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Abstract—In this letter, we express the Cramer-Rao Bound
(CRB) for carrier phase estimation from a noisy linearly modu-
lated signal with encodeddata symbols, in terms of themarginal
a posterioriprobabilities (APPs) of the coded symbols. For a wide
range of classical codes (block codes, convolutional codes, and
trellis-coded modulation), these marginal APPs can be computed
efficiently by means of the Bahl–Cocke–Jelinke–Raviv (BCJR)
algorithm, whereas for codes that involve interleaving (turbo
codes and bit interleaved coded modulation), iterated application
of the BCJR algorithm is required. Our numerical results show
that when the BER of the coded system is less than about 103,
the resulting CRB is essentially the same as when transmitting a
training sequence.

Index Terms—Carrier synchronization, channel coding,
Cramer-Rao lower bound, phase estimation.

I. INTRODUCTION

T HE Cramer-Rao Bound (CRB) is a lower bound on the
error variance of any unbiased estimate, and as such serves

as a useful benchmark for practical estimators [1]. In many
cases, the statistics of the observed vector depend not only on
the parameter to be estimated, but also on a number of nuisance
parameters we do not want to estimate. In order to avoid the
computational complexity caused by the nuisance parameters,
a modifiedCRB (MCRB) has been derived in [2]. The MCRB
is much simpler to evaluate than the CRB, but is in general
looser than the CRB. The CRB related to carrier phase and fre-
quency estimation has been derived assuming transmission of
uncodedsymbols from a PSK [3]–[5] or a symmetric QAM [6]
constellation.

In this contribution we investigate the CRB related to the
estimation of the carrier phase of a noisy linearly modulated
signalin the presence of coding. We derive an expression for the
CRB in terms of the marginal a posteriori probabilities (APPs)
of the coded symbols, and discuss its numerical evaluation. In
Section IV, we present numerical results for the CRB resulting
from QPSK transmission with convolutional coding and turbo
coding, and compare them with the CRB for uncoded QPSK
transmission from [3]–[5] and with the MCRB from [2].
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II. PROBLEM FORMULATION

We consider a linearly modulated signal, obtained by
applying an encoded data symbol sequence to a square-root
Nyquist transmit filter, that is transmitted over an additive
white Gaussian noise channel. The resulting noisy signal
is applied to a receiver filter, matched to the transmit filter.
The receiver filter output signal is sampled at the correct
decision instants (assuming that accurate timing estimation has
been established before), which yields the observation vector

, with

(1)

for . In (1), is a sequence of
data symbols taken from an M-PSK, M-PAM or M-QAM con-
stellation ( according to a combination of an
encoding rule and a mapping rule. The sequence con-
sists of independent identically distributed zero-mean complex
Gaussian noise variables, with independent real and imaginary
parts each having a variance of 1/2. The (unknown but deter-
ministic) parameter represents the carrier phase. Finally,

, with and denoting the energy per coded
symbol and the noise power spectral density, respectively.

Suppose that one is able to produce from the observation
vector an unbiased estimateof the deterministic parameter
. Then the estimation error variance is lower bounded by the

CRB: , where is given by [1]

(2)

The probability density of , corresponding to a
given value of , is called the likelihood function of, while

is the log-likelihood function of . The expectation
in (2) is with respect to .

Since the observationdepends not only on the parameter
to be estimated but also on the nuisance vectorof random data
symbols, the likelihood function of is obtained by averaging
the likelihood function of the vector , over the
a priori distribution of the nuisance parameter vector. The
log-likelihood function of is given by

(3)

where, within a factor not depending on

(4)
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Computation of the CRB requires the substitution of (3) into
(2), and the evaluation of the various expectations included in
(2) and (3).

As the evaluation of the expectations involved in (2) and (3) is
quite tedious (in particular for coded data sequences), a simpler
but looser lower bound, the MCRB, has been derived in [2],
i.e., . The MCRB for phase
estimation is given by [2].

(5)

The expression (5) equals the CRB that corresponds to the
transmission of a long sequence of known training symbols. In
[7] it has been shown that the high signal-to-noise ratio (SNR)
limit of the CRB coincides with the MCRB from (5).

