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Abstract— In this paper, we consider the problem of pilot
aided channel estimation (PACE) for CP-OFDM based systems.
The positions of the pilot carriers have a strong influence on
the mean squared error (MSE) of the channel estimate, and
thus indirectly on the overall system performance. Hence, we
are interested in the pilot carrier placement that minimizes
this MSE. However, the optimization problem at hand is an
integer combinatorial optimization problem and thus NP hard.
In this paper, we propose two heuristic algorithms searching
for a good pilot carrier placement with a low MSE. Both
algorithms have comparable performance: the resulting MSE is
for both algorithms similar, and in the majority of the cases the
optimal pilot carrier placement is found. We compare the results
from the proposed heuristic algorithms with the results for the
maximum distance distribution from [1]. We are able to achieve
lower channel estimate MSE than with the maximum distance
distribution, although the difference becomes small for large FFT
size.

I. INTRODUCTION

Many standards rely on the orthogonal frequency division

multiplexing (OFDM) technique to cope with channel disper-

sion [2]. The structure of the OFDM system involves that

the channel is split into many narrowband subchannels, such

that equalization becomes a rather simple task. However, this

requires the channel to be known. Since the advent of OFDM,

much research has been devoted to channel estimation (see

e.g. [3]). Usually, to estimate the channel, pilot carriers are

sparsely inserted in the time-frequency grid of the OFDM

signal [4], and based on the observations of these pilot carriers,

the channel on the other (data) carriers is estimated. This can

be achieved by interpolation [5]-[7] or by assuming an un-

derlying channel model [8]. As in contrast to the interpolation

approach, the assumption of a channel model does not lead to a

performance error floor, we concentrate on this latter approach.

In many practical situations, this underlying channel model

can assumed to be sparse, in the sense that the channel is

modelled by a small number of channel taps. The observation

of the pilot carriers is used to estimate these channel taps, from

which the channel response at the intermediate carriers can be

computed straightforwardly. It turns out that the performance

of this technique depends on the positions of the pilot carriers.

In the literature, several papers can be found dealing with the

placement of the pilot carriers. In [9], the authors considered

the special case where the number M of pilot carriers divides

the total number N of carriers, and found that equispaced

pilots are optimal. Similar results were found in [10] and

[11]. However, when N/M is not integer, the equispaced

distribution of the pilots is no longer optimal. In [1] and [11],

ad hoc solutions to the pilot positions problem were proposed

for N/M not integer; the maximum distance distribution from

[1] reduces to the ad hoc distribution from [11] for the special

case of no guard bands or null carriers, where it is not allowed

to place pilot carriers. Other researchers have tried to find a

good pilot carrier placement by optimizing some cost function

[12]-[15]. Common to all these techniques is that none of

the proposed techniques achieves the minimum MSE of the

channel estimate. Further, except for [1], [8], [14] – [15] these

contributions do not take into account the presence of guard

bands or null carriers.

In this paper, our goal is to find the optimal pilot carrier

placement that minimizes the MSE. However, this optimiza-

tion problem is NP hard, such that an exhaustive search is

prohibitively complex. For example, for an FFT size of 32, it

took already several weeks to obtain the optimal set of pilot

carrier positions on a standard computer per parameter set. To

find a close to optimum solution, we propose two heuristic

search algorithms, one based on branch and bound (B&B)

[16] and one based on hill climbing (HC) local optimization

[17]. For small values of the FFT size, we have compared

the results from the two algorithms with the results from

an exhaustive search, and observed that in the majority of

the cases the two algorithms found the optimal pilot carrier

placement (in 97.4% and 87.2% of the cases with branch and

bound, and hill climbing, respectively). In the other cases,

the resulting MSE was very close to the optimum, for both

algorithms. For larger values of the FFT size, where an

exhaustive search was not possible, the results from the two

algorithms were compared with a theoretical lower bound

on the MSE. The MSEs resulting from the two algorithms

are very close to this theoretical lower bound, indicating that

the two algorithms are virtually able to achieve the optimum

MSE. A comparison of the computational complexity of the

two algorithms shows that the hill climbing algorithm has

lower complexity than the branch and bound algorithm, but

the branch and bound algorithm results in (slightly) lower

MSE. With both algorithms, we are able to outperform the

low cost reference maximum distance distribution from [1]
1. The difference in MSE, however, decreases with increasing

1The maximum distance distribution that is introduced in [1] maximizes
the distance between adjacent pilot carriers taking into account the presence
of null edge subcarriers.
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FFT size N , indicating that for large N , the maximum distance

distribution is an acceptable suboptimal solution. However, for

smaller FFT sizes, using (one of) the proposed algorithms is

recommended to obtain the pilot carrier positions with lowest

MSE.

