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Abstract— We propose two time delay estimators for
known symbol padding (KSP) orthogonal frequency division
multiplexing (OFDM) in a multipath fading environment.
Both estimators make use of pilot symbols in the guard
interval and known pilot carriers and take the frequency
selectivity of the channel into account. The performance of
the estimators is illustrated by means of simulation results
for the mean squared error (MSE) and the bit error rate
(BER). There is a degradation in performance compared
with a receiver with perfect synchronization, especially for
high Es/N0, but KSP-OFDM systems with the proposed
estimators outperform a cyclic prefix OFDM system with
the time delay estimator from [1].

I. I NTRODUCTION

The number of wired and wireless services has in-
creased a lot during the last years. This increase has
created the need for a technique that combines high data
rates with a high reliability. Orthogonal frequency division
multiplexing (OFDM) is a strong candidate as it is a
flexible technique that can support high data rates, and
is able to combat frequency selective channels [2]. These
advantageous properties have made OFDM a hot research
topic and the OFDM technique has already been applied
in various standards like digital audio broadcasting (DAB)
[3], digital video broadcasting (DVB) [4], in modems for
digital subscriber lines (xDSL) [5], in wireless local area
networks (WLAN) [6], ...

An OFDM system can be efficiently implemented by
the usage of fast Fourier transforms (FFT), which is a
great advantage. Before the transmission, an inverse FFT
(IFFT) is applied to the information to be transmitted,
in order to convert the data that are modulated in the
frequency domain on the different carriers into a time
domain signal. Further, a guard interval is inserted to
avoid inter block interference (IBI) between successively
transmitted OFDM blocks. In the literature, there exist
different types of guard intervals. The two most popular
guard interval techniques are the cyclic prefix (CP) and
the zero padding (ZP) techniques [7]. In the cyclic prefix
technique, the guard interval is transmitted before each
OFDM block and consists of the last samples of the
OFDM block. In ZP-OFDM, the guard interval is filled
with zeros, i.e. during the guard interval no signal is
transmitted. In this paper however, we will consider a
third guard interval technique, i.e. the known symbol

padding (KSP) technique [8]. In this technique, the guard
interval is filled with known samples or pilots.

Synchronization of the OFDM receiver with the OFDM
transmitter requires to find the starting point of the OFDM
symbol: time offsets can cause inter carrier interference
(ICI) and IBI [9], [10]. For CP-OFDM, several time delay
estimation algorithms have been proposed in the literature.
The authors of [1] derive the maximum likelihood (ML)
estimator for a time delay in the presence of additive white
Gaussian noise (AWGN). The redundancy of the cyclic
prefix and pilot symbols on the carriers are exploited.
The blind estimator of [11] is a special case of the
previous estimator and only makes use of the correlation
of the cyclic prefix and the last samples of the transmitted
OFDM block. A time delay estimator that makes use of
a specially designed training symbol is proposed in [12]
for the AWGN channel. However, as it does not employ
all available information, the estimator is suboptimal. In
[13], the ML time delay estimator is derived in the case
of dispersive channels under the assumption of perfect
channel knowledge. The estimator uses the cyclic prefix
only. However, as it is in practice very difficult to obtain a
channel estimate without knowledge about the time delay,
the performance of this estimator can be seen as a lower
bound on the performance of an estimator which does not
assume any knowledge about the channel.

Common to the time synchronization algorithms pro-
posed for CP-OFDM is the non-negligible degradation
caused by the residual timing error at high signal-to-
noise ratios (SNR) in the presence of a fading channel. In
[14], it is shown that CP-OFDM and KSP-OFDM have
essentially the same performance when the guard interval
length is much smaller than the number of carriers. As
this is the case in all practical situations, it motivated
us to consider the timing synchronization problem for
KSP-OFDM, where the pilots are spread both in the time
and the frequency domain. To our knowledge, no research
has been done about time delay estimation algorithms for
KSP-OFDM. Both the pilot symbols in the guard interval
and the pilot symbols on the pilot carriers are exploited by
our estimator. The performance of the proposed estimator
is compared with the estimator for CP-OFDM from [1] in
terms of the mean squared error (MSE) of the time delay
estimate, and in terms of the bit error rate (BER).
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Fig. 1. Time-domain signal of a KSP-OFDM block a) transmitted
signal b) received signal and observation interval

II. SYSTEM MODEL

Consider a KSP-OFDM system withN carriers and a
guard interval of lengthν. M is defined as the total number
of transmitted pilot symbols of whichν are transmitted
during the guard interval andM − ν on the carriers.
On the different carriers, we transmit blocks of symbols
ai = (ai (0) , . . . , ai (N −1))T consisting ofM − ν pilot
symbols denoted asbc = (bc (0) , . . . , bc (M−ν−1))T

and N + ν − M data symbols denoted asa(i)
d =

(

a(i)
d (0) , . . . , a(i)

d (N +ν−M−1)
)T

. The guard inter-
val consists of ν pilot symbols denoted asbg =
(bg (0) , . . . , bg (ν−1))T . We defineEs as the transmit-

ted energy per symbol:Es = E
[

|ai (n)|2
]