III. EVALUATION OF THE CRB

A. CRB in Terms of the APPs of the Data Symbols

We obtain for the log-likelihood function from (3)

(6)

where enumerates all symbol sequences of length
. Denoting by the set of legitimate coded sequences of length
, we have for and

otherwise, with and denoting the rate of the code and the
number of constellation points, respectively. Differentiating (6)
with respect to yields

(7)
Made use of Bayes’ rule, i.e.,

(8)

and of (4), (7) is transformed into

(9)

where and refer to averaging over
and , respectively, and

denotes the set of constellation points.
Note that no approximation is involved in obtaining (9).
Substitution of (9) into (2) yields an exact expression of the
CRB in terms of themarginal APPs of the
coded data symbols.

B. Evaluation of the Marginal APPs of the Data Symbols

In principle, any marginal APP can be
obtained as a summation of joint APPs , which
in turn can be computed from (8). However, the computational
complexity of this procedure increases exponentially with the
sequence length.

For codes that are described by means of a trellis, the
marginal APPs can be determined directly by means of the
BCJR algorithm [8]. As its computational complexity grows
only linearly with the number of states and with the sequence
length , the BCJR algorithm is the appropriate tool for marginal
APP computation in case of linear block codes, convolutional
codes and trellis codes, provided that the number of states is
manageable.

When the coded symbol sequence results from the (serial or
parallel) concatenation of two encoders that are separated by
an interleaver (such as turbo codes [9]), the underlying overall
trellis has a number of states that grows exponentially with the
interleaver size. However, when the encoders themselves are de-
scribed by a small trellis, the marginal APPs are computed by
means of iterated application of the BCJR algorithm to the indi-
vidual trellises, with exchange of extrinsic information between
the BCJR algorithms at each iteration (the same computation
is carried out when performing iterated turbo decoding instead
of the too complex MAP symbol decoding). When the coded
bits (conditioned on and ) can be considered as independent
(which is a reasonable assumption when the interleaver size is
large), this iterative procedure yields the correct marginal APPs
when reaching the steady state [10]. This approach is easily ex-
tended to other systems that use iterative decoding, such as bit
interleaved coded modulation [11].

IV. RESULTS AND DISCUSSION

Assuming the transmission of QPSK symbols
with Gray mapping, we have numerically evaluated the ratio
CRB/MCRB for phase estimation, by substituting (9) into (2),
and approximating the statistical expectation in (2) by an arith-
metical average. We have considered the following scenarios:
1) uncodedtransmission; 2) a nonrecursiveconvolutional code
(NRCC) with rate , states and generator ma-
trix ; and 3) aturbo code(TC) consisting of
the parallel concatenation of two identical recursive systematic
convolutional codes (RSCC) with , and

, through a pseudorandom even/odd interleaver of
length ; the output of the turbo encoder is punctured to obtain
an overall rate of 1/2. Fig. 1 displays the ratio CRB/MCRB as a
function of for the considered scenarios.

Fig. 1 shows that for very large the CRB con-
verges to the MCRB. When decreases, a critical value

is reached where the CRB starts to diverge from
the MCRB; for turbo coding, convolutional coding and uncoded
transmission, is about 1.5 dB, 3.5 dB and 10.5 dB,
respectively. From simulations (not reported here), we have
verified that this critical value corresponds to a BER of about
10 for the considered scenarios (and for other scenarios as
well). Hence, is determined by the coding gain
near , and decreases with increasing coding
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Fig. 1. The ratio CRB/MCRB for QPSK symbols and an observation length
L = 1001. (NRCC: nonrecursive convolutional code, TC: turbo code, PC
RSCC: parallel concatenated recursive systematic convolutional codes).

gain. This indicates that, as far as the CRB for carrier phase
estimation is concerned, transmission at a BER less than 10
is nearly equivalent to transmitting a training sequence.

V. CONCLUSIONS

In this contribution we have expressed the CRB for carrier
phase estimation in terms of the marginal APPs of the data sym-
bols. In the case of block codes, convolutional codes or trellis
codes that are described by means of a trellis of reasonable size,
these marginal APPs are obtained efficiently from the BCJR al-
gorithm. When the encoding involves two subsystems that are
separated by an interleaver (turbo codes, bit interleaved coded
modulation), the APPs result from an iterated application of
the BCJR algorithm. We have presented numerical results indi-

cating that the CRB essentially coincides with the MCRB, pro-
vided that the SNR exceeds some critical value. This critical
SNR corresponds to a BER of about 10, and hence decreases
with the coding gain of the considered system. When operating
below this critical SNR, the CRB diverges from the MCRB.

In this contribution we have restricted our attention to carrier
phase estimation from coded signals. The investigation of the
CRB for the estimation of multiple parameters (such as carrier
phase, carrier frequency, symbol timing) from coded signals is
a topic for further research.
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