II. THE MULTICARRIER SYSTEM

In this paper, we assume that the channel impulse response

does not change during an OFDM interval. As a result, we

can model the channel as a tapped delay line h(k), k =
0, . . . , L − 1, with L the length of the channel. Further, we

assume the absence of intersymbol interference, i.e. the cyclic

prefix length ν is larger than the channel impulse response

duration: ν ≤ L−1. We insert M ≥ L pilots in the frequency

domain at carrier positions nℓ, ℓ = 1, . . . ,M to estimate the

unknown channel taps. At the receiver side, the M FFT outputs

corresponding to the pilot carriers can be written as

y = Ah+w (1)

where A(ℓ, k) =
√

N
N+ν

ap(ℓ)e
−j2π

knℓ

N , ℓ = 1, . . . ,M , k =

0, . . . , L−1, ap(ℓ) are the pilot symbols and w is the additive

Gaussian noise. The ML estimate of the channel vector is

given by

ĥML = (AHA)−1AHy (2)

and the MSE of the estimate yields

MSE = E[‖ĥML − h‖2] = N0trace((AHA)−1). (3)

The MSE depends on the pilot carrier positions. Tests show

that, when these pilot carrier positions are not well chosen,

the matrix AHA can become (close to) singular, resulting in

a very high MSE, and failing channel estimation.

Let us look closer to the matrix product AHA. Assuming

that |ap(ℓ)|
2 = Es, this matrix product can be written as

(

AHA
)

k,k′
= Es

N

N + ν

M
∑

ℓ=1

ej2π
(k−k

′)nℓ

N . (4)

Defining the Hermitian Toeplitz matrix B with elements

Bk,k′ = bk−k′ , where

bk =
M
∑

ℓ=1

ej2π
knℓ

N , (5)

the MSE can be rewritten as

MSE =

(

Es

N0

)−1
N + ν

N
trace(B−1). (6)

It can easily be verified that, if there were no limitations on nℓ

(in reality nℓ is an integer ∈ Sc, where Sc∪Sp = {0 : N−1},

with Sc the set of potential pilot carrier positions and Sp the

set of forbidden carrier positions) and thus on bk, the minimum

MSE would be reached when all eigenvalues of B are equal. In

that case, the matrix B reduces to a diagonal matrix, because,

if we decompose B as B = QHΛQ, where Λ = λI is the

eigenvalue matrix with all eigenvalues equal, and Q is the

orthogonal eigenvector matrix (QHQ = I), it follows that

B = λI. Taking into account that b0 = M , the resulting value

of the MSE would be

MSELB =
N + ν

N

L

M

(

Es

N0

)−1

. (7)

However, as in general it is not possible to find a pilot carrier

placement that diagonalizes the matrix B, this is a theoretical

lower bound on the MSE. In [11], it is shown that when M
is a power of 2 (given that N is also a power of 2), the

equidistant pilot distribution diagonalizes B. This result can

be generalized to the case where M divides N when N is not

restricted to be a power of 2 [10]. As such, for these special

cases, the optimal distribution is known. When M does not

divide N , the optimal solution is not known. In this paper, we

will use this lower bound to assess the performance of the two

heuristic search algorithms described in the next section.

III. HEURISTIC SEARCH ALGORITHMS

A. Hill climbing (HC)

The hill climbing (HC) technique [17] is a local search

optimization technique that starts from an initial choice for

the settings, and then looks in the neighbourhood, by incre-

mentally changing a single element of the settings, to see

if there is a solution that is better than the current one. If

the function to be optimized has multiple local optima, the

algorithm typically will get stuck in a local optimal point

and the global optimum will easily be missed. Hence, the

performance of this algorithm strongly depends on the initial

settings. Usually, the HC algorithm is restarted multiple times

with different (random) initializations to solve the problem of

the local optima.