= E
[

|bg (k)|2
]

.
The transmitted symbol vectorai is modulated on the
different carriers using theN-point IFFT. The guard
interval is inserted after theN IFFT outputs. The
samples of the transmitted time domain signalsi =
(si (0) , . . . , si (N +ν−1))T are given by

si =

√

N
N +ν

(

FHai

bg

)

(1)

where F denotes theN ×N FFT matrix with elements
(F)k,l = 1√

N
e− j2π kl

N ; k, l = 0, . . . , N −1. Figure 1 shows

the time domain signal. We define the vectorssp ands(i)
d

as

sp =

√

N
N +ν

Fpbc (2)

s(i)
d =

√

N
N +ν

Fda(i)
d (3)

where Fp consists of theM − ν columns ofFH which
correspond to the pilot carriers andFd is given by the
N + ν−M columns of FH that correspond to the data
carriers. Sosp ands(i)

d can be seen as the pilot and data
signal in the time domain respectively. We defineb as the
total transmitted pilot signal, sob collects the contribution
from the pilot carriers and the pilot symbols in the guard
interval

b =

(

sp
√

N
N+ν bg

)

. (4)
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Fig. 2. Definition of the received signal vector

The samplessi are transmitted over a frequency selec-
tive channel with an impulse response of lengthL denoted
as h = (h(0) , . . . , h(L−1))T . In order to avoid inter
block interference, the length of the guard intervalν is
chosen so that the guard interval exceeds the duration of
the channel impulse response:ν ≥ L−1.

The receiver takes a block of samples
r = (r (0) , . . . , r (2(N +ν)+L−3))T . Every transmitted
OFDM block, which has a duration ofN + ν samples,
contributes toN + ν + L − 1 successive samples of the
received signal after transmission over a channel with an
impulse response ofL samples. The vectorr contains
the total contribution from only one OFDM block (along
with partial contributions from adjacent blocks) because
of its length. We assume that this block has the index
i = 0 without loss of generality. The starting pointk0 of
this block in the received signal vectorr is not known
and has to be estimated (see figure 2).

For the detection of the data symbols transmitted in
block i, we take theN + ν received samples from the
observation interval corresponding to blocki as can be
seen in figure 1. The contributions from the pilot symbols
of the guard intervals (dark gray areas on figure 1) are
first subtracted from the received signal. The resulting
system can be seen as a ZP-OFDM system. Now for data
detection in a ZP-OFDM system ([7]), the lastν samples
of the observation interval are added to the firstν samples
of the OFDM symbol (see figure 1b). The resulting block
of N samples is then applied to the FFT. Finally per carrier
symbol detection is performed.

III. T IME DELAY ESTIMATION

In this section we derive the estimator fork0 starting
from the joint likelihood function ofk0 and h for the
observationr . We drop the block indexi = 0 for notational
convenience. To keep things simple, we assume that
r only contains noise besides the contribution of the
considered transmitted OFDM blocks1. We definer0 as
the subvector ofr that collects the contributions from
s: r0 = (r (k0) , . . . , r (k0 +N +ν+L−2))T . Because of
the already mentioned assumption, the vectorr0 can be
written as

r0 = Hs+w (5)

where s is defined in (1) (with i = 0), H is the
(N +ν+L−1)× (N +ν) Toeplitz channel matrix whose
entries are defined as(H)l:l+L−1,l = h; l = 0, . . . , N +

ν − 1 and w = (w(k0) , . . . , w(k0 +N +ν+L−2))T is

1We only use this assumption to derive the estimator, for the simula-
tions we will consider a continuous transmission of OFDM blocks.



the noise vector, wherew(k) is white additive Gaussian
noise with varianceN0 and zero mean. The contribution
of the useful signal in (5) can be written as the sum of the
contribution of the data symbols and the pilot symbols:

Hs = Bh+Ah (6)

where B and A are the (N +ν+L−1) × L Toeplitz
matrices with respective entries(B)l:l+N+ν−1,l = b and
(A)l:l+N−1,l = sd ; l = 0, . . . , L−1.

