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Abstract—Wireless localization using signal strength has been
very popular in commercial applications due to the wide
availability of 802.11 WiFi networks. However, signal strength
information alone provides very rough location estimates. In this
paper we consider supplementing the receiver of each user with
a ranging unit required for accurate positioning. By allowing
range-based cooperation between the users, it becomes possible
to increase the positioning accuracy without the need of a fully
deployed network of ranging anchors. To this end, we propose a
fully distributed localization algorithm that uses belief propaga-
tion for fusing signal strength and ranging information. Extensive
simulations, using 3D ray tracing to provide accurate radio maps,
show that the proposed fusion of measurements results in a very
scalable localization solution, where the localization performance
smoothly transitions in accuracy, depending on the available
infrastructure.

Index Terms—Wireless localization, RSS, Gaussian process,
cooperation, message passing

I. INTRODUCTION

Accurate positioning information in harsh propagation en-

vironments, as inside buildings, is becoming increasingly

important for a number of emerging applications such as

commercial, automotive, public service, and military systems

[1]. However, an accurate large scale localization system does

not exist yet due to the lack of infrastructure to support

localization. In general, position information can be obtained

by exchanging signals with a number of fixed transmitters

(possibly at a known position). The user position is then

estimated using one or more of the received signal properties

such as received signal strength (RSS), time-of-arrival or

angle-of-arrival.

RSS-based localization is favored by most commercial

systems because it can rely on the wide availability of 802.11

WiFi networks. However, the unpredictability of signal propa-

gation in an indoor environment makes RSS-based localization

a challenging task. In general, accurately predicting the signal

strength requires a full description of the RF environment.

Approximate RSS models such as the path loss model are

therefore too crude, resulting in a very low positioning ac-

curacy. More advanced methods make use of a calibration

procedure where the signal strength is measured in a (small)

number of positions. In a method called fingerprinting [2], the

position is estimated by searching for calibration data with a

similar signal strength signature. In areas where calibration

data is sparse, however, this method breaks down. In [3]

and [4], this problem is alleviated by employing a Gaussian

process (GP) that predicts the signal strength at any given

location, even in areas with sparse calibration data. With the

GP, an accuracy of 2.12m was reported in [4]. For many indoor

applications, however, this level of accuracy is still insufficient.

Alternatively, centimeter accuracy can be achieved by adopt-

ing time-of-arrival (ToA) measurements, for example by using

ultra-wideband transmitters. To circumvent the requirement of

a large number of anchors, which are network nodes at a

known position, users can be allowed to make ranging mea-

surements with their neighbors such that cooperation between

users becomes possible. In [5], it is shown that cooperative

localization in UWB networks indeed increases positioning

accuracy while requiring a lower amount of anchors within the

area. However, even with a large number of neighboring users,

which is not always guaranteed, this method still requires

at least one anchor within range for good reliability. In an

attempt to completely circumvent the requirement of a range

based infrastructure, cooperative RSS based localization was

proposed in several works, such as [6] and [7]. However, these

methods use the inaccurate path loss model to transform RSS

measurements into distances resulting in a low accuracy.

In this paper we present a novel hybrid localization algo-

rithm that uses GPs to model the RSS measurements, and

ToA-based ranging to allow for cooperation between users.

With this approach, the positioning accuracy significantly

increases without the need for a range based infrastructure.

Furthermore, our algorithm still allows us to incorporate range

measurements with anchors to further increase the positioning

accuracy whenever this is required. This results in a localiza-

tion method that seamlessly adapts its accuracy depending on

the available infrastructure. Because it is hard to obtain large

amounts of accurate ground truth for the evaluation of our

algorithm, we have chosen to use 3D ray tracing to simulate

a large realistic wireless environment. The use of ray tracing,

which can compute the signal strength with great accuracy [8],

allows us to produce very large data sets with exact ground

truth1 required for the statistically correct evaluation of the

algorithm. This is in contrast with most experiments where

only a small data set is available and the ground truth is subject

to errors.