The hill climbing algorithm we propose is given in table I. In

this algorithm, we first select the initial pilot carrier positions

nℓ, ℓ = 1, . . . ,M , where the carrier positions must be selected

out of the set Sc of possible positions (excluding the null

subcarriers and guard band carriers). Then, we systematically

switch one of the Md data carrier positions with a pilot carrier

position, and determine if the resulting MSE is lower than the

current best MSE. Unfortunately, the optimization problem at

hand has many local minima. To stand a fair chance of finding

the global minimum, the initial setting must therefore be

close to the global optimum. Hence, the main problem in this

algorithm is to find a good initialization. In our simulations, we

used the maximum distance distribution from [1] as the initial

pilot carrier placement. The convergence of the algorithm can

be improved by iteratively executing the algorithm, where the

output of the previous run is taken as the initial setting of the

next run. Simulations have shown that typically one to five

iterations are necessary before the algorithm shows no further

improvement.

The proposed algorithm is a greedy algorithm: for all

possible incremental changes the MSE must be computed.

The computational load is dominated by the inversion of an

L × L matrix, which has complexity O(L3), such that the

computational complexity per run of the algorithm equals

O(M · Md · L3). This results in a computation time per run

of some seconds for small N to a couple of minutes for

N = 1024.
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TABLE I

HILL CLIMBING ALGORITHM

1) select initial pilot carrier positions n = {nℓ|ℓ = 1 : M}, nℓ ∈ Sc

2) determine Md data carrier positions ñ = Sc\n
3) compute MSE
4) for i = 1 : M
5) for j = 1 : Md

6) n
′ = n ; ñ′ = ñ

7) n
′(i) = ñ(j) ; ñ′(j) = n(i)

8) compute MSE′ for n′

9) if MSE′ < MSE
10) n = n

′ ; ñ = ñ
′ ; MSE = MSE′

11) end
12) end
13) end

B. Branch and Bound (B&B)

The main problem with the hill climbing algorithm is the

need for a good initial choice for the pilot carrier positions.

Tests for small N , where the determination of the optimal

pilot carrier placement through exhaustive search was still

possible within reasonable time, revealed that in only 87.2% of

the cases, the optimal pilot carrier placement was found with

the hill climbing algorithm. In almost 13% of the cases, the

maximum distance distribution was not close enough to the

optimal distribution such that the hill climbing algorithm gets

stuck in a local optimum. In this section, we consider another

heuristic algorithm that does not suffer from bad initializations

and local minima.

First let us look closer at the optimization problem at hand.

The optimal pilot carrier placement minimizes the MSE from

(6):

arg min
nℓ∈Sc

(

Es

N0

)−1
N + ν

N
trace(B−1) = arg min

nℓ∈Sc

trace(B−1).

(8)

This involves the computation of the trace of the inverse of

the Hermitian Toeplitz matrix B, where the elements of B

depend in a non-linear way on the pilot carrier positions to

be optimized. Defining the eigenvalues λm, m = 1, . . . , L of

the matrix B 2, trace(B−1) can be rewritten as trace(B−1) =
∑L

m=1

1

λm
. Assuming no restrictions on λm, this function is

minimized when λm = M , i.e. all eigenvalues are equal. As

the function f(x) = 1

x
is a convex function for x > 0 (i.e. the

second derivative f ′′(x) > 0), it follows that this minimum

corresponds to a global minimum. Hence, the optimum pilot

carrier placement will result in a matrix B with eigenvalues

close to λm = M , which indicates that the matrix B is a close

to diagonal matrix. As such, we are going to reformulate the

optimization problem, such that it can be implemented with

linear programming techniques.

As for the optimal pilot carrier placement the matrix B will

be close to a diagonal matrix, its off diagonal elements will

have small amplitudes. Therefore, taking into account that B is

Hermitian Toeplitz, we reformulate the optimization problem

2These eigenvalues are real-valued because of the Hermitian nature of B.

(8) into another related optimization problem:

arg min
nℓ∈Sc

L−1
∑

k=1

|bk|
2, (9)

i.e. in (9), only the first row (column) of B is considered.

