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Wi-Fi Fingerprint Positioning Updated
by Pedestrian Dead Reckoning for Mobile
Phone Indoor Localization

Qiang Chang, Samuel Van de Velde, Weiping Wang, Qun Li,
Hongtao Hou and Steendam Heidi

Abstract The widespread deployment of Wi-Fi communication makes it easy to
find Wi-Fi access points in the indoor environment, which enables us to use them
for Wi-Fi fingerprint positioning. Although much research is devoted to this topic in
the literature, the practical implementation of Wi-Fi based localization is hampered
by the variations of the received signal strength (RSS) due to e.g. impediments in
the channel, decreasing the positioning accuracy. In order to improve this accuracy,
we integrate Pedestrian Dead Reckoning (PDR) with Wi-Fi fingerprinting: the
movement distance and walking direction, obtained with the PDR algorithm, are
combined with the K-Weighted Nearest Node (KWNN) algorithm to assist in
selecting reference points (RPs) closer to the actual position. To illustrate and
evaluate our algorithm, we collected the RSS values from 8 Wi-Fi access points
inside a building to create a fingerprint database. Simulation results showed that,
compared to the conventional KWNN algorithm, the positioning algorithm is
improved with 17 %, corresponding to an average positioning error of 1.58 m for
the proposed algorithm, while an accuracy of 1.91 m was obtained with the KWNN
algorithm. The advantage of the proposed algorithm is that not only the existing
Wi-Fi infrastructure and fingerprint database can be used without modification, but
also that a standard mobile phone is sufficient to implement our algorithm.
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63.1 Introduction

Acquiring accurate location information is essential for many applications. There-
fore, researchers developed several algorithms to estimate a user’s position. Among
the solutions, the most popular system is the Global Navigation Satellite System
(GNSS), which includes GPS, Galileo and Beidou. Because of the accuracy of
GNSS, i.e., normally the average positioning error is 3–10 m, GNSS is widely used
for outdoor navigation. On the other hand, with the arrival of the era of mobile
Internet, Location Based Service (LBS) developed dramatically: the need of indoor
positioning has increased rapidly. However, the indoor environment severely
degrades the accuracy of GNSS positioning or makes it totally impossible. As a
result, several alternative positioning techniques for indoor positioning were pro-
posed. Some of them are based on the GNSS, such as AGNSS (Assisted GNSS) or
DGNSS (Difference GNSS), but most of them rely on other approaches, such as
Wireless Sensor Networks (WSNs), cameras, Wi-Fi radio fingerprinting or inertial
measurement units (IMUs). In general, all above mentioned algorithms have their
strengths and weaknesses, when comparing them with respect to accuracy, com-
plexity and deployment costs. As a result, there still no well-performing positioning
technique for indoor localization exists.

Among the solutions for indoor positioning, the Wi-Fi fingerprinting technique
has received much attention because Wi-Fi access points are already widely
available, implying the deployment costs are negligible compared to other solu-
tions, and some commercial products are already developed, such as google maps,
WiFiSlam or Rtmap. Because of the weak relationship between the RSS and the
position of the user, a Wi-Fi fingerprinting positioning algorithm consists of two
phases: training and localization. First, during the training phase, Received Signal
Strength (RSS) samples from the Access Points (APs) are collected and stored in a
database together with their location coordinates. Next, in the localization phase, a
user’s current position is estimated based on the comparison of the measured RSS
and those stored in the database. The requirement of an accurate database is the
weak point of this technique: because of the Wi-Fi variance problem [1], which is
caused by differences in the used device type, the user’s direction, measurement
time and environmental changes between the two phases, the estimation error is
10 m or even worse, such that the database must be updated regularly. The large
estimation error in an outdated database is mainly caused by the selection of
irrelevant reference points (RP) that are far from the actual position of the user.