1The radio maps generated by 3D ray tracing are available online at
http://telin.ugent.be/~slvdveld/rayTrace.zip
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II. PROBLEM FORMULATION

Consider a wireless network consisting of N mobile users

capable of connecting with access points and making range

measurements with other users and fixed anchors. We assume

the position of the anchors is known to all users. Each user

i with coordinates xi ∈ R
2,3 can make a set of independent

range measurements {zij}j∈Ni,Ai
where Ni and Ai denote

the set of neighboring users and ranging anchors, respectively.

Similarly, each user i can make a set of signal strength

measurements {yij}j∈Ci where Ci is the set of connected

WiFi access points. All the RSS and range measurements are

collected in Y and Z , respectively. For the calibration of the

GP, we assume that some calibration data Dc is available for

the access points. The goal is to estimate the marginal posterior

of each user given by pi(xi|Dc,Y,Z).

III. STATISTICAL DESCRIPTION

A. Global description

In order to describe the estimation problem of the un-

known users’ positions x1:N , we construct the joint posterior

distribution of x1:N which takes into account the different

measurements y and z, and the calibration data Dc. Using

Bayes’ theorem and the independence of the measurements

we can factorize the joint posterior distribution of x1:N as

follows

p (x1:N |Dc,Y,Z)

∝ p(Y,Z | Dc,x1:N ) p0(x1:N )

=
∏

j∈C1:N

pj (yj | Dc,x1:N )

︸ ︷︷ ︸

RSS

N∏

i=1

[
∏

j∈Ai

p (zij | xi)

︸ ︷︷ ︸

ToAanchors

×
∏

j∈Ni

p (zij | xi,xj)

︸ ︷︷ ︸

ToA cooperation

p0(xi)

︸ ︷︷ ︸

prior

]

, (1)

where yj are all the RSS measurements made by the different

users with the jth access point and p0(xi) the prior distribution

of the ith user position. For example, in a tracking scenario, the

prior is related to the user position at a previous time step and

can incorporate measurements from an inertial measurement

unit (IMU). In this paper, no prior information is considered

and the corresponding factors can be neglected. The remaining

factors present in (1) depend on the measurement models

and will be described in detail in the following subsections.

Once the joint posterior distribution is fully described, a

distributed method to obtain the users’ position estimates

from the factorized distribution in (1) will be described in

Section IV.

B. Gaussian process for the RSS likelihood model

In an indoor environment, no simple mathematical model

exists to accurately predict the received signal strength from

the receiver’s position. This is illustrated in Fig. 1, where the
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Figure 1. Radio map of a WiFi access point, generated by 3D ray tracing.
The transmit power of the access point is 100mW. The signal strength values
are given in dBm.

unpredictable behavior of the signal strength is shown. In [4],

[3], a Gaussian process (GP) was proposed that offers a non-

parametric prediction of the signal strength at an arbitrary po-

sition using a small amount of calibration points. Additionally,

the GP also returns the uncertainty of the prediction, which

takes into account the measurement noise and the density of

calibration data within the vicinity of the point of interest. The

key assumption of the GP is that for points xm and xn that

are close in space, the corresponding signal strengths ym and

yn must be correlated. This is expressed with the following

covariance function

cov(ym, yn) = k(xm,xn) + σ2
RSSδmn, (2)

where σ2
RSS is the variance of a signal strength measurement,

δmn is the Kronecker delta function2, and k(xm,xn) an

arbitrary covariance function or kernel. In this article we

employ the commonly used Gaussian kernel3:

k(xm,xn) = σ2
fexp(−

1

2l2
‖xm − xn‖

2), (3)

with l and σ2
f the length scale and signal variance, respectively.