Minimization of the off diagonal elements in the other rows

(columns) will have a similar structure as (9), as most of the

elements in the summation are the same. Taking into account

that B is Toeplitz, the minimization of the sum of the squared

moduli of the off diagonal elements (9) will guarantee that

the matrix B will be close to diagonal. Note that the two

optimization problems (8) and (9) are not equivalent. Hence,

the solution from (9) will most probably not minimize (8).

However, using the optimization problem (9), we will generate

a restricted set of test pilot placements, out of which the one

will be selected that minimizes the MSE (8). In the following

we will show that the optimization problem (9) is a convex

optimization problem that can be implemented by a branch

and bound (B&B) algorithm, that belongs to the class of linear

programming algorithms.

Let us take a closer look at the minimization (9):

arg min
nℓ∈Sc

L−1
∑

k=1

|bk|
2 = arg min

nℓ∈Sc

L−1
∑

k=0

|bk|
2 (10a)

= arg min
nℓ∈Sc

L−1
∑

k=0

∣

∣

∣

∣

∣

M
∑

ℓ=1

ej2π
knℓ

N

∣

∣

∣

∣

∣

2

(10b)

= arg min
nℓ∈Sc

M
∑

ℓ,ℓ′=1

g(nℓ − nℓ ′) (10c)

= arg min
nℓ∈Sc

M
∑

ℓ=1

ℓ−1
∑

ℓ′=1

g(nℓ − nℓ ′) (10d)

where bk is given by (5) and

g(x) =
L−1
∑

k=0

ej2π
kx

N = cos
π(L− 1)x

N
·
sin πLx

N

sin πx
N

(11)

is a symmetric function: g(−x) = g(x) and g(N−x) = g(x).
In (10a), we have extended the summation range (this has no

influence as b0 = M is a constant), and in (10b), we have

substituted bk (5). In (10c), (11) is used to rewrite (10b), and

in (10d), we made use of the symmetry of g(x) to reduce the

number of terms in the summation. The optimization problem

(10d) can be implemented with the B&B algorithm shown in

table II. In this algorithm, we generate different candidate sets

of pilot carrier positions. In the initialization phase, we define

for each n1 ∈ Sc a different candidate set, and gradually add

extra pilot carrier positions to each set. At level i, for each

of the (up to) KM sets {n1, . . . , ni−1}, we add the ith pilot

carrier position ni. The selection of the pilot carrier position

ni is based on the branch metric

fi(y) =
i−1
∑

ℓ=1

g(y − nℓ) (12)

that depends on the pilot carrier positions that are already in

the considered set. For each of the sets, we select the Kg pilot
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TABLE II

BRANCH&BOUND ALGORITHM

1) compute g̃(m), m = 1, . . . , N
2) initialize tree= [n1,Σ1 = 0], n1 ∈ Sc

3) for i = 2 : M
4) treenew=empty; x=# rows in tree

5) for k = 1 : x
6) {n1, . . . , ni−1} = tree(k; 1 : i− 1)

7) define fi(y) =
∑i−1

ℓ=1
g̃(y − nℓ), y ∈ Sc

8) select the Kg values with smallest fi(n
j
i )

with n
j
i 6∈ {n1, . . . , ni−1}, j = 1, . . . ,Kg

9) for j = 1 : Kg

10) test if {n1, . . . , ni−1, n
j
i} ⊂ tree

11) if not: add pilot carrier position

12) Σi = Σi−1 + f(nj
i );

13) treenew=[treenew;{n1, . . . , ni−1, n
j
i},Σi]

14) end
15) end
16) end
17) sort treenew on Σi and select KM best ones to replace tree
18) end
19) compute MSE for all entries in tree and select the smallest

carrier positions ni with smallest branch metric, and generate

the sets {n1, . . . , ni−1, n
j
i}, j = 1, . . . ,Kg . This results in (up

to) Kg·KM candidate sets at the next level. Hence, if we would

keep all candidate sets, the computational load would increase

exponentially. To reduce this computational load, we reduce

the number of candidate sets again to KM . The selection of

the best candidate sets is based upon the cumulative metric,

which is defined as

Σi = Σi−1 + fi(ni). (13)

where Σ1 = 0: the KM sets with lowest cumulative metric

are kept for the next level.

