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Low-SNR Limit of the Cramer—Rao Bound
for Estimating the Time Delay of a
PSK, QAM, or PAM Waveform

Heidi Steendam and Marc Moenecla8genior Member, IEEE

Abstract—in this letter we consider the Cramer—Rao bound trary PSK, QAM and PAM constellations, and for an arbitrary
(CRB) for the estimation of the time delay of a noisy linearly modu-  square-root Nyquist transmit pulse.
lated signal with random data symbols and random carrier phase.
Because of the presence of the nuisance parameters (i.e., data sym-
bols and carrier phase), a closed-form expression of this CRB is Il. PROBLEM FORMULATION
very hard to obtain for arbitrary PSK, QAM or PAM constella- Let us consider the complex baseband representatiorof
tions and a band-limited transmit pulse. Instead, here we derive a isv i | dulated si |
simple expression for the limit of the CRB at low signal-to-noise anoisy linearly modulated signa

ratio (SNR), which is a relevant benchmark for timing recovery al- K1
gorithms operating at small E;/Ng. (t) = Z aph(t — kT — T)ej(-)k + n(t) 1)
k=0
I. INTRODUCTION
wherea = (ayo, ..., ax—_1) IS a vector of zero-meapairwise

HE CRAMER-RAO bound (CRB) is a lower bound on . N - i .
T the error variance of any unbiased estimate, and as sdjéhcorrelateddata symbols withE[agam] = bk—m; () is a

serves as a useful benchmark for practical estimators [1]. i l.' V".’llu.ed unit-energy square-root Nqust puises adete'r i
ministictime delay;6 = (6o, ..., 8x—1) is a vector of carrier

CRB is formulated in terms of the likelihood function of the sesT is the symbol interval: ana(t) is complex-valued
scalar parameter to be estimated. In many cases, the statié%n% y . L (t) P . .
0-mean Gaussian noise with independent real and imaginary

of the observed vector depend not only on the parameter 045

estimated, but also on a number of nuisance parameters we°86ts' each having a power spectral densit\Vgf (2E ). The

not want to estimate. The presence of the nuisance parameg [%IOI’Sa and¢ are statistically independent, and their proba-

makes the computation of the likelihood function and the coI -'1' )(/j(;er:sny IS Solt afunctlontof. IN?te tf;a:_p;umllllse_: L(Jjncorrz- i
responding CRB very hard. ated data symbols occur not only for statistically independen

A typical example where nuisance parameters occur is theé x }, but also for the large maj(_)rity of practical codes [5]. The
servation of a noisy linearly modulated waveform, thatis a fun ependence Gﬂ’? onthe symb_ol md_eic allows modeling a car-
tion of a time delay, a carrier frequency offset, a carrier phaﬁir phase that is slowly varying with respect to the duration of
and a data symbol sequence. In[2], the CRB’s for estimating t .

frequency offset and the carrier phase have been computed fo§uppose that one is able to produce froft) an unbiased

BPSK and QPSK, assuming the timing to be known; diﬁereﬁftgagﬁr g;;zebdeLﬁZbLhBe nlthe e:stlmat|20n>er;02rcv§]réance IS
constellations yield different expressions for the CRB's. W u y BT — )] 2 (7).

In order to avoid the computational complexity caused by ﬂ%here
nuisance parameters, a modified CRB (MCRB) has been de- 42 -1
rived in [3]. The MCRB is much simpler to evaluate than the CRB(r) = <Er [—TQW In(p(r; T))D N O3
CRB, butis in general looser than the CRB. In [4] the high-SNR
limit of the CRB has been evaluated analytically, and has bekn(2), r is a vector representation of the signéf). The proba-
shown to coincide with the MCRB when estimating the delability densityp(r; 7) of r, corresponding to a given value of
the frequency offset or the carrier phase of the linearly modis-called thdikelihood functionof 7. The expectatio,.[ -] is
lated waveform. with respect to the probability densigyr; 7).

In the presence of coding, timing recovery algorithms must As r(¢) from (1) depends not only on the delayto be esti-
operate at low SNR, so that the high-SNR limit of the CRB imated but also on the nuisance vector parameter(a, ¢), the
no longer a relevant benchmark. Therefore, in this contributidikelihood function ofr is obtained by averaging theint likeli-
we derive a simple expression for the low-SNR limit of the CRBood functionp(r|u; 7) of (u, 7) over thea priori distribution
for timing estimation. The resulting expression is valid for arbif the nuisance parameterir; 7) = Ey[p(r|u; 7)]. From (1)