Both parameters control how much the signal strength of

nearby points is correlated and thus control the smoothness

of the radio map estimated by the GP. These parameters

can be estimated from the calibration data and are different

for every access point. See [4] for more information on

the hyperparameter estimation of l and σ2
f . Consider the

calibration data for a single access point which consists of

L positions4 x̃ℓ for ℓ = 1..L, for which the corresponding

signal strength measurements to the access point are given

by ỹ = [ỹ1, ỹ2, .., ỹL]
T. For the entire set of calibration

points {x̃1:L, ỹ}, we can calculate the covariance which yields

cov(ỹ) = K̃ + σ2
RSSIL where K̃ is the L × L kernel matrix

with elements K̃[m,n] = k(x̃m, x̃n), and IL the L×L identity

matrix.

For a single access point, the Gaussian process models the

conditional distribution of the measured signal strengths ỹ,

given the positions x̃1:L, as a zero mean Gaussian distribution

p(ỹ|x̃1:L) = N (0, cov(ỹ)). Using the same model, we can

2δmn = 1 if m = n, and zero otherwise.
3Another kernel used for modeling the correlation of signal strenghts is the

Matérn kernel [3].
4Notice that different access points can share the same known positions for

calibration.
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describe the joint distribution of calibration signals ỹ and the

signals y measured by the N users, this yields

p

([
ỹ

y

]

|x̃1:L,x1:N

)

= N

(

0,

[
cov(ỹ) cov(ỹ,y)

cov(y, ỹ) cov(y)

])

(4)

with C = cov(ỹ,y) = [k1,k2, ...,kN ] and ki =
[k(x̃1,xi), k(x̃2,xi), . . . , k(x̃L,xi)]

T. Using the formula for

the conditional distribution of a joint Gaussian [9] on (4),

we obtain p (y|ỹ, x̃1:L,x1:N ) = N (µ,Σ) with mean µ =
[µ1, µ2, ..., µN ]T and Σ the N × N covariance matrix with

elements Σ[i, k] = σ2
ik, where µi and σ2

ik are given by:

µi = kT
i (K̃+ σ2

RSSIL)
−1ỹ (5)

σ2
ik = k(xi,xk) + σ2

RSSδik − kT
i (K̃+ σ2

RSSIL)
−1kk.(6)

We can now use the above formulas to obtain the likelihood

function pj (yj |Dc,x1:N ) for the jth access point, using

the appropriate calibration data, required for estimating the

user’s positions through (1). In a sense, the multi-user GP

approach already exhibits some cooperation between users.

This can be understood by considering the covariance func-

tion, which states that it is very unlikely that two users are

close to each other, while measuring significantly different

signal strengths. This ’cooperation’, however, is very weak

and greatly complicates estimation. Because of this we make

the approximation where we do not impose the correlation

constraint for measurements of different users. This results in:

pj(yj |Dc,x1:N ) ≈
N∏

i=1

p (yij |Dc,xi) (7)

=
N∏

i=1

N
(
µj(xi), σ

2
j (xi)

)
, (8)

where µj(xi) and σ2
j (xi) are given by µi in (5) and σ2

ii in

(6), respectively, using the calibration data for the jth access

point.

C. Ranging and cooperation

We assume all range measurements to be in line-of-sight

(LOS). This is a reasonable assumption whenever non-LOS

mitigation or detection techniques are used [10]. Further-

more, we assume a standard Gaussian noise model resulting

in p (zij | xi,xj) = N (‖xi − xj‖, σ
2
d) and p (zij | xi) =

N (‖xi − xref
j ‖, σ

2
d), where σ2

d is the noise variance of the

range measurement and xref
j the known position of the jth

anchor.

IV. BELIEF PROPAGATION FOR SENSOR FUSION

The factorization of (1) can be represented graphically

by a factor graph on which message passing algorithms,

such as belief propagation (BP), can be applied [11]. The

factor graph is created by drawing square vertices for every

factor of the joint probability function and circular vertices

x1x1 x2x2

x3x3

ff
g

h13h13 h23h23

h12h12

g′
1 g′

3
g′
2

Figure 2. Factor graph representation of the posterior likelihood function for
N = 3 users. Here, f(xi) = p (zi | xi) is the information from the ranging
of the user with the anchors, g (x1:N ) = p (y | x1:N ) is the information from
the RSS measurements, hij (xi,xj) = p (zij | xi,xj) is the information
from ranging between users i and j, and g′i(xi) = p(yi|xi) is the RSS
approximation in (7).

