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Abstract— Unique word (UW) OFDM is a new multicarrier
technique that was first introduced in [1]. In this technique,
the guard interval is a part of the inverse FFT (IFFT) output,
and is filled with known symbols. To be able to construct – by
using an IFFT – a time domain signal containing a block of
known samples, it is necessary to sacrifice a number of carriers.
These carriers are called redundant carriers and the symbols
modulated on these redundant carriers depend on the data to
be transmitted. In this paper, we evaluate the distribution of
the redundant carriers over the bandwidth. It turns out that
when the positions of the redundant carriers are not carefully
selected, the extra energy needed for the redundant carriers
can become very large. We propose a novel algorithm for the
placement of the redundant carriers that is based on a simple
analytical expression, such that extensive simulations to find the
optimal distribution is avoided. The proposed distribution yields
essentially minimal average redundant energy.

I. INTRODUCTION

The success of multicarrier systems like OFDM can be at-

tributed to their robustness to channel dispersion and their high

bandwidth efficiency [2]. This makes them the best candidate

for various applications, witness the different standards that

use multicarrier transmission as (one of) its basic modulation

techniques, e.g. [3]-[4]. In order to avoid intersymbol inter-

ference caused by overlap in the time domain of sequentially

transmitted OFDM blocks, typically a guard interval is inserted

between the different IFFT blocks. In the literature, different

guard interval techniques can be found, e.g. cyclic prefix, zero

padding and known symbol padding [5]-[6] – the cyclic prefix

technique however is the most popular of these techniques. In

these traditional guard interval techniques, the guard interval

is not a part of the IFFT block, i.e. the length of the OFDM

symbol is extended. Recently, a new OFDM technique was

introduced, i.e. unique word OFDM (UW-OFDM) [1]. In

contrast with the traditional guard interval techniques, in UW-

OFDM, the guard interval is a part of the IFFT block: the last

part of the IFFT block is a block of known samples, called

the unique word. The construction of the unique word requires

that part of the carriers cannot be used for data transmission

but contain a linear combination of the symbols transmitted on

the data carriers. Hence, UW-OFDM introduces redundancy in

the frequency domain.

In [7], the two-step approach to construct UW-OFDM was

introduced. In this approach, first a block of zero samples is

constructed at the positions of the unique word by properly

selecting the information modulated on the redundant carriers,

and in the second stage, the known samples of the unique

word are added. As in this method, first a signal with a block

of zeros in the time domain is constructed, the UW-OFDM

technique can be compared with a Reed-Solomon code [8].

Comparing CP-OFDM with UW-OFDM, it follows that the

throughput efficiency for UW-OFDM is lower than for CP-

OFDM, e.g. for a guard interval length equal to 25% of

the FFT length, the throughput efficiency for CP-OFDM is

80% whereas for UW-OFDM, it is only 75%. This follows

from the fact that in the latter, the guard interval is a part

of the IFFT block, whereas in the former it is not. Hence,

the relative reduction of the throughput efficiency in UW-

OFDM is larger. This implies that in an AWGN channel,

the CP-OFDM will outperform UW-OFDM in terms of BER

(this effect was shown in [7]). However, it was shown in

[7] for uncoded and in [1], [9] for coded OFDM that in

the presence of frequency selective channels, UW-OFDM

outperforms CP-OFDM in terms of BER. This implies that

the redundancy in the frequency domain from UW-OFDM

results in a coding gain as compared to CP-OFDM – a coding

gain that becomes larger when the channel contains more deep

fades. Note that in CP-OFDM deep fades can be counteracted

with precoding resulting in coded OFDM (COFDM) [10]-[12].

However, precoded OFDM needs the availability of channel

state information (CSI) at the transmitter side – which is

not always easy to obtain, whereas in UW-OFDM no CSI

is necessary.