The distribution of the received signal vectorr given
k0, the channel impulse responseh, and the data symbol
vectorad is given by

p(r |k0, h, ad ) =

C exp

{

− 1
N0

(

k0−1

∑
k=0

|r (k)|2 +
2(N+ν+L−2)

∑
k=k0+N+ν+L−1

|r (k)|2
)}

.

exp

{

− 1
N0

[r0− (B+A)h]H [r0− (B+A)h]

}

(7)

whereC is some irrelevant constant. This expression still
depends on the unknown data symbolsad and has to be
averaged over the unknown data symbols in order to be
useful for our estimation problem. This averaging is rather
complicated so we have to simplify (7) first. For small
values ofx, exp(x) can be approximated by the first two
terms of its Taylor series, i.e. exp(x) ≃ 1+x for |x| ≪ 1.
So for lowEs/N0, expression (7) can be approximated by

p(r |k0, h, ad ) =

C− C
N0

(

k0−1

∑
k=0

|r (k)|2 +
2(N+ν+L−2)

∑
k=k0+N+ν+L−1

|r (k)|2
)

− C
N0

[r0− (B+A)h]H [r0− (B+A)h] . (8)

Averaging (8) over the unknown data symbols is easy
now as we only need to compute the averages ofA and
AHA: E[A] = 0 and E

[

AHA
]

= RA (See appendix for the
computation ofRA). This yields forp(r |k0, h )

p(r |k0, h ) =

C

{

1− 1
N0

[

rH r − rH
0 Bh−hHBH r0

]

− 1
N0

hH (BHB+RA
)

h
}

. (9)

The ML estimates ofk0 and h can be obtained by
maximizing (9) with respect tok0 and h. The estimate
of h given k0 is obtained by deriving (9) with respect to
h and results in

ĥ(k0) =
(

BHB+RA
)−1

BHr0 (10)

When we substitute this estimate ofh in (9) we obtain
the functionΓ1 (k0) which only depends onk0:

Γ1 (k0) =
1

N0
rH

0 B
(

BHB+RA
)−1

BHr0. (11)

The estimate ofk0 is then given by

k̂0 = argmax
k0

{Γ1 (k0)} . (12)

A second estimator can be obtained by totally neglecting
the contributions of the unknown data symbols in (8).
This means that we neglectA in (8) andRA in (9). In
that case, the estimate ofh given k0 is given by

ĥ(k0) =
(

BHB
)−1

BHr0 (13)

and the estimate ofk0 is then given by

k̂0 = argmax
k0

{Γ2 (k0)} (14)

with
Γ2 (k0) =

1
N0

rH
0 B
(

BHB
)−1

BHr0. (15)

Although we derive the joint estimate ofh and k0 in
this algorithm, only the estimate fork0 is used. Indeed,
the estimate forh will perform badly at highEs/N0, as
the contributions from the data symbols in (8) and (9)
have been either neglected or replaced by their means,
resulting in an error floor in the MSE ofh and the BER
(see [15] and [14]). The derivation of the estimate ofh is
only needed to remove its contribution from (9) in order
to obtain a simple expression for the estimate ofk0. For
channel estimation, better estimators are available in the
literature, e.g. [16], [17], having better performance at
high Es/N0 than the estimators (10) and (13).

If we take a closer look at (11) and (15), we see that
the functionsΓ1 (k0) andΓ2 (k0) compute the correlation
between the received signal and the pilot vectorb at L
successive time instants as can be seen from the matrix
productBHr0:

(

BHr0
)

l =
N−1

∑
k=0

r (k0 + l + k)(sp (k))∗

+

√

N
N +ν

ν−1

∑
k=0

r (k0 + l +N + k)(bg (k))∗ (16)

where l = 0, . . . , L − 1. Both the estimators (12) and
(14) try to find thek̂0 that maximizes a function of the
L successive correlations between the received signal and
the pilot vector.

IV. SIMULATION RESULTS

In this section the performance of our time delay
estimators is evaluated by means of simulations. We
compare the performance of the estimators with the ML
time delay estimation algorithm for CP-OFDM from [1].
We considerN = 1024 carriers and a guard interval
of length ν = 100 for KSP-OFDM and CP-OFDM re-
spectively. To make a fair2 comparison between CP-
OFDM and KSP-OFDM, we assume that the number
of pilot symbols transmitted on the carriers in the CP-
OFDM signal is equal toM−ν. The transmitted symbols
consist of randomly generated QPSK symbols. Although
we derived the estimator fork0 under the assumption
that only one OFDM block is transmitted, we simulate a

2By taking N, ν and the numberM−ν of pilot carriers the same for
both CP-OFDM and KSP-OFDM, we obtain the same data throughput
and, assuming perfect synchronization and channel knowledge, essen-
tially the same BER.
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Fig. 3. MSE results for a frequency selective channel,L = 50, N =
1024,ν = 100, M = 200
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Fig. 4. Histogram of the time delay estimation error for the KSP-OFDM
estimator 1 (left) and 2 (right),Es/N0 = 20 dB, M = 200

continuous transmission of OFDM symbols. As we want
to focus on the impact of time delay estimation errors, it
is assumed for the simulation of the BER that possible
phase rotations of the symbol constellation, caused by
time delay estimation errors, are perfectly compensated
and that the channel is perfectly estimated after the time
delay estimation. For KSP-OFDM, these assumptions
mean that the contributions from the pilot symbols from
the guard interval can be perfectly removed from the
received signal. In the figures and in the accompanying
text, the KSP-OFDM estimator from (12) which takes
the unknown data symbols in to account, is called ’KSP-
OFDM estimator 1’, while the estimator from (14) which
totally neglects the contributions from the unknown data
symbols, is called ’KSP-OFDM estimator 2’.