for every variable. Every variable vertex is connected by an

edge to a factor vertex when the variable is an argument of

the particular factor. The factor graph corresponding to the

posterior likelihood in (1) in case of N = 3 users, 1 WiFi

access point and 1 ranging anchor5 is shown in Figure 2 on

the left. The factor graph on the right uses the approximation

in (7). It is clear that this approximation results in a graph

with less cycles. In general, too much cycles in the factor

graph should be avoided as they increase the complexity of

the algorithm and may have a negative effect on the accuracy

of the estimation [12]. Because of these considerations, we will

only consider the factor graph that uses the approximation (7).

Using BP, we can efficiently compute the belief bi(xi)
for each user, which is an approximation of the desired

marginal distribution pi(xi|Dt,Y,Z). Because all factor nodes

are connected with two variable nodes at most in (1), and

because zij is independent from zji, we can use the SPAWN

[5] implementation of BP to compute the beliefs. Let fij be

a factor connected to the variable xi; then the formulas for

messages mfij→i(xi), going from factor node fij to variable

node xi, and for the belief bi(xi) are given by:

mfij→i(xi) =

ˆ

fij(xi,xj)bj(xj) dxj (9)

bi(xi) ∝
∏

∀fij

mfij→i(xi). (10)

For factors fj that are connected to variable node xi only,

equation (9) simply revert to mfij→i(xi) = fij(xi). Because

(9) requires the beliefs of neighboring nodes, which are

unknown at the start of the algorithm, we iteratively solve these

equations. This is referred to as loopy BP. Using formulas (9)

and (10) for the posterior in (1), the belief for the ith user is

given by:

bi(xi) ∝ p0(xi)
∏

j∈Ci

pj (yij | xi)
∏

j∈Ai

p (zij | xi)

×
∏

j∈Ni

ˆ

p(zij |xi,xj)bj(xj) dxj . (11)

5Here, the ranging anchor is within radio range with the first user only.
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It can be seen from equation (11) that the belief bi(xi) of

the ith user is expressed by the measurements that are locally

available to the user. Hence, the belief can be calculated by the

user itself, resulting in a fully distributed algorithm. In general,

there is no closed form expression for the computation of the

belief given by (11), such that we must rely on approximate

methods. In this article we will use a non-parametric particle-

based approach where the belief bi(xi) of the ith user is repre-

sented by a set of K particles x
(k)
i and corresponding weights

w
(k)
i , i.e., bi(xi)↔ {x

(k)
i , w

(k)
i }Kk=1. In [13], a particle based

method for the computation of the beliefs was devised where

every message was individually represented by particles and

multiplied by using kernel density estimation (KDE) required

to evaluate the messages in an arbitrary point. In this work we

do not represent the messages by means of particles but rather

compute the belief in (11) directly, resulting in a more accurate

and computational less demanding algorithm. In order for the

particles to give a good representation of the belief, we sample

them from a proposal distribution qi(xi) which we choose

to be a) easy to sample from and b) closely resembling the

belief bi(xi). A possible proposal distribution6 can be the prior

distribution p0 or if present, a factor p (zij | xi) with small

zij
7. With the proposal distribution qi(xi) selected, the weights

are given by w
(k)
i =

bi(x
(k)
i

)

qi(x
(k)
i

)
. Now, with a sufficient amount of

particles, a good approximation for the minimal mean squared

error (MMSE) position estimate x̂i can be obtained using a

Monte Carlo approximation:

x̂i =

ˆ

xibi(xi) dxi ≈

∑K

k=1 w
(k)
i x

(k)
i

∑K

k=1 w
(k)
i

. (12)

For numerical stability, we compute the weights in log domain:

w̄
(k)
i = log(w

(k)
i ) = log

(

bi(x
(k)
i )

)

−log
(

qi(x
(k)
i )

)

. It can be

seen from equation (11) that log
(

bi(x
(k)
i )

)

results in a num-

ber of terms corresponding to the prior, RSS measurements,

anchors and neighbors. These terms can easily be evaluated

for every x
(k)
i , with the exception of the terms corresponding

to the cooperation with neighbors. For this, we again make a

Monte Carlo approximation for mj→i(x
(k)
i ) from (9):

ˆ

p(zij |x
(k)
i ,xj)bj(xj) dxj ≈

K∑

ℓ=1

w
(ℓ)
j p

(

zij | x
(k)
i ,x

(ℓ)
j

)

.