A second widely used indoor positioning technique is Pedestrian Dead Reck-
oning (PDR) [2], based on information obtained from IMUs. In this technique, raw
data from e.g. an accelerometer, a compass and a gyroscope is fused to estimate a
user’s trajectory. A major advantage of this technique is that no infrastructure is
needed to estimate the relative trajectory of a user, although additional fixed
anchors are required to find the absolute position of the user.

Both PDR and Wi-Fi fingerprint positioning have their strengths and weak-
nesses. The PDR algorithm has the advantage of high availability, and immunity to
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external environment changes, but the downside of this technique is that it suffers
from a drift error that increases with time: e.g., [2] reports a position offset after a
1 km walk of about 10 m, but short term results are accurate. In contrast to the PDR
system, the positioning accuracy of the Wi-Fi fingerprinting positioning technique
is reasonably low, even on the long term, but susceptible to external disturbances
which lead to erratic, but bounded localization errors. Due to the complementary
error behaviour, the combination of these two algorithms is expected to have better
performance than the two single algorithms. In this paper, we integrate Pedestrian
Dead Reckoning (PDR) with Wi-Fi fingerprinting to provide an accurate posi-
tioning algorithm. The short term moving distance and walking direction from PDR
are applied to assist the KWNN algorithm to select reference points closer to the
actual position, so that the positioning accuracy is improved. Hence, the proposed
algorithm offers a solution to the RSS variance problem and the aging of the
database, as the outdated database still can be used. Therefore, our algorithm
reduces the maintenance cost of the system as the database should be updated less
regularly.

63.2 Related Works

There is a vast literature on hybrid positioning techniques, combining two or more
approaches to estimate a user’s position. By combining measurements from different
sources, researchers attempt to improve the accuracy of a single approach. Hence, the
combination of Wi-Fi fingerprinting and IMU has been considered earlier.

For example, Xiao [3] developed a stochastic system model based on a finite
state machine that utilizes the Wi-Fi fingerprint position estimates as its measure-
ments, and the inertial sensing data as control inputs to track the target’s position.
Although this algorithm improves the positioning accuracy, it comes at the cost of a
high computational complexity. A similar approach was used by Korbinian [4] to
fuse data from the IMU and the Wi-Fi fingerprint algorithm. However, Korbinian
considered shoe mounted IMU devices, such that the practical use for daily life is
limited. Both approaches [3] and [4] considered Kalman filters for combining the
results, but other types of filters, such as a particle filter [5] are also being con-
sidered: HiMLoc [6] combines location tracking and activity recognition using
inertial sensors and Wi-Fi fingerprinting via a particle filter. However, HiMLoc
requires the knowledge of a basic map including locations of stairs, elevators,
corners and entrances. The IMU and Wi-Fi fingerprint based algorithm ‘Zee’ [7]
also needs a map showing the pathways and barriers. Berkovich [8] develops a
navigation engine that combines the measurements from a 3D accelerometer, a
gyroscope, a magnetometer, Wi-Fi and BLE modules, together with a floor
map. The real-time indoor positioning accuracy of the engine is about 1–2 m, but
this algorithm is high energy consuming. Herrera [9] creates an indoor positioning
algorithm using a particle filter to combine PDR, beacon-based Weighted Centroid
position estimates, map information from OpenStreetMap and a users path density
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map. This high-energy-consuming algorithm obtains an average accuracy of
2.48 m. Chai [10] presents a PDR/Wi-Fi/barometer integrated system, where an
adaptive Kalman filter is employed for sensor fusion. As a barometer is not always
available to the users, the practical use of the algorithm is limited. In [11], Jin
presents a nearest-neighbor selection algorithm for real-time Wi-Fi fingerprint
positioning with the assist of inertial measurement unit (IMU) measurements. The
algorithm first selects several RPs according to the conventional KWNN algorithm.
Then, filtering out irrelevant reference points based on the position prediction with
IMU measurements.

