in the PTS technique, side information about the phase
vector is necessary to reconstruct the data. In contrast with
the clipping technique, the signal is not distorted and no out-
of-band radiation is present, but side information is required
for reconstructing the data sequence.

To avoid the necessity of side information, other PAPR
reduction techniques were introduced. In one of these tech-
niques, some of the carriers are not used for data transmission,
but for PAPR reduction purposes [12]-[14]. In this technique
pilots or dummy carriers that are inserted, are selected such
that the PAPR is minimized. This however comes at the cost of
a reduced throughput, as the carriers used for PAPR reduction
can not be used for data transmission. Another technique that



does not need side information makes use of coding [15]-
[16]. The data is encoded using e.g. a block code. Instead of
transmitting the data symbol sequence corresponding to the
codeword, a different sequence is transmitted where some of
the data symbols are replaced by others (i.e. symbol switching)
in order to reduce the PAPR. The errors that are deliberately
introduced in this way, can be corrected by the error correcting
code. Hence, part of the error correcting capability of the
code is sacrificed to PAPR reduction. Most of the literature
on this topic deals with linear block codes (like the Golay
code or Reed-Muller codes) with hard decoding. Further,
the computational complexity of this technique strongly in-
creases with the number of carriers, because of the decoding
complexity and the search for which symbols need to be
switched. Recent developments in iterative decoding (e.g.
turbo codes and LDPC codes) allow long codewords to be
decoded with reasonable complexity. To our knowledge, no
work has been done on the use of iteratively decodable codes
for PAPR reduction. In this paper, we present a systematic low-
complexity approach to select the data symbols to be switched,
and the errors that are introduced by the symbol switching are
corrected by using an iteratively decodable code. The results
are compared with the clipping technique.

II. SYSTEM DESCRIPTION

The bit sequence to be transmitted is split into information
words of k bits, wherebi = {bi,0, . . . , bi,k−1} is the infor-
mation word at time intervali. The information wordsbi of
k bits are converted into codewordsci = {ci,0, . . . , ci,n−1}
of n bits, using an(n, k) code. During time intervali, the
n bits of the codewordci are mapped onN data symbols
ai = {ai,0, . . . , ai,N−1} selected from a2m-point constel-
lation using Gray mapping, whereN = n

m
and the energy

per symbol equalsEs = E[|ai,ℓ|2]. The N data symbols
ai are modulated on the carriers using anN -point inverse
fast Fourier transform (IFFT), resulting in the time-domain
sequencesi = {si,0, . . . , si,N−1}:

si,ℓ =
1√
N

N−1
∑

q=0

ai,qe
j2π

qℓ

N . (1)

In the following, we drop the time indexi for notational
convenience. The peak-to-average power ratio (PAPR) of the
time-domain sequences is defined as

PAPR(s) =
maxℓ |sℓ|2

Es

[

1
N
||s||2

] . (2)

The time-domain signals is applied to the PAPR reduction
operatorQ(·), resulting in the sequences = {s0, . . . , sN−1}:

s = Q(s). (3)

The time-domain sequences is transmitted over an AWGN
channel with noise spectral densityσ2. The resulting received
signal r is converted to the frequency domain using an FFT.
The resulting FFT outputsz = {z0, . . . , zN−1} are decoded
using an iterative decoder. As no side information is available,
the decoder cannot use knowledge on the PAPR reduction

in the iterative decoding. The receiver computes the prior
probabilities that a received bit equalsx = 0, 1 from the
received samples as follows:

P (bi = x) =

∑

a:bi=x e−
1

2σ2
|zq−a|2

∑

a e−
1

2σ2
|zq−a|2

, i = 0, . . . , n − 1. (4)

The samplezq in (4) corresponds to the sample in which the
bit bi contributes. The sum in the numerator ranges over the
constellation pointsa for which bi = x only, whereas the sum
in the denominator ranges over all constellation points.