(13)

The full algorithm is outlined in Algorithm 1. In this algorithm,

the beliefs are calculated until a stopping criterion is reached,

such as reaching a fixed number of loops or when the beliefs

have converged8.

6The message corresponding to the RSS measurement could also be used
as a proposal distribution. However, their does not exist an efficient method
to sample from the GP-based likelihood in (7). This could be a opportunity
for future research.

7Whenever zij is small, the entropy of p (zij | xi) will also be small,
meaning that it can be represented by a small amount of particles. See [13]
how to draw samples from p (zij | xi).

8Usually, the beliefs converge after 2 or 3 iterations.

Algorithm 1 Cooperative hybrid localization.

Sample K points x
(k)
i from qi(xi)

Calculate non-cooperative weights:

w̄
(k)
p,i = log

(

p0(x
(k)
i )

)

(14)

w̄
(k)
RSS,i = −

∑

j∈Ci

log
(

2πσj(x
(k)
i )

)

+

(

(yij − µj(x
(k)
i ))2

2σ2
j (x

(k)
i )

)

(15)

w̄
(k)
a,i = −

∑

j∈Ai

(

(zij − ‖x
(k)
i − xref

j ‖)
2

2σ2
d

)

(16)

w̄
(k)
i = w

(k)
p,i + w

(k)
RSS,i + w

(k)
a,i − log(qi(x

(k)
i )) (17)

Estimate x̂i and broadcast belief {x
(k)
i , w̄

(k)
i }Kk=1.

Loop

Receive beliefs {x
(k)
j , w̄

(k)
j }Kk=1 from neighbors j ∈ Ni.

Calculate updated belief:

w̄
(k)
coop,i = −

∑

j∈Ni

log

(
K∑

ℓ=1

w
(ℓ)
j p

(

zij | x
(k)
i ,x

(ℓ)
j

)
)

(18)

w̄
(k)
i = w̄

(k)
coop,i + w̄

(k)
p,i + w̄

(k)
RSS,i + w̄

(k)
a,i − log(qi(x

(k)
i ))

(19)

Estimate x̂i and broadcast belief {x
(k)
i , w̄

(k)
i }Kk=1.

until stopping criterion is reached.

V. NUMERICAL RESULTS

A. Simulation setup and 3D ray tracing

For our simulations, we have created a 3D model of an

office corridor consisting of 18 rooms covering a total area

of over 900m2. The floor plan of the corridor is shown in

Fig. 3. Using this model together with the dielectric properties

(εr, σ) of the objects, a radio map for each WiFi access point

is computed by means of 3D ray tracing. In our study, we

have used the commercial Ray Tracing software tool called

WinProp from AWE Communications [14] which employs the

method of images [15] for its calculations. We consider the

radio map as the ground truth and use it to generate signal

strength measurements by adding zero mean Gaussian noise

with standard deviation σrss = 2dBm. This noise level is

equal to the empirically obtained noise level in [4]. In the

office area, L = 500 positions were randomly selected for the

calibration of the GPs. In our simulations we always consider

5 access points to be available. For the ranging measurements

we defined a maximum radio range of 20m and zero mean

Gaussian noise with standard deviation σd = 10cm. The

positions of the access points and ranging anchors are shown in

Fig. 3. The users’ positions are random within the considered

area and are different for every simulation run such that

the effect geometry is averaged out over the full simulation.