Comparing with the current literature, we combine the results on a much lower
level, i.e., we incorporate the movement distance and walking direction directly in
the KWNN algorithm. Further, the sensors that are used in our algorithm are a
gyroscope and an accelerometer, which are readily available in standard mobile
phones. Our algorithm has a very low complexity, especially compared to a particle
filter, and requires no assumptions about a noise model. This is in contrast with both
the Kalman and particle filters, which both need the knowledge of the noise
parameters.

63.3 System Description

63.3.1 Algorithm Framework

The architecture of the proposed algorithm is given in Fig. 63.1. The algorithm
contains three stages: sensor measurement, PDR calculation, and KWNN
localization.

In the measurement phase, the algorithm records the internal sensor readings of
the mobile phone, which is equipped with an accelerometer, a gyroscope, and a Wi-
Fi card. We use the Wi-Fi card to obtain the APs’ Radio Signal Strength, the
gyroscope to measure rotational forces along the device’s three axes, and the
accelerometer to measure the acceleration of the device. The digital compass, which
is also available in the device, is not used in this algorithm, as it is easily affected by
external magnetic fields and operating electronic devices, resulting in non-reliable
measurements. In the PDR calculation phase, the readings of the accelerometer and
gyroscope are fused to detect the number of steps and walking direction. Based on
the number of steps and direction, an estimate of the user’s coordinates can be
determined. In the last phase, the KWNN algorithm is performed after every m
steps, m = 1, 2,…. By reducing the number of KWNN executions, i.e., by
increasing m, the location server’s computation load is reduced and the mobile
phone’s battery life is prolonged.

A detailed description of the PDR and KWNN algorithm is given in the fol-
lowing sections.
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63.3.2 PDR Algorithm

In the PDR algorithm, the readings of the accelerometer and gyroscope are fused to
detect the user’s number of steps and walking direction. The process of the step
counting is out of the scope of this paper and will not be discussed. The walking
direction is estimated by integrating the previous location, and the readings of the
gyroscope and the accelerometer. Based on the number of steps and direction, the
coordinates ðx; yÞ, moving distance St and turning angle at can be determined (see
Fig. 63.2). We define a step in our algorithm as two actual footsteps, one of both
feet, i.e., from a step from the right (or left) foot to the next step from the right (or
left) foot. In this paper, Pt refers to the true position of the user at time t,
Pt ¼ fxt; ytg, and Pt,PDR and Pt,WiFi are the positioning results from the PDR and
the Wi-Fi fingerprint algorithm at time t, respectively.

Assuming that we have the position estimate from the Wi-Fi fingerprint algo-
rithm at time t, i.e. Pt,WiFi, we can estimate the locations in the next m steps with
the PDR algorithm:

Accelero-
meter

Gyroscope Wi-Fi

Mobile phone s sensors

Step detection
direction
reckoning

RSSI

Coordinator
Displacement/

Angle
KWNN

Trajectory

Wi-Fi Database

Sensor Measurement

PDR KWNN

Fig. 63.1 Architecture of the
proposed algorithm
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xtþk;PDR ¼ xt;WiFi þ
Xk
i¼1

l cosutþk�1

ytþk;PDR ¼ yt;WiFi þ
Xk
i¼1

l sinutþk�1

8>>>><
>>>>:

; k ¼ 1; 2; . . .;m ð63:1Þ

In Eq. 63.1, l is the step length and u is the walking direction as illustrated in
Fig. 63.2. The angle ut can be calculated as follows:

ut¼ ut�1þbt; t[ 0
0; t ¼ 0

�
ð63:2Þ

After m steps, the moving distance St and turning angle at yield:

St ¼ Ptþm;PDR � Pt;WiFi
�� ��

at ¼ arctan ytþm;PDR�yt;PDR
xtþm;PDR�xt;PDR

�
ð63:3Þ

where �k k is the Euclidean distance.
In Eq. 63.1, we have introduced a fixed step length l to compute the coordinates

with the PDR algorithm. Note that, in reality, the step length l not only varies from
person to person, but also for a single person the step length is not the same all the
time. Nevertheless, it is observed that on short term, in general, the step length of a
person will not change significantly. Therefore, we can update the step length based
on the historic walking data.