In [1] and [7], the authors restricted their attention to the

case where the number of redundant carriers equals a power

of two. In [13] it is analytically shown that the optimal

placement of the redundant carriers in that case is the uniform

distribution1. In this paper, we would like to extend this to the

general case, where the number of carriers is not necessarily

a power of 2. This will provide an extra degree of freedom

in the design of UW-OFDM. However, we show in this

paper that when the positions of the redundant carriers are

not carefully selected, the average energy needed for these

redundant carriers can increase exponentially. Hence, it is

of major importance to determine an appropriate redundant

carrier distribution. In this paper, we propose a novel redundant

carrier distribution that places the redundant carriers using a

simple analytical algorithm, such that extensive simulations to

1Note that the optimal distribution found in [1] and [7] through simulations
is not entirely uniform. This is because in these papers, a guard band is
considered where no data or redundant carriers can be placed. This influences
the optimal placement of the redundant carriers.
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Fig. 1. Time-domain structure of UW-OFDM.

find the optimal distribution as in [1] are no longer required.

We compare the average redundant energy needed for the

proposed distribution with those for other distributions, and

show that the proposed distribution results in essentially the

minimal average redundant energy.

II. SYSTEM DESCRIPTION

The time-domain structure of the UW-OFDM signal is

shown in figure 1. A block contains N time domain samples

generated at a sample rate 1/T . The first N − Nu samples

correspond to the data, and the last Nu samples form the

unique word with the known samples. In the first step of

the two-step approach from [7], first a block of Nu zeros is

constructed in the time domain. This is achieved by selecting

Nr redundant carriers, where it is required that Nr ≥ Nu. The

time-domain signal in this first step is given by

y = F−1

N P

(
xd

xr

)
, (1)

where xd = (xd(1) . . . xd(N − Nr))
T are the N − Nr

data symbols, xr = (xr(1) . . . xr(Nr))
T the Nr redundant

symbols, FN is the N × N FFT matrix with (FN )k,� =
1√
N
e−j2π k�

N and P is the permutation matrix. The N × N
permutation matrix P determines the positions of the data and

redundant carriers and can be decomposed as P = [Pd Pr],
where Pd is N × Nd and Pr N × Nr. The columns of P

are unit vectors; the ’1’ in the unit vectors from Pd are at

the positions ñ� ∈ Id, where Id is the set of Nd data carrier

positions, and at the positions n� ∈ Ir for the matrix Pr,

where Ir is the set of Nr redundant carrier positions.

The transform matrix M is defined as M = F−1

N P and can

be decomposed as

M =

(
M11 M12

M21 M22

)
, (2)

where M11 is (N −Nu)×Nd, M12 is (N −Nu)×Nr, M21

is Nu ×Nd and M22 is Nu ×Nr. Imposing that the last Nu

time domain samples must be zero results in a set of linear

equations M21xd +M22xr = 0. The solution with minimum

average redundant energy Pr = E[xH
r xr] is given by

xr = −M
†
22
M21xd = Txd, (3)

where M
†
22

= MH
22
(M22M

H
22
)−1 is the Penrose-Moore

pseudo-inverse. This results in the time-domain signal:

y = M

(
INd

T

)
xd = Gxd, (4)

where INd
is the Nd ×Nd identity matrix. The last Nu rows

of the matrix G are zero rows.

Assuming E[xd(i)x
∗
d(j)] = Esδi,j is the energy of a data

symbol, it follows that the average energy of the time domain

samples is given by

Pt = E[yHy] = Pd + Pr, (5)

where Pd = EsNd is the average data energy and Pr =
Estrace(THT) the average redundant energy. To obtain a high

power efficiency, it is of importance that the average energy

of the redundant symbols is as small as possible. Taking into

account (3), the average redundant energy can be rewritten as

Pr = Estrace[M21M
H
21
(M22M

H
22
)−1]. (6)

The optimal distribution is the distribution that minimizes

the average redundant energy Pr. In the special case where Nr

is a power of 2, it is shown in [13] that a uniform distribution

of the redundant carriers over the bandwidth results in the

minimum average redundant energy. Defining the spacing

between the redundant carriers as Δ = N/Nr, the redundant

carrier indices in that case are given by n� = n0 + �Δ, � =
0, . . . , Nr−1 and 0 ≤ n0 < Δ. When Nr is no longer a power

of 2, the situation becomes more complex. We show in the

simulations that in this latter case, the uniform distribution is

no longer optimal. The contrary occurs: a uniform distribution

with carrier spacing Δ = � N
Nr

� results in some cases in an

’explosion’ of the average redundant power. An explanation

for this can be found in (6): in some cases, the uniform

distribution makes the matrix M22M
H
22

become (close to)

singular.