The algorithm requires three parameters to be selected:

Kg , KM and α. The first parameter Kg limits the growth

of the number of candidate sets within a level: the number

of candidate sets grows (maximally) with a factor Kg. This

factor can in reality be smaller than Kg because we eliminate

duplicate candidate sets to increase the convergence speed:

if the set {n1, . . . , ni−1, n
j
i} is already present in the list of

candidate sets, this new set is not kept for further processing.

The second parameter KM limits the total number of candidate

sets that are further processed and has also a large impact on

the convergence of the algorithm: from the up to Kg · KM

candidate sets at each level, we keep only the KM sets with

the lowest cumulative metrics. When KM is selected too small,

there is a risk that the best pilot carrier placement is not found,

whereas increasing KM increases the computational load of

the algorithm. The algorithm outputs KM candidate sets out

of which the one with the best MSE must be selected. It turns

out that the convergence of the algorithm can be improved by

introducing a new cost function g̃(m)

g̃(m) = sign(g(m)) · |g(m)|α (14)

with α ∈ R>0, i.e. α is positive real valued. In this way, we

artificially adapt the shape of the function g(m), to increase

the difference between the branch and cumulative metrics of

the different sets and obtain a better discrimination between

the different carrier positions that can be added at a level, so

g N-2g g

guard bands

carrier
index

0 N-1

pilot carrier positions

Fig. 1. Position of the guard bands.

that a smaller value for KM for the algorithm to converge is

required.

The selection of the three parameters of the algorithm is

not straightforward. In the simulations, we have searched for

the optimal parameters that resulted in the minimum MSE.

With this approach, the optimum pilot carrier placement de-

termined with the exhaustive search was found in 97.4% of the

cases. However, our approach required three one dimensional

searches, the first one over Kg , where KM ≈ 10N and

α = 1, the second one over α, with the optimal value for

Kg and KM ≈ 10N , and then increasing KM for the optimal

values for Kg and α until no further improvement on the MSE

was found. However, from the simulations, it followed that in

many cases the following choice for the parameters resulted in

satisfactory MSE: Kg = 2−5, α = 1 and KM = 10−100×N .

The computational complexity of the algorithm is mainly

determined by the construction of the list of candidate sets,

and is of the order of O((M − 1)KgKM log2 KgKM ). This

resulted in a computation time of a few seconds for small N
to half an hour for N = 1024 using Matlab on a standard

Windows computer (2.54 GHz). Hence, the computational

complexity is higher than the hill climbing algorithm, but the

B&B algorithm results in lower MSE and the optimum pilot

carrier positions are found in more cases.

IV. NUMERICAL RESULTS

For the simulations, the guard band locations shown in

figure 1 were considered. There are two guard bands of γ
carriers at the edges of the OFDM frequency band. Hence,

there are 2γ carriers that cannot be used for data transmission

and pilot carrier placement. An example of the pilot carrier

placement according to the maximum distance distribution

and the hill climbing algorithm is shown in figure 2. For

the maximum distance distribution, we can clearly see that

the distance between adjacent pilot carriers is maximized. In

the best pilot carrier placement found with the hill climbing

algorithm, we observe that the best pilot carrier positions

can strongly differ from the maximum distance distribution.

Generally, the best pilot carrier positions found with the hill

climbing algorithm or the branch&bound algorithm will not

show a regular pattern.

In figure 3, a comparison is made between the MSE

corresponding to the maximum distance (MD) pilot carrier

placement, and the MSE corresponding to the pilot carrier

placements obtained with the hill climbing (HC) and branch

and bound (B&B) algorithm, respectively. Two cases are

considered: the case where there are no forbidden guard bands
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Fig. 2. Pilot carrier placement according to (a) the maximum distance
distribution (b) the hill climbing algorithm for N = 32, M = 7, γ = 8.

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

M

M
S

E
/M

S
E

L
B

MD, γ=8

B&B, γ=8

HC, γ=8

MD, γ=0

B&B, γ=0

HC, γ=0

Fig. 3. Comparison of the MSE for maximum distance (MD) distribution
and the distributions from the branch and bound (B&B) algorithm and the
hill climbing (HC) algorithm as function of M , N = 128, L = M .