The performance of the estimators in a dispersive
channel is shown in figures 3-6. We consider a frequency
selective Rayleigh fading channel consisting ofL = 50
channel taps. Figure 3 shows the results for the MSE
on the time delay estimate. The KSP-OFDM estimators
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Fig. 5. Histogram of the time delay estimation error for the CP-OFDM
estimator,Es/N0 = 20 dB, 100 pilot carriers
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Fig. 6. BER results for a frequency selective channel,L = 50,N = 1024,
ν = 100, M = 200

outperform the estimator for CP-OFDM as could be
expected: our estimators take the dispersive nature of the
channel into account while the estimator from [1] was
designed for an AWGN channel and so this estimator
is not robust to a dispersive channel as opposed to our
estimator. The KSP-OFDM estimator 2 outperforms the
first KSP-OFDM estimator for higherEs/N0.

Figures 4 and 5 show a histogram of the estimation
error k̂0− k0 for the KSP-OFDM estimators and the CP-
OFDM estimator respectively forEs/N0 = 20 dB and 100
pilot carriers (M = 200). The first KSP-OFDM estimator
finds the truek0 in more than 80% of all simulated cases.
The second KSP-OFDM estimator performs even better
and finds the realk0 in more than 90% of all simulated
cases. For both KSP-OFDM estimators, the estimation
error

∣

∣k̂0− k0
∣

∣ is smaller than or equal to 2 samples in
more than 99% of all simulated cases. The performance
of the CP-OFDM estimator is much worse: the truek0 is
almost never found and less than 1% of all cases results
in
∣

∣k̂0− k0
∣

∣≤ 2 samples.
The BER results for a dispersive channel are shown in



figure 6. The BER curves confirm the results from the
other figures. We see that KSP-OFDM systems with the
proposed estimators exhibit a lower BER than the CP-
OFDM system with the time delay estimator from [1]. The
performance of receivers with the considered estimators
is close to a receiver with perfect synchronization for
low to middle highEs/N0. For higherEs/N0, the KSP-
OFDM systems will also exhibit an error floor for the
BER but CP-OFDM has a significantly higher error floor.
The error floors of the proposed estimators are caused by
the assumptions made in the derivation of these estimator,
i.e. that only one OFDM symbol is transmitted whereas
in the simulations continuous transmission is considered,
and by assuming that the data symbols can be neglected
or replaced by their averages. KSP-OFDM estimator 2
results in a lower error floor than KSP-OFDM estimator
1, so totally neglecting the contribution of the unknown
data symbols for the estimation of the time delay gives
better results than averaging first over the unknown data
symbols.

V. CONCLUSION

We have derived two time delay estimators for KSP-
OFDM in multipath fading environments. Both estimators
are based on the correlation between the received signal
and the pilot symbols in the guard interval and the cor-
relation between the received signal and the time domain
contribution from the pilot carriers. The first estimator is
derived after averaging the likelihood function of the re-
ceived signal over the unknown data symbols. The second
estimator just neglects the contribution of the unknown
data symbols. We compared the proposed time delay
estimators with the ML time delay estimator for a CP-
OFDM system [1] in terms of MSE and BER. The KSP-
OFDM systems with our time delay estimators outperform
the considered CP-OFDM system. , as they result in a
lower BER. The KSP-OFDM estimator which neglects
the unknown data symbols, gives better performance than
the estimator which averages the likelihood function of
the received signal first over the unknown data symbols.

APPENDIX

In this appendix we computeRA which is the average
of AHA. Note thatAHA is a Hermitian symmetric matrix,
so it is sufficient to only consider the elements(k, l) with
l ≥ k. The elements ofAHA are given by

(

AHA
)

k,l =
N−1−(l−k)

∑
m=0

(sd (m+ l − k))∗ sd (m)

l ≥ k,k = 0, . . . , L−1 (17)

wheresd (m) are the elements of the vectorsd, defined
in (3). Averaging those elements over the unknown data
symbols yields for the elements ofRA

(RA)k,l = (N − l + k)
Es

N +ν

N−M+ν−1

∑
m=0

e− j2π nm(l−k)
N

l ≥ k,k = 0, . . . , L−1 (18)
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