It turns out that the average redundant energy strongly

depends on the positions of the redundant carriers. For the

general case where Nr is not a power of 2, we have carried

out an exhaustive search to find the optimum distribution of

the redundant carriers for N ≤ 32; for N > 32, an exhaustive

search was infeasible because of the computational load. The

optimum positions of the redundant carriers depended on the

system parameters N , Nr and Nu, but no simple rule of thumb

could be found to extend the results to general values of N , Nr

and Nu. To avoid the computational burden to find the optimal

distribution every time the system parameters are changed, we

prefer a (suboptimal) distribution that selects the redundant

carrier positions according to a simple analytical expression.

In this paper, we propose the following redundant carrier

distribution. This ’split’ carrier distribution avoids the matrix

M22M
H
22

to become singular, and in the simulations, we

show that this distribution yields for many values of Nr the

lowest average redundant energy. Assume the number Nr of

redundant carriers can be written as the following sum of
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Fig. 2. Proposed redundant carrier distribution for Nr = 15: Nr,1 = 8, Nr,2 = 4, Nr,3 = 2, Nr,4 = 1. The spacings equal Δ1 =
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4
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powers of 2:

Nr =

Lr∑
�=1

Nr,�, (7)

where Nr,� = 2x� , x� is integer and Nr,1 > Nr,2 > . . . >
Nr,Lr

. We split the set Ir of Nr redundant carriers in Lr

sets Ir,� with Nr,� redundant carriers. Within each set Ir,�,
the positions of the Nr,� redundant carriers are uniformly

distributed over the bandwidth with spacing Δ� = N
Nr,�

,

resulting in the carrier indices

nm,� = n0,� +mΔ�, m = 0, . . . , Nr,� − 1. (8)

The offsets n0,� of the carrier positions within the different

sets Ir,� must be carefully selected in order that the matrix

M22M
H
22

is not singular. The following choice for the offsets

yielded the minimal energy of the redundant symbols:

n0,1 = n0

n0,� = n0,�−1 +
Δ�−1

2
+m�Δ�−1, � > 1, (9)

where 0 ≤ n0 < Δ1 and m� is integer2. Assuming m� =
Nr,�−1

2Nr,�
− 1, ∀� > 1 the offsets n0,� can be rewritten as n0,� =

n0+
N

2Nr,�
− N

2Nr,1
. In figure 2, the distribution is shown for the

case where Nr = 15, assuming m� = 0. Note that, when Nr

is a power of 2, the proposed distribution results in a uniform

distribution of the redundant carriers over the bandwidth.

III. NUMERICAL RESULTS

In this section, we evaluate the distribution of the redundant

energy xH
r xr by means of a histogram for the following

redundant carrier distributions. The average redundant energy

Pr can be extracted from the histograms by averaging over the

redundant energy xH
r xr. The first distribution is the uniform

distribution, where the redundant carriers are evenly spread

over the bandwidth. Assuming Nr redundant carriers, the

carrier spacing equals Δ = � N
Nr

�, and the positions of the

2It can easily be verified that a shift of n0,� over a multiple of Δ�−1 has
no influence on the average redundant energy. This is an interesting property
when dealing with a system with guard bands: in this way we can avoid
carriers that are not allowed to be used.

redundant carriers are n� = n0 + �Δ, � = 0, . . . , Nr − 1 with

0 ≤ n0 < Δ. The second distribution is the random distribu-

tion, where the redundant carriers are randomly spread over

the bandwidth, and the third distribution is the proposed ’split’

distribution. The redundant energy is shown in histograms

generated based on 10000 Monte Carlo simulations, where

the data symbols are randomly generated QPSK symbols.

Further, we restrict our attention to the case where Nu = Nr

and N = 128. However, simulations have shown that when

Nr > Nu or for other values of N , the results are similar.

Figure 3 shows the histogram of the redundant energy xH
r xr

for the uniform distribution, assuming the offset n0 is fixed

for all simulations (n0 = 0), for different values for Nr.