(γ = 0), i.e. the whole frequency band can be used for

pilot carrier placement, and the case of two guard bands of 8

carriers, i.e. γ = 8. As can be observed, for γ = 0 the MSE

normalized to its lower bound is very close to one, for all

considered cases. Hence, when there are no guard bands, the

maximum distance distribution is virtually able to reach the

theoretical lower bound, and the use of the heuristic algorithms

is not necessary. However, when γ = 8 and for increasing M ,

there is a clear difference between the MSE for the maximum

distance (MD) distribution and the MSE for the two heuristic

algorithms. The MSE of the B&B algorithm is slightly lower

than the one for the HC algorithm, but the difference is

very small. We observe that the MD distribution is far from

optimal when there are guard bands present and the number

of pilot carriers increases. With the proposed heuristic search

algorithms, on the other hand, we are able to obtain pilot

carrier placements that have a MSE close to the theoretical

lower bound.

In figure 4, the effect of the guard band size γ is evaluated.

When γ increases, the MSE will increase. This is anticipated,

as with increasing guard band size, the number of possible pi-

lot carrier positions decreases. Because of the lower flexibility

in placing the pilot carriers, it will become more difficult to

find a pilot carrier placement that ’diagonalizes’ the matrix B,

i.e. the off diagonal elements will have larger amplitude. As

a result, the MSE will increase. As in the previous figure,

the two heuristic search algorithms result in an MSE that

0 2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

M
S

E
/M

S
E

L
B

γ

MD

B&B

HC

Fig. 4. Comparison of the MSE for maximum distance (MD) distribution
and the distributions from the branch and bound (B&B) algorithm and the
hill climbing (HC) algorithm as function of γ, N = 64, L = 5, M = 15.

6 7 8 9 10 11
1

1.5

2

2.5

log
2
 N

M
S

E
/M

S
E

L
B

MD, γ=0

B&B, γ=0

HC, γ=0

MD, γ=8

B&B, γ=8

HC, γ=8

Fig. 5. Comparison of the MSE for maximum distance (MD) distribution
and the distributions from the branch and bound (B&B) algorithm and the
hill climbing (HC) algorithm as function of N , M = ⌈0.1 ·N⌉, L = M .

is similar, and is clearly lower than that for the maximum

distance distribution.

The effect of the FFT size N is considered in figure 5

for γ = 0 and γ = 8. For γ = 0, the MSE is very close

to the theoretical lower bound, for all cases, whereas for

γ = 8, the difference is larger. However, in the latter case, the

difference between the MSE and its lower bound decreases

when the FFT size increases. This can be explained as when

N increases, the pilot carrier positions can be selected out

of a larger set of carrier positions. Because of this higher

flexibility, the matrix B can be better ’diagonalized’. Again,

the two heuristic search algorithms have better performance

than the MD distribution: for N ≥ 1024, the resulting MSE is

very close to the theoretical lower bound. Also the MSE for

the MD distribution comes closer to the lower bound when

N increases: the MD distribution is therefore a good low cost

suboptimal alternative for large N .

V. CONCLUSIONS

In this paper, we have proposed two heuristic search al-

gorithms to find the pilot carrier placement that minimizes

the MSE of the channel estimation in CP-OFDM. We have
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compared the results of the heuristic algorithms with the

results of the maximum distance distribution from [1]. In the

presence of guard bands, where the pilot carriers cannot be

placed, the heuristic search algorithms result in clearly lower

MSE than the MD distribution. Although the MD distribution

turns out to be a good sub-optimal alternative for larger FFT

size.

The question arises which of the proposed algorithms is

best suited to determine the pilot carrier positions. On the

one hand side, the branch and bound algorithm has better

performance, as it does not get stuck in local minima as in

the hill climbing algorithm. However, when comparing the

results of the two algorithms, it turns out that in reality,

the hill climbing algorithm has similar performance as the

branch and bound algorithm: the resulting MSE is virtually the

same. Hence, the main difference will lie in the complexity

of the algorithm. As the hill climbing algorithm has lower

complexity, and does not require parameters to be optimized

as in the branch and bound algorithm, the hill climbing

algorithm is more suited for practical use. Finally, for large

N (N > 1024), the maximum distance distribution is a good

suboptimal alternative that selects the pilot carrier positions at

no computational cost.
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