it follows thatp(r|u; 7) = Cexp(—eL(u, 7)), whereC is a
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with which holdsirrespectiveof thea priori distribution off. Hence,
teo K-1
a(r) = [ _ TOh(t— kT —7) db. ) B [B(n)] =2 Y Belaa(n)#1(r) + 25(0)3.(r)
k=0
As the expectations involved in CRB(andp(r; 7) are hard +E5 (T2 ()] (11)

to evaluate for an arbitrary PSK, QAM or PAM symbol conyhg ayeraging in (11) is equivalent to averaging over the noise
stellation and for band limited(t), no closed-form expres- ong the nuisance parameters. It can be verified that the noise

sion for CRB() is available. Therefore, a simpler lower bpun%rm n(t) from (1) does not contribute to (11). Straightforward
called the modified CRB (MCRB), has been derived in [3leompytation of the signal contribution to (11) yields
E.[(7 — 7)?] = T?CRB(7) > T?MCRB(r). Defining the

K-1
Nyquist pulsey(¢) as . B [B5(n)] = 4K3(0) +4 Y FGT-mD).  (12)
ot) = / h(o)h(t +v) dt 5) k,m=0 _

oo From (2), (8) and (12), the low-SNR asymptote of the CRB is
the MCRB for timing estimation, corresponding #¢t) from obtained as
(1), is given by [3] ACRBy(7)

_ No 1 2 K—1 -

MCRB(7) 2B, K (—§(0)T?) (6) _, < No ) A ki)~ S 0T — 1)

whereg(¢) denotes twice derivation @f(¢) with respect ta. In 2E; k. m—=0

[4] it has been shown that fligh SNR (i.e..F; /Ny — o) the oo

2 -1
CRB (2) resulting from (1) converges to the MCRB (6). In the ~ 2 < No ) ) (_g(O)TQ) _ Z G (mT)T? )
following, we derive a closed form expression for the-SNR K \2E, .

limit (i.e., s /Ny — 0) of the CRB that corresponds to (1). This (13)

low-SNR asymptotic CRB will be denoted ACRE).

The above approximation is accurate whéfil’ is much
longer than the effective duration of the pulgg). Note that
ACRBy(7) is inversely proportional to thequareof £, /Ng.
. Low-SNR LimiT oF CRB This is in contrast with the high-SNR limit of CRBY, which

) ) is inversely proportional t&; /N, [see (6)].
For smallE, /Ny (or equivalently, smalt), we approximate

the joint likelihood functiorp(r|u; 7) by a truncated Taylor se-
ries expansion ia, and average over to obtain an approxima-
tion of the likelihood functiorp(r; 7). Neglecting third-order

and higher order terms af, one obtaing(r; 7) = C(1 — In this letter we have derived a closed-form analytical expres-
k(1) + (1/2)e2 Fy(7)), whereFi(7) = Eu[L'(u, 7)]. Note  gjon for the low-SNR limit of the CRB pertaining to the estima-
from (3) andE[a,] = 0 that £1(r) is nota function ofr, im- {5 of the time delay of a linearly modulated waveform. This
plying F1(7) = Fi(r) = 0. Now we use limit ACRB(7) turns out to be inversely proportional to the
@ (p(r; 7)) = Pr; )p(e; 1) = pP(r; 7) (7) ‘Sauareof E,/No.

dr2 BT p2(r; 7) For M-PSK withAf > 2 or QAM, ACRBy(7) is independent
wherep(r; 7) andj(r; 7) denote once and twice differentiationof the a priori distribution of the carrier phase vectrwhich

of p(r; 7) with respect te-. Keeping in (7) up to quadratic termsindicates that knowing does not reduce ACRfr) as com-

IV. CONCLUSIONS AND REMARKS

in e, and taking the averagg, [ -] yields pared to the case whefds unknown. It is easily verified from
o2 1 . (9) that, for zero-mean aneal-valueddata symbols (such as
E, {W In(p(r; T))} =3 e, |:F2(T):| . (8) M-PAM), the resulting ACRB(7) is still given by (13) when

] ] . the K marginala priori distributionsp(6;,) are constant over
Now let us computd’, (7). Taking (3) into account, we obtain (—, 7). For M-PAM with a priori knowrd, we obtain from (9)

K—1
Fy(1)=Fa Z (ap?e % 23(1) + age™® 22(1) ACRBo(7)
k=0 N 2 ) K-1 .
(5 ) - (K (40T — S FT - mr)T?
+2 | a; z,%(’r)|) ] 9) ® k, m=0
—1

where terms not depending erhave been dropped. Assuming -cos? (61, — O)
that the symbol constellation is rotationally symmetric over
27 /N with N > 2 (N = M for M-PSK, N = 4 for QAM), it 1
follows thatE[a3] = 0. In this case, (9) reduces to No \ 2 3 K

L < <2E> N E (=501 = > FET-mDT?| .

A7) (10)

Ly(r)y=2
: kz:o (14)
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