Note that the abscissa of the histogram is logarithmic. For

small values of Nr, the histogram shows a sharp peak around

xH
r xr = NEs. Increasing Nr, however, moves the redundant

energy and hence the average redundant energy Pr to larger

values: while for Nr = 5, the average redundant energy is

approximately NEs, the redundant energy has increased to

approximately 100NEs for Nr = 30. Hence, it is clear that

the uniform distribution is not optimal for larger values of

Nr. In figure 4, the effect of the offset n0 is shown: in this

case, for each of the simulations, the offset is randomly picked

from a uniform distribution in the interval 0 ≤ n0 < Δ. From

the figure, when comparing the curve for a fixed n0 and a

randomly selected n0, it is clear that the offset has no influence

on the (average) redundant energy.

In figure 5, the results are shown for a random distribution,

where for each simulation, the positions of the redundant

carriers are independently changed. Comparing the results

from figures 3 and 5, it follows that the (average) redundant

energy in the random case is much higher than for the uniform

distribution: there are values for the redundant energy in the

histogram in figure 5 that are several orders of magnitude

larger than NEs. Hence, a complete random distribution for

the positions of the redundant carriers is clearly not optimal.

Therefore, we followed in figure 6 the following strategy.

Based on 10000 Monte Carlo simulations, we selected the

redundant carrier distribution that yielded the smallest redun-

dant energy. Using this ’optimal’ random distribution, another
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Fig. 3. Histogram of the redundant energy for the uniform distribution
N = 128, Nu = Nr , offset n0 fixed.
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Fig. 4. Histogram of the redundant energy for the uniform distribution
N = 128, Nu = Nr = 5 for fixed and random offset n0.

10000 Monte Carlo simulations were executed, resulting in

figure 6. Comparing figures 5 and 6, a large gain is obtained.

However, comparing figures 3 and 6 shows that the uniform

distribution still performs better than the optimal random

distribution.

The results for the proposed split distribution are shown in

figure 7 for a fixed offset n0 = 0. Simulations have shown

that, similarly as for the uniform distribution, the offset has

no effect on the average redundant energy. We observe for all

values of Nr a sharp peak in the histogram at approximately

NEs. Increasing Nr makes this peak sharper and moves

the (average) redundant energy to lower values. Hence, the

proposed split distribution avoids the ’explosion’ of the needed

(average) redundant energy observed for the uniform and ran-

dom distributions. On the contrary: increasing Nr for the split

distribution even reduces the variance of the redundant energy!

Although for small values of Nr the (average) redundant
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energy for the split distribution is somewhat larger than for

the uniform distribution (compare figures 3 and 7), it can be

concluded that the proposed distribution gives rise to the best

results: for this distribution, the (average) redundant power is

essentially minimal.

From the results of the split distribution, it can be observed

that the average energy needed for the redundant carriers (this

approximately corresponds to the peak in the histogram) is of

the order of the energy needed to transmit the data symbols.

Hence, UW-OFDM essentially doubles the energy needed to

transmit Nd data symbols. This does not take into account

the energy needed for the unique word itself! So at a first

sight, UW-OFDM is very energy inefficient. However, this

extra energy is used to create redundancy in the signal, as in

an error correcting code. At the receiver, using a data detector

that fully exploits all redundancy available in the signal will

transform this extra energy into a sort of ’coding gain’, hence
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Fig. 7. Histogram of the redundant energy for the split distribution N = 128,
Nu = Nr , offset n0 fixed.

the loss in power efficiency is compensated.

IV. CONCLUSIONS

In this paper, we evaluated the effect of different distri-

butions for the redundant carriers on the (average) energy

needed for the redundant symbols. In [13], it was shown

that the optimal distribution in the case that Nr is a power

of 2 is the uniform distribution. In this paper, we have

extended the results for values of Nr that are not a power

of 2. In this general case, we have shown that the uniform

distribution of the redundant carriers is no longer optimal.

To the contrary, a uniform distribution will give rise to an

enormous increase in the necessary energy for various values

of Nr. To overcome this growth in the necessary redundant

energy, we proposed a novel distribution for the positions of

the redundant carriers, based on a simple analytical expression.

The proposed distribution reduces to the uniform distribution

when Nr is a power of 2, and can hence be seen as a natural

extension of the uniform distribution for general values of Nr.

In the simulations, it is shown that this distribution does not

increase the required (average) redundant energy, and will need

essentially the minimal energy of the considered distributions.
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