lt ¼
Pt�m;WiFi � Pt;WiFi
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðPm
i¼1 cosuk�mþiÞ2 þ ðPm

i¼1 sinuk�mþiÞ2
q ð63:4Þ

In the following, for notational convenience, we drop the dependency of the step
length on the time index.
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Fig. 63.2 PDR algorithm
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63.3.3 KWNN Based Wi-Fi Fingerprint Algorithm

Many algorithms can be used to estimate the user’s position based on the RSS
measurements and the available database. In this paper, we adopt the K Weighted
Nearest Neighbor (KWNN) Wi-Fi fingerprint positioning algorithm. In this algo-
rithm, to estimate the position, the K nearest neighbor reference points (RPs) are
selected based on the RSS signal distance, i.e., the difference between the measured
RSS and the RSS values available in the database. With this algorithm, the coor-
dinates are calculated as:

Ptþm;WiFi ¼
Xk
i¼1

xDB;iwi;
Xk
i¼1

yDB;iwi

( )
ð63:5Þ

where ðxDB;i; yDB;iÞ are the coordinates of RP i, and the weight wi is defined as:

wi ¼
1=epDIS;iPk

j¼1
1=epDIS;i

ð63:6Þ

In Eq. 63.6, eDIS;i is the RSS signal distance and p is a parameter that can be
changed to optimize the positioning accuracy.

In the standard KWNN algorithm, eDIS;i is determined by the difference between
the RSS values available in the database and the measured RSS value between the
user. Because of signal blocking, the RSS values of the nearest reference points can
differ significantly from the measured RSS value. This can be illustrated by
Fig. 63.3. The nearest 4 reference points, selected by the conventional KWNN
algorithm, are not the best ones due to the RSS variance problem. In order to
improve the estimation accuracy, we include information obtained from the PDR
algorithm in the expression for the error distance eDIS;i. Note that these two
parameters are both acquired on short term only, to avoid the error accumulation in
the PDR step. Using this distance definition, the KWNN algorithm is able to select
the most relevant RPs, as illustrated in Fig. 63.3.

With the PDR algorithm, we are able to calculate the moving distance and
turning angle between two Wi-Fi fingerprint estimations. We include these in the
error distance eDIS;i as follows:

eDIS;i ¼ DRSS;i þ kDLOC;i þ cDAGL;i ð63:7Þ

where DRSS;i is the signal distance from the standard KWNN algorithm:

DRSS;i ¼
Xn
j¼1

RSSIDBi;j � RSSIMR;jjq
 !1=q

ð63:8Þ
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n is the number of access points (APs), RSSIDBi;j is the RSS value from the database
for AP j, measured in RP i, RSSIMR;j is the RSS value measured by the user, and the
parameter q can be changed in order to optimize the accuracy.

The location distance DLOC;i is the location distance:

DLOC;i ¼ PDB;i � Pt;WiFi
�� ��� S
�� ��q ð63:9Þ

where PDB;i is the coordinate of RP i, and Pt,WiFi is the coordinate of the previous
Wi-Fi fingerprint position estimate. Finally, the angular distance DAGL;i is given by:

DAGL;i ¼ jðarctan yDB;i � yt;WiFi

xDB;i � xt;WiFi
� atÞ%180jq ð63:10Þ

The location distance DLOC;i and the angular distance DAGL;i in Eq. 63.7 are
added to the error distance with the weighting factors k and c, which can be selected
to optimize the performance.

63.4 Performance Analyses

To evaluate the proposed algorithm, we have created a 3D model of an office
environment covering a total area of over 900 m2. Eight APs are present in this
environment. The radio map for each AP is computed by means of 3D ray tracing.1

The floor plan of the office area and the coordinates of the APs are shown in
Fig. 63.4.