A. Clipping

In this paper, we consider clipping with preservation of
the phase content of the signal. As the clipping is performed
on each time-domain sample separately, the PAPR reduction
operatorQ(·) is given by

sℓ = Qclip(sℓ) =

{

sℓ if |sℓ| ≤ α

αej arg(sℓ) if |sℓ| > α
(5)

whereα is the clipping level andarg(sℓ) is the phase ofsℓ.

B. Symbol Switching

To reduce the PAPR, we replaceM data symbols ina by
other constellation points. The search for the optimal sequence
ã where M symbols are switched, such that the PAPR is
minimum, is an intractable problem when the number of
switched symbolsM and the number of carriersN is large.
Therefore, we propose a suboptimal, systematic approach to
switch theM symbols. The switching algorithm is shown in
Algorithm I. For the algorithm, we use the clipping operator
defined in (5). First, theM +1th maximum of the modulus of
the time-domain signal vectors is determined and the clipping
level α is set to this value. The time-domain signal vector
s is clipped with the operator (5) with levelα, resulting in
M clipped peaks. The resulting time-domain signalsclip is
applied to an FFT, and the resulting vectoraclip is used to
compute the error vectoreclip = aclip − a. Using this error
vector, theM symbol positions that will be switched are
determined sequentially. For each of theM symbol positions,
the positionq is determined that has the largest contribution to
the error vector. Then it is checked if the symbol at the position
q was already switched or not. If the symbol at positionq was
already switched before, the position corresponding to thenext
largest contribution to the error vector is checked. If a position
q is found that was not switched before, the data symbolaq at
this position is changed into all possible constellation points.
For each of the2m constellation points, the PAPR is computed
and the data symbol is replaced by the constellation point with
the smallest PAPR. In this way, theM different symbols are
switched with linear complexity.

III. N UMERICAL RESULTS

In the simulations, we consider a low-density parity-check
(LDPC) coded OFDM system [17]. We consider two different
parameter sets (see table II). In the first set of parameters,
a 4QAM constellation is used onN = 512 carriers. One



Algorithm I: Symbol Switching Algorithm
1: set clipping levelα to M + 1th maximum of abs(s)
2: sclip = Qclip(s) (5), aclip = FFT (sclip), eclip = aclip − a

3: indices = ones(N ,1) % vector ofN symbol indices
4: for i=1:M
5: q = arg max abs(eclip) % search for symbol indexq with largest contribution in the error vectoreclip

6: while indices(q)==0 % check if symbol was already switched
7: eclip(q) = 0, q = arg max abs(eclip)
8: end
9: indices(q)=0

10: for as ∈ constellation
11: changeaq into as, compute PAPR
12: end
13: replaceaq by as with smallest PAPR
14: end

TABLE I

ALGORITHM I: SYMBOL SWITCHING ALGORITHM.

Set 1 Set 2
constellation 4QAM 16QAM

n 1024 2048
k 513 1025
N 512 512

TABLE II

SIMULATION PARAMETERS.
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Fig. 1. PAPR with and without symbol switching, 4QAM,N = 512 carriers.

OFDM block contains one codeword, such that the code length
equalsn = 1024. The used LDPC code has approximately
rate 1/2 with k = 513. In the second set of parameters, a
16QAM constellation is used onN = 512 carriers. Similarly
as in the first set of parameters, one OFDM block contains
one codeword, such that the code length equalsn = 2048.
The code rate is approximately equal to1/2 with k = 1025.
The energy per transmitted data symbol is normalized to
Es = 1, and the signal-to-noise ratio (SNR) is defined as
SNR = Es/σ2. The PAPR reduction (in dB) is defined as
the difference in PAPR (in dB) without PAPR reduction and
the PAPR (in dB) after the PAPR reduction technique.

In figures 1 and 2, the PAPR is shown for the symbol
switching technique and clipping, respectively, for both 4QAM
and 16QAM. The results in these figures are obtained by
averaging out over 1000 randomly generated data sequences.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4

clipping level,

P
A

P
R

4QAM

16QAM

PAPR without clipping

PAPR with clipping

PAPR reduction clipping (dB)

a

Fig. 2. PAPR with and without clipping, 16QAM,N = 512 carriers.