Simulations are performed for 2D localization and K = 800
particles are used to represent the beliefs. Note that the number
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Figure 3. Floor plan of the office corridor in the university building used to model the 3D environment for ray tracing. The squares and circles represent the
access points and anchors, respectively. For the fifth anchor, the radio range of 20m is shown. The access points have radio range within the entire corridor.
The total area is over 900m2.
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Figure 4. CDF curve comparing errors in position estimate for different
number of users involved in cooperation.

of particles can be further reduced in tracking scenarios where

the prior corresponds to the previous belief.

B. Results

In the first simulation, the user is connected to all five Wifi

access points (|Ci| = 5) and no range capable anchors are used,

i.e., Ai = ∅. Localization is performed using RSS measure-

ments and in case of multiple users also ToA measurements

between the users (cooperation). In Fig. 4, the cumulative

density function (CDF) of the estimation error is shown for a

varying number of users. For comparison, we also included the

result obtained from estimating the user position with the path

loss model, i.e., PdBm = P0,dbm + 10γlog10(d) with PdBm

the received signal strength, P0,dbm = 20dBm, γ the path

loss exponent, and d the distance from the access point. We

estimated the path loss exponent γ using the calibration data.

The user position was estimated using classic multilateration

given the RSS-based distances to the WiFi access points. It

can be seen from the figure that estimation using this path

loss model results in very poor performance. By employing a

GP to model the radio map and in the absence of cooperation

between users, we see that the positioning estimation is much

more accurate. Furthermore, it can be seen that the proposed

algorithm that allows cooperation by means of ToA mea-

surements between users further improves the performance of

estimation. For example, without cooperation, the probability

of obtaining an error below 2m is 55%, as compared to a

probability of 92% when 5 users are cooperating.

In Figure 5, the probability of a positioning error larger than

1m is shown for an increasing number of ToA ranging anchors,

i.e., Ai 6= ∅. Again all Wifi access points are used. It can

be seen that every ranging anchor that is added, results in an

immediate drop in outage percentage. Also, it can be seen that

with cooperation, the outage percentage drops faster. This is

because the users that benefit from a nearby anchor, can help a

lot in locating a neighboring user that is not within range of the

anchor. In other words, users with a good positioning estimate

can have a positive effect on their neighbors’ estimate.

Finally, we summarize our simulation results in Table I

where the average positioning error is shown as function of

the number of cooperating users, and the number of ranging

anchors. The top-left average error value of 2.16m corresponds

to the estimation without any ToA ranging. Moving down, or

to the right in this table always results in a lower average

positioning error which asserts the premise of a seamless

algorithm.

VI. CONCLUSIONS AND FUTURE WORK

The cost of infrastructure for time-of-arrival (ToA) based

localization remains a major obstacle to achieve widespread

accurate localization. In order to avoid the expenses of new
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Figure 5. bar plot showing the probability of a positioning error larger than
1m for both cooperative and non-cooperative hybrid localization.

Table I
AVERAGE POSITIONING ERROR.

1 user 2 users 3 users 4 users 5 users

0 ranging anchors 2.16m 1.71m 1.28m 1.09m 0.93m

1 ranging anchor 1.48m 1.12m 0.90m 0.77m 0.61m

2 ranging anchors 0.99m 0.72m 0.58m 0.51m 0.46m

3 ranging anchors 0.72m 0.57m 0.46m 0.40m 0.35m

infrastructure, less accurate received signal strength (RSS)

based localization has been widely adopted in most commer-

cial localization systems. In this paper we propose a novel

hybrid localization method that combines both RSS and ToA

measurements. This hybridization allows for a seamless tran-

sition between crude signal strength localization and accurate

range-based localization. Furthermore, by allowing users to

share positioning information, it is possible to augment the lo-

calization performance without requiring any new ToA-based

infrastructure at all. In this article, the fusion of measurements

is performed by means of Belief Propagation and the modeling

of the signal strengths is governed by Gaussian processes.

Extensive simulations using 3D ray tracing to realistically

model a large wireless indoor environment, demonstrate the

effectiveness of the proposed hybrid algorithm.
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