Figure 63.5 shows the RSS radio map for AP 1.
In our simulation setup, we created from the training data a database with 300

RPs. The obtained radio map, originating from the ray tracing program, is con-
sidered as the ground truth, and we use it to generate RSS measurements by adding
zero mean Gaussian noise with a standard deviation of 5 dBm. For the step length
estimation, we define a step length of 1 m and add 0 mean Gaussian noise with a

s
α

Selected by conventional KWNN 
RP in the database

Selected considering walking distance and turning angle

Fig. 63.3 PDR assisted RP selection

1We use the WinProp program from AWE Communications for the 3D ray tracing.
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standard deviation of 0.1 m. The walking direction equals the true direction dis-
torted by zero mean Gaussian noise with a standard deviation of 1 degree. Simu-
lations are performed for 2D localization and the conventional KWNN algorithm is
compared with the proposed algorithm. During the simulation, the parameters are
selected as follows: k ¼ 4, p ¼ q ¼ 2, k ¼ c ¼ 1, m ¼ 1.

The CDF (Cumulative Distribution Function) of the estimation error is shown in
Fig. 63.6.

We observe that the new algorithm results in a higher accuracy than the KWNN
algorithm: for the proposed algorithm, 80 % of the positioning errors is smaller than
2.05 m, whereas 2.55 m for the KWNN algorithm. Hence, the accuracy is improved
with 20 %. Further, the probability of obtaining an error below 2 m is 78 % for the
proposed algorithm, as compared to a probability of 59 % for the KWNN algo-
rithm. The average error for the new algorithm is 1.58 m, while 1.91 m for KWNN.
Hence, the performance is improved with 17.11 %.

Figure 63.7 shows the RMSE (Root-Mean Square Error) when the number m of
steps between two Wi-Fi fingerprinting estimates varies.

AP6 AP1

AP2

AP3

AP4AP5

AP8

AP7

Fig. 63.4 Floor Plan of the indoor environment and the distribution of the APs

Fig. 63.5 Radio map of AP 1
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From Fig. 63.7, it follows that the minimum RMSE is achieved when the
number m of steps equals 1, and when m increases, the RMSE increases. This can
be explained as the accuracy of the PDR algorithm degrades when the number of
steps grows. Hence, although the battery life of the mobile phone benefits from
reducing the number of KWNN executions, the location error increases as a result.
Nevertheless, our simulation results show that the resulting RMSE is only slightly
larger than the RMSE of the conventional KWNN algorithm, even if the number of
steps is increased. Hence, to reduce the power consumption of the positioning
algorithm, the proposed algorithm offers a solid solution.

63.5 Conclusions and Future Work

In this paper, we propose a novel indoor positioning algorithm based on Wi-Fi
fingerprint and PDR. The moving distance and walking direction from the PDR are
used to assist the KWNN algorithm to select the most relevant RPs. Extensive
simulations demonstrate that the proposed algorithm provides more accurate
position estimates than the KWNN-based Wi-Fi fingerprinting positioning

Fig. 63.6 CDF curve
comparing different
algorithms

Fig. 63.7 RMSE curve of
different number of steps
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algorithm, if in every step the RSS is measured. Further, we can reduce the com-
plexity of the algorithm by considering RSS measurements only after m steps, by
using the information of the PDR algorithm, without significantly degrading the
performance. Our algorithm has very low complexity, especially as compared to a
particle filter used as in [5], and offers the same accuracy. Moreover, no knowledge
about the noise model is required. The existing Wi-Fi infrastructure and fingerprint
database can be used without modification, and a standard mobile phone is suffi-
cient to implement our algorithm.

In the future, the parameters of the algorithm (p, q, λ and γ) should be optimized
such that the average positioning error is minimized. Further, real-life measure-
ments should be conducted to test the algorithm.
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