As can be observed, the results are essentially independentof
the used constellation. In the symbol switching technique,the
PAPR first strongly decreases by increasing the numberM of
switched symbols but increasingM above 10 only results in
a small extra PAPR reduction. On the other hand, the PAPR
reduction for clipping strongly depends on the clipping level
α. This dependency of the PAPR reduction onα is strongest
in the areaα ∈ [0.5, 2.5], whereas the PAPR reduction is very
small whenα is larger than 2.5.

In figure 3, the distribution of the PAPR after symbol
switching is shown for different values of the numberM of
switched symbols. As in figure 1, it can be observed that the
average of the PAPR decreases when the number of switched
symbols increases. Moreover, the width of the distribution
becomes narrower, which implies that the uncertainty on the
PAPR decreases. This simplifies the design of the amplifier:
because the narrower distribution of the PAPR, the probability
that the transmitted signal is saturated decreases. Further,
because of the lower average PAPR, the signal transmission
power can be increased without suffering from saturation.

The probability density function (pdf) of the number of
erroneous bits that are introduced in the data sequence by
using symbol switching is shown in figures 4 and 5 for
4QAM and 16QAM, respectively. The results are obtained by
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Fig. 6. BER with symbol switching,N = 512 carriers, 4QAM.
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Fig. 7. BER with symbol switching,N = 512 carriers, 16QAM.

randomly generating 10000 data sequences. It follows from
the figures that the number of erroneous bits are on the
average approximately equal toM and slightly less than2M
for 4QAM and 16QAM, respectively. Hence, in both cases,
approximately half of the bits corresponding to the switched
symbols are changed. The spreading of the pdf increases
with increasingM , which can be expected as the number
of possible combinations of switched symbols increases with
increasingM . If the error correcting code is not able to correct
the M (4QAM) or 2M (16QAM) switched bits, the bit error
rate (BER) will show an error floor at high SNR. Hence, the
error correcting capacity of the code limits the number of
symbols that can be switched. Further, the BER will show
a degradation as compared to the no PAPR reduction case as
the error correction code exchanges part of its error correcting
capability with PAPR reduction.

This can be observed in figures 6 and 7, where the BER
is shown for 4QAM and 16QAM, respectively, for different
values of M . The corresponding BER results for clipping
are shown in figures 8 and 9 for different values of the
clipping level α. It can be observed that for givenM , the
BER degradation is larger for 16QAM than for 4QAM. This
can be explained because the number of switched bits in
16QAM is larger than in 4QAM, such that the reduction
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Fig. 9. BER with clipping,N = 512 carriers, 16QAM.

in error correction capability in 16QAM is larger than in
4QAM. Similar results can be observed for clipping: for given
clipping level α, the BER degradation is larger for 16QAM
than for 4QAM. Comparing clipping and symbol switching,
it is clear that the BER degradation for symbol switching is
larger than for clipping with comparable PAPR reduction. This
can be explained as in the clipping method, the distortion
caused by clipping is spread over all data symbols such that
at the receiver, the deviation between the transmitted and the
received symbols is small and within the error correcting
capability of the code, whereas in the symbol switching
method, the deviations are concentrated on a few symbols.
However, in contrast with the clipping method, the symbol
switching method does not suffer from out-of-band radiation.

IV. CONCLUSIONS ANDREMARKS

In this paper, we considered PAPR reduction by using
an iterative code to correct errors introduced by symbol
switching. We have presented a simple algorithm for switching
symbols. The results are compared with the clipping method.
The PAPR shows a strong reduction when the numberM of
switched symbols is small, whereas for largerM , the extra
PAPR reduction is small. The number of bit errors that are
introduced by symbol switching ofM symbols is on the

average equal to2M/m, wherem is the number of bits per
symbol. The spreading of the bit errors introduced by symbol
switching increases withM . Although the clipping method
outperforms the symbol switching method, the latter does not
suffer from out-of-band radiation.
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